M.P. RODRIGUEZ, N.Y.A. SHAMMAS, A.T. PLUMPTON, D. NEWCOMBE, D.E. CREES, "Static and dynamic finite element modelling of thermal fatigue effects in insulated gate bipolar transistor modules", Microelectronics Reliability, Volume 40, Issues 3, 17 March 2000
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [ART264]

Titre : M.P. RODRIGUEZ, N.Y.A. SHAMMAS, A.T. PLUMPTON, D. NEWCOMBE, D.E. CREES, Static and dynamic finite element modelling of thermal fatigue effects in insulated gate bipolar transistor modules, Microelectronics Reliability, Volume 40, Issues 3, 17 March 2000, pp. 455-463.

Cité dans :[REVUE166] Elsevier Science, Microelectronics Reliability, Volume 40, Issue 3, Pages 365-546, 17 March 2000.
Cité dans :[ART227]
Auteur : M. P. Rodriguez
Auteur : N. Y. A. Shammas
AUteur : A. T. Plumpton
Auteur : D. Newcombe
Auteur : D. E. Crees

Vers : Bibliographie
Lien : ART227.HTM#BIbliographie - référence [22].

Adresse : (a) Staffordshire University, School of Engineering and Advanced Technology, P.O. Box 333, Beaconside, Stafford ST18 ODF, UK
Adresse : (b) MITEL Semiconductors Ltd, Power division, Doddington Road, Lincoln LN6 3LF, UK
Adresse :
Tel. : +44-01785-353474
Fax. : +44-01785-353552
Lien : mailto:n.y.a.shammas@staffs.ac.uk
Source : Microelectronics Reliability
Volume : 40
Issues : 3
Date : 17 March 2000
Pages : 455 - 463
DOI :
PII : S0026-2714(99)00250-4
Lien : private/RODRIGUEZ2.pdf - 1090 Ko, 9 pages.
Switches :
Puissance :
Logiciel :
Stockage :

Abstract :
The aim of this paper is to demonstrate the use of finite element techniques for
modelling thermal fatigue effects in solder layers of insulated gate bipolar
transistor (IGBT) ¯ modules used in traction applications. The three-dimensional
models presented predict how progressive solder fatigue, affects the static and
dynamic thermal performance of such devices.
Specifically, in this paper, the analysis of an 800 A¯1800 V IGBT module is
performed. In the first part, the static analysis is realised. The parameters
assessed are thermal resistance, maximum junction temperature and heat flux
distribution through the different layers comprising the module construction. In
the second part of the paper, transient analyses are performed in order to study
the dynamic thermal behaviour of the module. The constructed thermal impedance
curves allow for calculation of the device temperature variations with time.
Stress parameters, such as temperature excursion and maximal temperature at chip
and solder interfaces, are determined. Calibration of all simulation models is
achieved by comparison with alternative theoretical calculations and
manufacturers' measured values provided in the data sheet book.

Article Outline
1. Introduction
2. Need for thermal modelling of high power modules
3. Simulation model description
4. Static analysis
4.1. Loading conditions
4.2. Results and discussion
4.3. Calibration of the simulation model of fatigue effects
5. Dynamic analysis
6. Conclusions
Acknowledgements


Bibliographie

TOP

Références :
[1] : Berg H, Wolfgang E. Advanced IGBT modules for railway traction applications: reliability testing. Proceedings of IRPS, 1998.
[2] : Hamidi A, Coquery G, Lallemand R. Reliability of high power IGBT modules: testing on thermal fatigue effects due to traction cycles. EPE Conference'97, vol. 3, 1997. p. 118¯23.
[3] : Lambilly H, Kesser HO. Failure analysis of power modules: a look at the packaging and reliability of large IGBTs. IEEE Trans Components, Hybrids and Manufact Tech 1993;16(4):410¯7.
[4] : Jacob P, Held M, Scacco P, Wu W. Reliability testing and analysis of IGBT power semiconductor modules. Proceedings of IEE, 1995.
[5] : Perruchoiud P, Aloisi P. Hybrid power module, a good versatile power management. EPE Conference'97, vol 3, 1997. p. 124¯8.
[6] : Nigel C. Developments in high power module packaging. General review paper for the European forum on power semiconductors, October 1997.
[7] : V.A. Koral and D.V. Fedasyuk, Thermal simulation of semiconductors IC: general and practical approach. Microelectron J 28 (1997), pp. 221¯227.
[8] : K.E. Manchester and D.W. Bird, Thermal resistance: a reliability consideration. IEEE Trans Components Hybrids and Manufact Tech CHMT-3 4 (1989), pp. 580¯587.
[9] : B. Klaassen, A method for tightly couple thermal¯electrical simulation. Microelectron J 28 (1997), pp. 239¯245. Abstract | Journal Format-PDF (359 K)
[10] : M. O'Flaherty, C. Cahill and K. Rodgers, Validation of numerical models of ceramic pin grid array packages. Microelectron J 28 (1997), pp. 229¯238.
[11] : Jamieson DJ, Mansell AD, Stainforth JA, Tebb DW. Application of finite difference techniques for the thermal modelling of power electronic switching devices. Power electronics and variable speed drives. IEE Conference Publication No.339. 26¯28 October 1994.
[12] : C. Van Godbold, V.A. Sankaran and J.L. Hudgins, Thermal analysis of high-power modules. IEEE Trans Power Electron 12 1 (1997), pp. 3¯10.
[13] : Touloukian YS, Powell RW, Ho CY, Klemens PG. Thermophysical properties of matter, vols. I and II. New York, 1970.
[14] : ANSYS analysis manual. ANSYS is a trademark of ANSYS Inc. Houston, PA.
[15] : MITEL Semiconductors Ltd. High power IGBT handbook. November 1998.


Mise à jour le lundi 25 février 2019 à 15 h 31 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2019 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.