Seminar 12 Monday June 18, 2001

ELECTROMAGNETIC COMPATIBILITY WITHIN POWER ELECTRONICS. Part 2: ADVANCED 9:00am – 6:00pm

Instructors: Jacques Laeuffer, PSA Peugeot Citroën, France; Jean-Marie Peter, France

ABOUT THE INSTRUCTORS

Jacques Laeuffer: see Seminar 11, Jean-Marie Peter: see Seminar 3

SCOPE AND BENEFITS

Over about 1 MHz, conventional circuit theories with localized constants like "parasitic capacitances" or "stray inductances" need to be improved with a physical understanding of the electromagnetic energy propagation within and around the power circuit. Seminar's benefits include:

- How to choose and design E.M.C. optimized power designs (from 100W up to 100KW).
- Avoid expensive shielding. Reliability improvement.

CONTENTS

ISSUES TO BE SOLVED

- High frequency (H.F.) parasitic resonances occur just after semiconductors commutation, i.e. between MOS capacitance and transformer stray inductance.
- This H.F. is radiated and envelop detected by control semiconductors, and by antennas during regulatory tests.
- Magnetic field radiations are very expensive to shield.
- Inductances reduction leads to capacitances increase, and vice versa.

ELECTROMAGNETIC POWER PROPAGATION

• Propagation in coaxial lines: Poynting theorem.

- Electric and magnetic energy storage; electromagnetic power flow. Waves impedance and speed.
- Energy flow through a transformer.
- To avoid resonances, the switch commutation time should be greater than circuits time constants: **3 ways:**
 - 1. SEMICONDUCTORS DI/DT AND DV/DT CONTROL
 - Smoothing di/dt and dv/dt front edges by gate drives.
 - Control for MOS and control for IGBTs.
 - Drawback: increased commutation times and losses.

2. REDUCE PASSIVE COMPONENTS TIME CONSTANTS

- Reduction of capacitors' inductance and inductors' capacitance. Transformers calculation and PCB layout.
- Snubbers, damping, grounding, shielding, etc.
- Drawback: increased size of passive components.

3. TOPOLOGY CHOICE

- When power is increased, topology change (from forward to half bridge, or to resonance) reduces the above mentioned drawbacks.
- ZVS and ZCS resonant topologies.
- DRIVES: cables magnetic shielding between inverter and motor. Damping. A.R.C.P. techniques.

RADIATIONS REDUCTION

- Cables, PCBs, transformers emission reduction.
- Easy magnetic field measurement. Scope probes use

WHO SHOULD ATTEND

 Intelligent motion, systems integration, field service, and E.M.C. specialists engineers who need to understand major power electronics issues. Technical managers interested in major trends of power electronics.