S. MOREAU, "Fiabilité environnementale des composants de puissance : le TRIAC", Thèse de Doctorat, soutenue le 17 mai 2005, 127 pages.
Copyright - [Précédente] [Première page] [Suivante] - Home

Thèse : [THESE090]

Titre : S. MOREAU, Fiabilité environnementale des composants de puissance : le TRIAC, Thèse de Doctorat, soutenue le 17 mai 2005, 127 pages.

Cité dans : [DATA033] Liste des publications de Thierry LEQUEU et activités de recherche, janvier 2018.
Cité dans :[THESE109] S. FORSTER, Fiabilité fonctionnelle et mécanismes de dégradation des TRIACs soumis aux chocs thermiques par di/dt à la fermeture, Thèse, Université de Metz, 10 septembre 2001.
Cité dans :[THESE121] S. MOREAU, Mécanismes de dégradation et fiabilité fonctionnelle des interrupteurs bidirectionnels tels que les TRIACs, rapport de DEA Génie Electrique de Grenoble, aout 2002.
Auteur : Stéphane MOREAU

Début : 1er septembre 2001
Fin : 31 avril 2005
Date : 15 mai 2005
Pages : 1 - 127
Lien : private/These090.pdf - 127 pages, 5789 Ko.

Vers : Premiers conseils
Vers : Recherche 2002
Vers : Résumé
Vers : Abstract
Vers : TABLE DES MATIÈRES
Vers : Bibliographie


Résumé

TOP

Fiabilité environnementale des composants de puissance : le TRIAC
Les composants de puissance sont les éléments clés des systèmes de puissance pour la conversion et la transformation de l'énergie électrique. De part leur vaste champ d'applications, les composants de puissance sont soumis à de rudes conditions environnementales tout au long de leur vie : cyclage thermique ou de puissance (effets thermomécaniques ou/et thermoélectriques), chocs mécaniques et vibrations (effets mécaniques) et corrosion (effets chimiques).
Comme pour tous les composants électroniques, les demandes marketing concernant la réduction des coûts de fabrication, l'intégration fonctionnelle et la fiabilité sont les éléments conduisant à l'amélioration des technologies d'assemblage.
Du fait de ces exigences, le travail de thèse s'est articulé autour de l'étude de la fiabilité thermomécanique des composants de puissance soumis à des tests de cycles de température (CyT) ou de chocs thermiques (ChT).
Ces essais de fiabilité sont typiquement employés pour évaluer la résistance des composants à une contrainte mécanique induite par une alternance entre deux extrêmes de température.
Les CyT et ChT sont comparés du point de vue de la fiabilité. L'influence du temps de palier et de la température maximale a été investiguée. CyT et ChT semblent être équivalent car produisant la même défaillance : fissuration à cœur du joint de brasure situé entre radiateur et céramique.
Ces observations sont validées par analyses statistiques et simulations numériques 3-D. Les résultats de simulations nous ont permis de confirmer le mécanisme de dégradation - usure du joint de brasure, entre radiateur et céramique, par cisaillement cyclique - et aidés à déterminer l'influence du temps de palier et de la température maximale.
Grâce à la détermination des constantes de modèles d'estimation de durée de vie et à la fourniture d'un profil de mission, la durée de vie peut être estimée numériquement dorénavant.

Mots clés : TRIAC, fiabilité environementale, cycles de température (CyT), chocs thermiques (ChT), loi lognormale, fissure, brasure, caractérisation thermomécanique de matériaux, TMA, DMA, fluage, simulations E.F. 3-D, Anand, estimation de durée de vie.


Abstract

TOP

Environmental reliability of power components: TRIAC
Power electronics devices are the key components in power systems for conversion, conditioning of massive electromagnetic energy. Due to their large application fields (traction applications, mass consumption products...), power electronics devices are prone to harsh environmental conditions during their service time; these include thermal and power cycling (thermo-mechanical / thermo-electrical effects), shocks and vibration (mechanical effects) and corrosion (chemical effects).
As for all electronics devices, marketing demands on manufacturing cost savings, functional integration and reliability are major driving forces on pushing packaging technologies to high level.
According to these requirements, the work presented in this thesis consists in the thermo-mechanical reliability study of power components submitted to temperature cycling tests (TCT) or thermal shock tests (TST). These are reliability tests typically used to evaluate the resistance of components to mechanical stresses induced by alternated high and low temperature extremes.
TCT and TST were compared from the component reliability point of view. The influence of dwell times and maximum temperature was investigated. TCT and TST seem to be equivalent because they produce the same degradation at the same location (cracked base plate - ceramic solder joint).
These observations are validated by statistical analyses and 3-D simulations. Simulation results allow us to confirm the failure mechanism - solder joint between base plate and ceramic is worn out by shear - and to help us to bring out the effect of dwell times and temperature extremes. Thus, dwell times produce negligible impact in comparison of temperature extremes.
From the determination of fatigue models constants and the supplying of a mission profile (real temperature profile), lifetime estimation can be performed.

Keywords : TRIAC, thermomechanical reliability, temperature cycling test (TCT), thermal shock test (TST), lognormal distribution, crack, solder, material properties characterization, TMA, DMA, creep, 3-D FE simulations, Anand model, lifetime estimation.


TABLE DES MATIÈRES

TOP

Table des matières
1 Le TRIAC : un interrupteur électronique 18
1.1 Fabrication . . 19
1.1.1 Fabrication de la puce 19
1.1.2 Assemblage 20
1.2 Fonction électrique du TRIAC 25
1.2.1 Modes d'amorçage 26
1.2.2 Caractéristique statique IAK = f(VAK) 26
1.3 Résistance thermique . 28
1.4 Conclusions 28
2 Fiabilité expérimentale 30
2.1 Présentation 31
2.2 Contrainte appliquée . 31
2.3 Environnement expérimental . 33
2.4 Paramètres suivis . 35
2.4.1 Paramètres électriques 35
2.4.2 Paramètre thermique . 36
2.5 Étude expérimentale, analyse statistique et mode de défaillance . 39
2.5.1 Critère de défaillance . 39
2.5.2 Mode de défaillance physique 39
2.5.3 Résultats expérimentaux . 40
2.5.4 Conclusions 47
2.6 Simulation : première approche . 49
2.6.1 Description physique du modèle et modélisation 49
2.6.2 Maillage 49
2.6.3 Propriétés thermomécaniques des matériaux de l'assemblage . 51
2.6.4 Conditions aux limites et condition de chargement . 51
2.6.5 Résultats de simulation 51
2.6.6 Conclusions 51
2.7 Conclusions 53
3 Caractérisation thermomécanique de matériaux 54
3.1 Rappels 56
3.1.1 Déformations élastique, visqueuse et plastique . 56
3.1.2 Réponse unidimensionnelle 57
3.2 Quels phénomènes physiques doit-on modéliser ? 60
3.2.1 Silicium 61
3.2.2 Cuivre . 61
3.2.3 Céramique . 62
3.2.4 Résine . 62
3.2.5 Brasure 62
6
Table des matières 7
3.3 État de l'art 63
3.4 Mesures 63
3.4.1 Matériel de caractérisation et méthodologies de mesures 63
3.4.2 Mesures des propriétés thermomécaniques des matériaux . 66
3.5 Conclusions 75
4 Durée de vie et simulations éléments finis 3-D 76
4.1 Simulation . 77
4.1.1 Description physique du modèle et modélisation 77
4.1.2 Maillage 78
4.1.3 Propriétés thermomécaniques des matériaux de l'assemblage . 79
4.1.4 Condition aux limites et cas de chargement . 85
4.1.5 Résultats de simulation 88
4.2 Modèles d'estimation de durée de vie 94
4.2.1 Modèles reposant sur les déformations . 95
4.2.2 Modèles reposant sur l'énergie 97
4.3 Estimation de la durée de vie 97
4.3.1 Extraction des paramètres nécessaires aux modèles d'estimation de la
durée de vie 97
4.3.2 Corrélation avec essais expérimentaux 98
4.3.3 Étude d'un cas concret 98
4.4 Conclusions 99
Conclusion générale 100
Bibliographie 101
Annexes 107
A Fabrication de la puce d'un TRIAC 108
B Mesure de température in-situ 112
C Les différents types de données en fiabilité 113
C.1 Données complètes 114
C.2 Données censurées 114
C.2.1 Données censurées à droite 114
C.2.2 Données censurées à gauche . 114
C.2.3 Données censurées par intervalle . 116
D Conditions de mesure de la résistance thermique d'un TRIAC 117
E Assemblage 3 couches et contrainte de cisaillement 120
F Introduction à l'Analyse Mécanique Dynamique (A.M.D.) 124
F.1 A.M.D. : la technique . 124
F.2 A.M.D. : la théorie 124

Noms : Bibliographie
[1] STMicroelectronics. SCR's and TRIACS, January 1995.
[2] J.Wilde, K. Becker, M. Thoben, W. Blum, T. Jupitz, GuozhongWang, and Z. N.
Cheng. Rate dependent constitutive relations based on anand model for 92.5pb5sn2.5ag
solder. Advanced Packaging, IEEE Transactions on [see also Components, Packaging
and Manufacturing Technology, Part B : Advanced Packaging, IEEE Transactions on],
23 :408 - 414, 2000.
[3] http://www.industrie.gouv.fr/agora/pdf/electron.pdf : visité le 30/11/2004.
[4] http://www.cinenow.com/fr/article.php3/id,1606/ : visité le 30/11/2004.
[5] J. Lau, C. P. Wong, J. L. Prince, and W. Nakayama. Electronic Packaging -
Design, Materials, Process, and Reliability. McGraw-Hill Professional, February 1998.
[6] N. Yonemura, M. Fukuda, and T. Shigi. Thermal shock reliability analysis of insulated
metal substrates (ims). In IEMT/IMC Symposium, 1997., 1st [Joint International
Electronic Manufacturing Symposium and the International Microelectronics
Conference], pages 303 - 307, 1997.
[7] J.-M. Thébaud, E. Woirgard, C. Zardini, S. Azzopardi, O. Briat, and J.-M.
Vinassa. Strategy for designing accelerated aging tests to evaluate igbt power modules
lifetime in real operation mode. Components and Packaging Technologies, IEEE Transactions
on [see also Components, Packaging and Manufacturing Technology, Part A :
Packaging Technologies, IEEE Transactions on], 26(2) :429 - 438, 2003.
[8] J. V. Manca, W. Wondrak, W. Schaper, K. Croes, J. D. Haen, W. De Ceu-
ninck, B. Dieval, H. L. Hartnagel, M. D'Olieslaeger, and L. De Schepper.
Reliability aspects of high temperature power mosfets. Microelectronics Reliability,
40 :1679 - 1682, 2000.
[9] J. H. L. Pang and T. H. Low. Modeling thermal cycling and thermal shock tests for
fcob. In ITHERM 2002 The 8th intersociety conference on thermal and thermomechanical
phenomena in electronic systems, pages 987 - 992, May 2002.
[10] P. Nemeth. Accelerated life time test methods for new package technologies. In Electronics
Technology : Concurrent Engineering in Electronic Packaging, 2001. 24th International
Spring Seminar on, pages 215 - 219, 2001.
[11] V. L. Bradfiled. The thermal shock environment. The journal of environmental
sciences, pages 10 - 15, 1972.
[12] H. K. Staffin and K. Staffin. Temperature cycling and thermal shock testing/test
parameters. In Sixth international Printed Circuits conference, pages 1 - 18, May 1982.
[13] L. G. Headrick. Liquid thermal shock testing. In Proceedings of the technical program :
national electronic packaging and production conference, pages 458 - 470, 1984.
[14] S. Forster. Fiabilité fonctionnelle et mécanismes de dégradation des TRIACs soumis
aux chocs thermiques par di/dt à la fermeture. Thèse de doctorat, Université de Metz,
10 septembre 2001.
102
Bibliographie 103
[15] Q. Zhang, A. Dasgupta, and P. Haswell. Viscoplastic constitutive properties and
energy-partitioning model of lead-free sn3.9ag0.6cu solder alloy. In Electronic Components
and Technology Conference, 2003. Proceedings. 53rd, pages 1862 - 1868, 2003.
[16] B. J. Baliga. Power Semiconductor Devices. Brooks Cole, 1996.
[17] P. Aloisi. Les semiconducteurs de puissance - De la physique du solide aux applications.
Ellipses Marketing, 28 juin 2001.
[18] H. Mathieu. Physique des semiconducteurs et des composants électroniques. Dunod,
cinquième edition, avril 2001.
[19] STMicroelectronics. SCRs, TRIACs and AC switches - Databook, fourth edition,
March 2001.
[20] Electronic Industries Alliance. Integrated circuits thermal measurement method - Electrical
test method (single semiconductor device) - EIA/JESD51-1, December 1995.
[21] J. Taylor. Incertitudes et analyse des erreurs dans les mesures physiques (traduit de
l'américain par Lionel et Patrick Reynaud). Dunod - Collection Masson Sciences,
2000.
[22] E. Herr, T. Frey, R. Schlegel, A. Stuck, and R. Zehringer. Substrate-to-base
solder joint reliability in high power igbt modules. Microelectronics and Reliability,
37(10-11) :1719 - 1722, October 1997.
[23] J.-M. Thébaud, E. Woirgard, C. Zardini, and K.-H. Sommer. High power igbt
modules : thermal fatigue resistance evaluation of the solder joints. In Integrated Power
Packaging, 2000. IWIPP 2000. International Workshop on, pages 79 - 83, 2000.
[24] W. Kup, W.-T. K. Chien, and T. Kim. Reliability, Yield, and Stress Burn-In : A
Unified Approach for Microelectronics Systems Manufacturing & Software Development.
Kluwer Academic Publishers, January 1998.
[25] http://www.itl.nist.gov/div898/handbook/apr/section2/apr213.htm : visité le
30/11/2004.
[26] W. B. Nelson. Accelerated Testing : Statistical Models, Test Plans, and Data Analyses.
John Wiley & Sons, February 1990.
[27] ReliaSoft Publishing. User's Guide - ReliaSoft's Weibull++ Version 6, 1997-2000.
[28] R. B. Abernethy. The New Weibull Handbook - Reliability & Statistical Analysis for
Predicting Life, Safety, Survivability, Risk, Cost and Warranty Claims. R. B. Abernethy,
fourth edition, November 2000.
[29] ReliaSoft Publishing. ReliaSoft's Weibull++ Version 6 - Life Data Analysis Reference,
1992-2000.
[30] S. P. Timoshenko and J. N. Goodier. Theory of Elasticity. McGraw-Hill International
Editions, third edition, 1970.
[31] http://www.griset.com/fr/cuivre2.htm : visité le 30/11/2004.
[32] http://www.efunda.com/materials/alloys/copper/show_copper.cfm?ID=UNS_
C11000&prop=all&Page_Title=UNS%20C11000 : visité le 30/11/2004.
[33] R. Hull. Properties of Crystalline Silicon. IEE Publishing, February 1999.
[34] http://64.90.169.191/resources/properties/db/CDAPropertiesResultServlet.
jsp?alloy2=None&alloy3=None&alloy4=None&alloy5=None&alloy6=None&alloy=
C19210&property=All&unit_type=Both, : visité le 30/11/2004.
[35] Document du fabricant KYOCERA.
[36] http://www.loctite.be/tds/MG36F-25A.pdf : visité le 30/11/2004.
Bibliographie 104
[37] J. Lemaitre and J.-L. Chaboche. Mécaniques des matériaux solides. Dunod, seconde
edition, avril 2001.
[38] J. A. King, J. Freer, and R. Woodard. Materials Handbook for Hybrid Microelectronics.
Artech House, June 1988.
[39] J.-P. Baïlon and J.-M. Dorlot. Des matériaux. Presses internationales polytechniques,
troisième edition, 2000.
[40] A. Dessarthe. Introduction aux plastiques et composites en mécanique. Techniques
de l'Ingénieur, traité de Génie mécanique, (B5170) :39, août 1986.
[41] P. Bardonnet. Résines époxydes - mise en oeuvre et applications. Techniques de
l'Ingénieur, traité Plastiques et Composites, AM(A3466) :15, 1992.
[42] E. Madenci, I. Guven, and B. Kilic. Fatigue life prediction of solder joints in electronic
packages with ANSYS R
. Kluwer International Series in Engineering and Computer
Science, February 2003.
[43] http://www.griset.com/fr/cuivre1.htm,http://64.90.169.191/homepage.html :
visité le 30/11/2004.
[44] http://www.halontech.com/AL2O3.htm : visité le 30/11/2004.
[45] http://www.loctite.com.tw/datasheets/p12.pdf : visité le 30/11/2004.
[46] http://tds.loctite.com/tds5/docs/H-MG36F-25A-EN.PDF : visité le 30/11/2004.
[47] S. Wiese, A. Schubert, H. Walter, R. Dukek, F. Feustel, E. Meusel, and
B. Michel. Constitutive behaviour of lead-free solders vs. lead-containing soldersexperiments
on bulk specimens and flip-chip joints. In Electronic Components and
Technology Conference, 2001. Proceedings., 51st, pages 890 - 902, 2001.
[48] The Perkin Elmer Corporation. Users Manual - 7 series/UNIX TMA 7 - Thermomechanical
Analyzer, February 1994.
[49] S. Chew. Thermal and viscoelastic characterization of transfer-molded epoxy encapsulant
during simulated post-mold cure. In Electronic Components and Technology
Conference, 1996. Proceedings., 46th, pages 1032 - 1038, 1996.
[50] S. Chew and E. Lim. Monitoring glass transition of epoxy encapsulant using thermal
analysis techniques. In Semiconductor Electronics, 1996. ICSE '96. Proceedings., 1996
IEEE International Conference on, pages 266 - 271, 1996.
[51] D. François. Essais mécaniques des métaux : détermination des lois de comportement.
Techniques de l'Ingénieur, traîté des Matériaux métalliques, MB(M120), avril 1984.
[52] M. Ohring. Reliability and Failure of Electronic Materials and Devices. Academic
Press, June 1998.
[53] ANSYS Inc. ANSYS Release 8.0 Documentation, 2003.
[54] J. H. L. Pang, C. C. Neo B. S. Xiong, X. R. Mang, and T. H. Low. Bulk solder
and solder joint properties for lead free 95.5sn-3.8ag-0.7cu solder alloy. In Electronic
Components and Technology Conference, 2003. Proceedings. 53rd, pages 673 - 679, 2003.
[55] X. Q. Shi, W. Zhou, H. L. J. Pang, and Z. P. Wang. Eect of temperature and
strain rate on mechanical properties of 63sn/37pb solder alloy. ASME J. of Electronic
Packaging, 121 :179 - 185, September 1999.
[56] F. Garofalo. Déformation et rupture par fluage (traduit par Jean-Pierre André ;
préf. de P. Lacombe). Dunod, 1971.
[57] D. François, A. Pineau, and A. Zaoui. Comportement mécanique des matériaux
- Viscoplasticité, endommagement, mécanique de la rupture, mécanique du contact.
Hermes Sciences Publicat., seconde edition, octobre 1995.
Bibliographie 105
[58] R. Darveaux, K. Banerji, A. Mawer, and G. Dody. Reliability of plastic ball grid
array assemblies. In J. H. Lau, editor, Ball Grid Array Technology, chapter 13, pages
379 - 442. McGraw-Hill, 1995.
[59] S. Wen and G.-Q. Lu. A thermo-mechanical study of power modules using 3d finite
element modeling. In Proceedings, 1999 Annual Power Electronics Seminar, Virginia
Tech, Blacksburg, Va., pages 368 - 374, 19-21 September 1999.
[60] S. B. Brown, K. H. Kim, and L. Anand. An internal variable constitutive model for
hot working of metals. International Journal of Plasticity, 5 :95 - 130, 1989.
[61] G. Z. Wang, Z. N. Cheng, K. Becker, and J. Wilde. Applying anand model to
represent the viscoplastic deformation behavior of solder alloys. Journal of Electronic
Packaging, Transactions of the ASME, 123 :247 - 253, 2001.
[62] N. Paydar, Y. Tong, and H. U. Akay. A finite element study of factors aecting
fatigue life of solder joints. ASME J. of Electronic Packaging, 116 :265 - 273, December
1994.
[63] W. W. Lee, L. T. Nguyen, and G. S. Selvaduray. Solder joint fatigue models :
review and applicability to chip scale packages. Microelectronics Reliability, 40 :231 -
244, 2000.
[64] Q. Yao, J. Qu, and S. X. Wu. Solder fatigue life in two chip scale packages. In
Proceedings of IEEE-IMAPS International Symposium on Microelectronics, Chicago,
IL., pages 563 - 570, October 1999.
[65] W. C. Zheng, S. V. Harren, and A. F. Skipor. Thermomechanical analysis of flipchip-
on-board electronic packaging assembly. InWinter Annual Meeting of the American
Society of Mechanical Engineers, pages 1-5 94-WA/EEP-14, 1994.
[66] J. H. L. Pang, T.-I. Tan, and S. K. Sitaraman. Thermo-mechanical analysis of solder
joint fatigue and creep in a flip chip on board package subjected to temperature cycling
loading. In Electronic Components and Technology Conference, 1998. 48th IEEE, pages
878 - 883, 1998.
[67] J. Pyland, R. V. Pucha, and S. K. Sitaraman. Thermomechanical reliability of
underfilled bga packages. Electronics Packaging Manufacturing, IEEE Transactions on
[see also Components, Packaging and Manufacturing Technology, Part C : Manufacturing,
IEEE Transactons on], pages 100 - 106, 2002.
[68] J. H. L. Pang, D. Y. R. Chong, and T. H. Low. Thermal cycling analysis of flip-chip
solder joint reliability. Components and Packaging Technologies, IEEE Transactions on
[see also Components, Packaging and Manufacturing Technology, Part A : Packaging
Technologies, IEEE Transactions on], 24 :705 - 712, 2001.
[69] A. R. Syed. Factors aecting creep-fatigue interaction in eutectic sn/pb solder joints.
In InterPack '97, pages 1535 - 1542, 1997.
[70] A. Syed. Predicting solder joint reliability for thermal, power, & bend cycle within 25
In Electronic Components and Technology Conference, 2001. Proceedings., 51st, pages
255 - 263, 2001.
[71] H. Akay, H. Zhang, and N. Paydar. Experimental correlations of an energy-based
fatigue life prediction method for solder joints. In Advances in Electronic Packaging,
Proceedings of the Pacific Rim/ASME International Intersociety Electronic and Photonic
Packaging Conference, INTERpack '97, volume 19-2, pages 1567 - 1574, 1997.
[72] B. A. Zahn. Finite element based solder joint fatigue life predictions for a same die
size-stacked-chip scale-ball grid array package. In Electronics Manufacturing Technology
Symposium, 2002. IEMT 2002. 27th Annual IEEE/SEMI International, pages 274 - 284,
2002.
Bibliographie 106
[73] R. Darveaux. Eect of simulation methodology on solder joint crack growth correlation.
In Electronic Components and Technology Conference, 2000. 2000 Proceedings.
50th, pages 1048 - 1058, 2000.
[74] S. Wolf and R. N. Tauber. Silicon Processing of the VLSI ERA - Volume 1 - Process
technology, volume 1. Lattice Press, 1986.
[75] http://www.weibull.com/LifeDataWeb/data_classification.htm : visité le
30/11/2004.
[76] M. P. Rodriguez and N. Y. A. Shammas. Finite element simulation of thermal fatigue
in multilayer structures : thermal and mechanical approach. Microelectronics Reliability,
41 :517 - 52, 2001.
[77] METRAVIB r.d.s., 200 chemin des Ormeaux 69760 Limonest FRANCE. Notice d'utilisation
des viscoanalyseurs VA815, VA2000 et VA4000.


Recherche 2002

TOP

Vers : Ajout de 2002
Vers : Ajout de septembre 2001
Vers : Bibliographie 2002
Vers : Des équipes d'analyse des modes de défaillance
Vers : Des équipes de fiabilité mettant au point des formules empiriques basées sur des statistiques
Vers : Des équipes de fiabilistes
Vers : Des équipes qui calibrent et améliorent les simulateurs en faisant des mesures
Vers : Des équipes qui étudient la propagation de fissures


Bibliographie 2002

TOP

  [1] : [SHEET459] S. FORSTER, T. LEQUEU, R. JERISIAN, A. HOFFMANN, 3-D analysis of the breakdown localized defects of ACSTM through a triac study, Microelectronics Reliability, October 2000, Vol. 40, pp. 1695-1700.
  [2] : [SHEET458] S. FORSTER, T. LEQUEU, Phénomène de surtension de gâchette à la fermeture des triacs, EPF'2000, décembre 2000, Lille, pp. 61-66.
  [3] : [SHEET156] V. BENDA, Reliability of power semiconductor devices - Problems and trends, PEMC'96, vol.1, pp. 30-35, 2-4 Sept. 1996.
  [4] : [SHEET168] P. ALOISI, Failure diagnosis in medium power semiconductor, EPE'91, Firenze, vol. 3, pp. 117-119.
  [5] : [SHEET245] S. JANUSZEWSKI, M. KOCISZEWSKA-SZCZERBIK, H. SWIATEK, Some observation dealing with the failures of IGBT transistors in high power converters, Microelectronics and Reliability, vol. 38, no. 6-8, Jun-Aug 1998, pp. 1325-1330.
  [6] : [SHEET280] S. JANUSZEWSKI, M. KOCISZEWSKA-SZCZERBIK, H. SWIATEK, Failure mechanisms of power MOSFET transistors, Proc. of the XIII Symposium phenomena in non-linear circuits, Poznañ (Poland), May 1994, pp. 207-212.
  [7] : [SHEET145] S.F. POPELAR, Parametric study of flip chip reliability based on solder fatigue modelling, 1997.
  [8] : [SHEET123] P. ALOISI, La fatigue thermique, Electronique de Puissance, no. 24, 1987, pp. 31-39.
  [9] : [SHEET329] L.F. COFFIN, A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal, Transactions of ASME, 1954, vol. 76, pp. 931-950.
 [10] : [SHEET169] I.L. SOMOS, D.E. PICCONE, L.J. WILLINGER, W.H. TOBIN, Power semiconductors empirical diagrams expressing life as a function of temperature excursion, IEEE Transactions on Magnetics, jan. 1993, vol. 29, issue 1, part 2, pp. 517-522.
 [11] : [SHEET304] H.D. SOLOMON, V. BRZOZOWSKI, D.G. THOMPSON, Predictions of solder joint fatigue life, 1990
 [12] : [SHEET321] R. SUNDARARAJAN, P. McCLUSKEY, S. AZARM, Semi analytic model for thermal fatigue failure of die attach in power electronic building blocks, 4th High Temperature Electronics Conference, 1998, pp.99-102.
 [13] : [SHEET345] S.S. MANSON, Fatigue: A complex subject - Some simple approximations, Experimental Mechanics, vol. 5, pp.193-226, 1965.
 [14] : [LIVRE232] W. NELSON, Accelerated Testing: Statistical Models, Test Plans, and Data Analyses, Wiley-Interscience, 1990, 616 pages.
 [15] : [LIVRE233] W. NELSON, Applied Life Data Analysis, Wiley, April 1982, 656 pages.
 [16] : [LIVRE198] J.C. LIGERON, P. LYONNET, La fiabilité en exploitation, organisation et traitement des données,2° édition, 2 volumes, Technique et Documentation, Lavoisier, septembre 1992.
 [17] : [LIVRE234] R.B. ABERNETHY, The New Weibull Handbook, 1996, 536 Oyster Road, North Palm Beach, FL 33408-4328.
 [18] : [SHEET468] D.G. YANG, L.J. ERNST, C. VAN'T HOF, M.S. KIASAT, J. BISSCHOP, J. JANSSEN, F. KUPER, Z. N. LIANG, R. SCHRAVENDEEL, G.Q. ZHANG, Vertical die crack stresses of Flip Chip induced in major package assembly processes, ESREF'2000, pp. 1533-1538.
 [19] : [SHEET465] S. RAMMINGER, N. SELIGER, G. WACHUTKA, Reliability Model for Al Wire Bonds subjected to Heel Crack Failures, ESREF'2000, pp. 1521-1526.
 [20] : [SHEET462] C. FURBOCK, K. ESMARK, M. LITZENBERGER, D. POGANY, G. GROOS, R. ZELSACHER, M. STECHER, E. GORNIK, Thermal and free carrier concentration mapping during ESD event in Smart Power ESD protection devices using an improved laser interferometric technique, ER
 [21] : [SHEET494] N. SELIGER, P. HABAS, D. POGANY, E. GORNIK, Time-Resolved Analysis of Self-Heating in Power VDMOSFETs Using Backside Laserprobing, Solid State Electronics, Vol.41, No.9, pp.1285-1292 (1997).
 [22] :  [PAP176]  A. GRIFFITH, Phenomena of Rupture and Flow in Solids, Philosophical Transaction of the Royal Society of London, part A, vol. 221, pp. 163-98, 1920.
 [23] : [SHEET431] D.P.H. HASSELMAN, Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics, J. Amer. Ceram. Soc., vol. 52, no. 11, pp. 600-607, 1969.
 [24] : [SHEET432] D.P.H. HASSELMAN, Crack Propagation Under Constant Deformation and Thermal Stress Fracture, Int. J. Frac. Mech, vol. 7, no. 2, pp. 157-161,  1971.
 [25] : [SHEET502] T.Y. KAM, C.D. LU, Thermal stress fracture analysis of brittle bodies, Engineering fracture mechanics, vol.32, no.5, pp.827-832, 1989.
 [26] : [SHEET504] Y.B. XU, Y.Q. WU, X.Y. YANG, A new mechanism of crack propagation in a single crystal silicon, Proc of the 8th inter conf on the mechanical behaviour of materials, vol. 1, pp. 279-282, 1999.
 [27] : [SHEET505] J.P. BERRY, Some kinetic considerations of the Griffith criterion for fracture- II Equations of motion at constant deformation, J. Mech. Phys. Solids, 1960, Vol. 8, pp. 207-216.
 [28] : [SHEET513] J.A. HAUCH, D. HOLLAND, M.P. MARDER, H.L. SWINNEY, Dynamic fracture in single crystal silicon, Physical Review Letters, vol. 82, pp. 3823, 1999.
 [29] : [SHEET333] A. DASGUPTA, J.M. HU, Failure mechanism models for brittle fracture, IEEE Transactions on Reliability, vol. 41, no. 3, September 1992, pp. 328-335.
 [30] : [SHEET125] A.E. SEGALL, J.R. HELLMANN, R.E. TRESSLER, Thermal Shock Behaviour - Testing and Modelling, GRI, December 1992, 232 pages.
 [31] : [LIVRE200] D. BROEK, Elementary Engineering Fracture Mechanics, June 1982, Martinus Nijhoff Publishers, 524 pages.


Des équipes d'analyse des modes de défaillance

TOP

  [1] : [SHEET459] S. FORSTER, T. LEQUEU, R. JERISIAN, A. HOFFMANN, 3-D analysis of the breakdown localized defects of ACSTM through a triac study, Microelectronics Reliability, October 2000, Vol. 40, pp. 1695-1700.
  [2] : [SHEET458] S. FORSTER, T. LEQUEU, Phénomène de surtension de gâchette à la fermeture des triacs, EPF'2000, décembre 2000, Lille, pp. 61-66.
  [3] : [SHEET155] S. JANUSZEWSKI, M. KOCISZEWSKA-SZCZERBIK, H. SWIATEK, G. SWIATEK, Semiconductor device failures in power converter service conditions, EPE Journal, Dec. 1998, vol. 7, no. 3-4, pp. 12-17.
  [4] : [SHEET156] V. BENDA, Reliability of power semiconductor devices - Problems and trends, PEMC'96, vol.1, pp. 30-35, 2-4 Sept. 1996.
  [5] : [SHEET168] P. ALOISI, Failure diagnosis in medium power semiconductor, EPE'91, Firenze, vol. 3, pp. 117-119.
  [6] : [SHEET245] S. JANUSZEWSKI, M. KOCISZEWSKA-SZCZERBIK, H. SWIATEK, Some observation dealing with the failures of IGBT transistors in high power converters, Microelectronics and Reliability, vol. 38, no. 6-8, Jun-Aug 1998, pp. 1325-1330.
  [7] : [SHEET255] S. JANUSZEWSKI, M. KOCISZEWSKA-SZCZERBIK, H. SWIATEK, Causes and mechanisms of semiconductor device failures in power converter service conditions, 1995.
  [8] : [SHEET257] S. JANUSZEWSKI, M. KOCISZEWSKA-SZCZERBIK, Semiconductor power devices failures in converter circuits, 1993.
  [9] : [SHEET254] S. JANUSZEWSKI, M. KOCISZEWSKA-SZCZERBIK, H. SWIATEK, K. ZYMMER, IGBT transistor failures in high power converters, ISPS '96 Proceedings, 11-13 Sept 1996, pp. 177-184.
 [10] : [SHEET280] S. JANUSZEWSKI, M. KOCISZEWSKA-SZCZERBIK, H. SWIATEK, Failure mechanisms of power MOSFET transistors, Proc. of the XIII Symposium phenomena in non-linear circuits, Poznañ (Poland), May 1994, pp. 207-212.


Des équipes de fiabilité mettant au point des formules empiriques basées sur des statistiques

TOP

  [1] : [SHEET145] S.F. POPELAR, Parametric study of flip chip reliability based on solder fatigue modelling, 1997.
  [2] : [SHEET123] P. ALOISI, La fatigue thermique, Electronique de Puissance, no. 24, 1987, pp. 31-39.
  [3] : [SHEET329] L.F. COFFIN, A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal, Transactions of ASME, 1954, vol. 76, pp. 931-950.
  [4] : [SHEET201] I. SOMOS, D.E. PICCONE, Behavior of thyristos under transient conditions, Proceedings of the IEEE, vol. 55, no. 8, august 1967, pp. 1306-1311.
  [5] : [SHEET169] I.L. SOMOS, D.E. PICCONE, L.J. WILLINGER, W.H. TOBIN, Power semiconductors empirical diagrams expressing life as a function of temperature excursion, IEEE Transactions on Magnetics, jan. 1993, vol. 29, issue 1, part 2, pp. 517-522.
  [6] : [SHEET204] I.L. SOMOS, L.O. ERIKSSON, W.H. TOBIN, Understanding di/dt ratings and life expectancy for thyristors, Power Conversion And Intelligent Motion, pp. 56-59, February 1986.
  [7] : [SHEET205] D.E. PICCONE, I.L. SOMOS, Accelerated life tests for determining the life expectancy of thyristors due to di/dt failure modes, IEEE Industry Applications Society 1972 Conference Record, pp. 89-92.
  [8] : [SHEET200] D.E. PICCONE, L.O. ERIKSSON, J. URBANEK, W.H. TOBIN, I.L. SOMOS, A thermal analogue of higher accuracy and factory test method for predicting and supporting thyristor fault suppression ratings, IAS 1988, vol. 14, pp. 678-686.
  [9] : [SHEET193] I.L. SOMOS, D.E. PICCONE, L.J. WILLINGER, W.H. TOBIN, Power Semiconductors-A New Method For Predicting The On-State Characteristic and Temperature Rise During Multi Cycle Fault Currents, conf.Rec.IEEE.IAS'93, vol. 2, pp.1242-1247.
 [10] : [SHEET229] D.E. PICCONE, I.S. SOMOS, Are you confused by high di/dt SCR ratings?, Electronic Engineer, Jan. 1969, vol. 28, no. 1, pp. 89-92.
 [11] : [SHEET268] D.E. PICCONE, I.L. SOMOS, Accelerated life tests for determining life expectancy of thyristors due to di/dt failure modes, IEEE / IGA, Conference Record, 1971.
 [12] : [SHEET272] D.E. PICCONE, L.J. WILLINGER, I.L. SOMOS, W.H. TOBIN, R.M. ANDRACA, L.O. ERIKSSON, J.A. BARROW, M.L. CHILDS, J. SCHWARTZENBERG, Clarification of Non-repetitive On-state Surge Current Ratings - Insight Into Proposed Ratings for Pulse Power Applications -
 [13] : [SHEET304] H.D. SOLOMON, V. BRZOZOWSKI, D.G. THOMPSON, Predictions of solder joint fatigue life, 1990
 [14] : [SHEET305] H.D. SOLOMON, The influence of hold time and fatigue cycle wave shape on the-low cycle fatigue of 60/40 solder, 1988.
 [15] : [SHEET307] H.D. SOLOMON, Low cycle fatigue of surface mounted chip carrier/printed wiring board joints, 1989.
 [16] : [SHEET310] K. SHIMADA, J. KOMOTURI, M. SHIMIZU, Applicability of the Manson-Coffin law and miner's law to extremely low cycle fatigue, Nippon Kikai Gakkai Ronbunshu A Hen, vol. 53, no 491, July 1987, pp. 1178-1185.
 [17] : [SHEET321] R. SUNDARARAJAN, P. McCLUSKEY, S. AZARM, Semi analytic model for thermal fatigue failure of die attach in power electronic building blocks, 4th High Temperature Electronics Conference, 1998, pp.99-102.
 [18] : [SHEET345] S.S. MANSON, Fatigue: A complex subject - Some simple approximations, Experimental Mechanics, vol. 5, pp.193-226, 1965.
 [19] : [SHEET346] L.F. COFFIN, Low cycle fatique: A review, Appl. Mech. Res., vol. 1, no. 3, pp. 129-141, oct. 1962.


Des équipes de fiabilistes

TOP

  [1] : [LIVRE232] W. NELSON, Accelerated Testing: Statistical Models, Test Plans, and Data Analyses, Wiley-Interscience, 1990, 616 pages.
  [2] : [LIVRE233] W. NELSON, Applied Life Data Analysis, Wiley, April 1982, 656 pages.
  [3] : [LIVRE198] J.C. LIGERON, P. LYONNET, La fiabilité en exploitation, organisation et traitement des données,2° édition, 2 volumes, Technique et Documentation, Lavoisier, septembre 1992.
  [4] : [LIVRE234] R.B. ABERNETHY, The New Weibull Handbook, 1996, 536 Oyster Road, North Palm Beach, FL 33408-4328.


Des équipes qui calibrent et améliorent les simulateurs en faisant des mesures

TOP

  [1] : [SHEET468] D.G. YANG, L.J. ERNST, C. VAN'T HOF, M.S. KIASAT, J. BISSCHOP, J. JANSSEN, F. KUPER, Z. N. LIANG, R. SCHRAVENDEEL, G.Q. ZHANG, Vertical die crack stresses of Flip Chip induced in major package assembly processes, ESREF'2000, pp. 1533-1538.
  [2] : [SHEET465] S. RAMMINGER, N. SELIGER, G. WACHUTKA, Reliability Model for Al Wire Bonds subjected to Heel Crack Failures, ESREF'2000, pp. 1521-1526.
  [3] : [SHEET462] C. FURBOCK, K. ESMARK, M. LITZENBERGER, D. POGANY, G. GROOS, R. ZELSACHER, M. STECHER, E. GORNIK, Thermal and free carrier concentration mapping during ESD event in Smart Power ESD protection devices using an improved laser interferometric technique, ER
  [4] : [SHEET491] C. FURBOCK, M. LITZENBERGER, D. POGANY, E. GORNIK, N. SELIGER, T. MULLER-LYNCH, M. STECHER, H. GOBßNER, W. WERNER, Laser interferometric methode for ns-time scale thermal mapping of Smart Power ESD protection devices during ESD stress, Microelectronics
  [5] : [SHEET492] D. POGANY, N. SELIGER, M. LITZENBERGER, H. GOSSNER, M. STECHER, T. MULLER-LYNCH, W. WERNER, E. GORNIK, Damage analysis in smart-power technology electrostatic discharge (ESD) protection devices, Microelectronics Reliability, no. 39, pp. 1143-1148, 1999.
  [6] : [SHEET493] C. FURBOCK, R. THALHAMMER, M. LITZENBERGER, N. SELIGER, D. POGANY, E. GORNIK, G. WACHUTKA, A differential backside laserprobing technique for the investigation of the lateral temperature distribution in power devices, ISPSD'99, pp. 193-196.
  [7] : [SHEET494] N. SELIGER, P. HABAS, D. POGANY, E. GORNIK, Time-Resolved Analysis of Self-Heating in Power VDMOSFETs Using Backside Laserprobing, Solid State Electronics, Vol.41, No.9, pp.1285-1292 (1997).


Des équipes qui étudient la propagation de fissures

TOP

  [1] :  [PAP176]  A. GRIFFITH, Phenomena of Rupture and Flow in Solids, Philosophical Transaction of the Royal Society of London, part A, vol. 221, pp. 163-98, 1920.
  [2] : [SHEET430] D.P.H. HASSELMAN, Thermal Stress Resistance Parameters for Brittle Refractory Ceramics: a compendium, Bull. Amer. Ceram. Soc., Vol. 49, No. 12, pp. 1033-1037, 1970.
  [3] : [SHEET431] D.P.H. HASSELMAN, Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics, J. Amer. Ceram. Soc., vol. 52, no. 11, pp. 600-607, 1969.
  [4] : [SHEET432] D.P.H. HASSELMAN, Crack Propagation Under Constant Deformation and Thermal Stress Fracture, Int. J. Frac. Mech, vol. 7, no. 2, pp. 157-161,  1971.
  [5] : [SHEET433] D.P.H. HASSELMAN, Thermal Stress Crack Instability and Propagation in severe thermal environments, Ceramics in Severe Environments, Proc. of the Sixth Univ. Conf. on Ceram. Sci., North Carolina State Univ. at Raleigh, December 7-9, 1970.
  [6] : [SHEET502] T.Y. KAM, C.D. LU, Thermal stress fracture analysis of brittle bodies, Engineering fracture mechanics, vol.32, no.5, pp.827-832, 1989.
  [7] : [SHEET503] T.Y. KAM, C.D. LU, Reliability analysis of brittle systems considering several random variables, Engineering fracture mechanics, vol.33, no.1, pp.37-44, 1989.
  [8] : [SHEET504] Y.B. XU, Y.Q. WU, X.Y. YANG, A new mechanism of crack propagation in a single crystal silicon, Proc of the 8th inter conf on the mechanical behaviour of materials, vol. 1, pp. 279-282, 1999.
  [9] : [SHEET505] J.P. BERRY, Some kinetic considerations of the Griffith criterion for fracture- II Equations of motion at constant deformation, J. Mech. Phys. Solids, 1960, Vol. 8, pp. 207-216.
 [10] : [SHEET513] J.A. HAUCH, D. HOLLAND, M.P. MARDER, H.L. SWINNEY, Dynamic fracture in single crystal silicon, Physical Review Letters, vol. 82, pp. 3823, 1999.
 [11] : [SHEET514] J.P. SINGH, K. NIIHARA, D.P.H. HASSELMAN, Analysis of thermal fatigue behaviour of brittle structural materials, Journal of materials  science, vol.16, pp.2789-2797, 1981.
 [12] : [SHEET515] K. FUJIMOTO, T. SHIOYA, Elastic analysis of crack opening displacement in a fixed sided plate, JSME International Journal, vol. 30, no. 267, pp. 1383-1390, 1987.
 [13] : [SHEET331] A. DASGUPTA, M. PECHT, Material failure mechanisms and damage models, IEEE Transactions on Reliability, vol. 40, no. 5, December 1991, pp. 531-536.
 [14] : [SHEET333] A. DASGUPTA, J.M. HU, Failure mechanism models for brittle fracture, IEEE Transactions on Reliability, vol. 41, no. 3, September 1992, pp. 328-335.
 [15] : [SHEET125] A.E. SEGALL, J.R. HELLMANN, R.E. TRESSLER, Thermal Shock Behaviour - Testing and Modelling, GRI, December 1992, 232 pages.
 [16] : [LIVRE200] D. BROEK, Elementary Engineering Fracture Mechanics, June 1982, Martinus Nijhoff Publishers, 524 pages.


Ajout de septembre 2001

TOP

  [1] :  [PAP339]  N. RINALDI, A simple analytical approach for the thermal modeling of power devices and circuits, EPE'2001.
  [2] :  [PAP340]  B. L. Meng, H. Gualous, D. Bouquain, A. Djerdir, A. Berthon, J.M. Kauffmann, Thermal modeling and behavior of ultracapacitors for electric vehicle, EPE'2001.
  [3] :  [PAP360]  T. LEQUEU, Les tests en fiabilité, rapport interne LMP, novembre 2001.


Premiers conseils

TOP

Lien : conseils.htm - dans [DATA052]
  [1] :  [DATA052] M. HUBIN, L'expérience d'un enseignant chercheur au service de la communauté, http://perso.wanadoo.fr/michel.hubin/ , novembre 2002.
  [2] : [99ART029] T. LEQUEU, Comment faire une recherche bibliographique au Laboratoire de Micro-électronique de Puissance L.M.P. de Tours, octobre 2001, 40 pages.
  [3] :  [DIV071]  T. LEQUEU, Prog. 01 - TXT2HTM / Convertisseur de notices bibliographiques texte en page WEB - Programmation DELPHI, version 8.5 pour Windows 95, 98 et NT, 24 septembre 2001.
  [4] : [THESE053] G. COANT, Limites de fonctionnement des triacs à la fermeture, EIVL, option Microélectronique de Puissance, février-juillet 1998.
  [5] : [99DIV012] S. RADJA, Etude et réalisation d'une commande TRIAC pour le test de fiabilité di/dt répétitif, rapport de projet EIVL, janvier 1999.
  [6] : [99DIV085] Guide de mesures des paramêtres d'un triac à l'aide du traceur type 576.
  [7] : [99DIV121] T. LEQUEU, Travaux Pratiques d'Electronique de Puissance - 1998/1999, EIVL, 5ème année, Option Micro-électronique, octobre 1998.


Ajout de 2002

TOP

  [1] : [LIVRE295] J.-P. BAILON, J.-M. DORLOT, Des Matériaux, 3ème édition, ISBN 2-553-00770-1, Presses Internationales Polytechnique, 2000, 768 pages.
  [2] : [THESE121] S. MOREAU, Mécanismes de dégradation et fiabilité fonctionnelle des interrupteurs bidirectionnels tels que les TRIACs, rapport de DEA Génie Electrique de Grenoble, aout 2002.


Mise à jour le lundi 25 février 2019 à 15 h 37 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2019 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.