8 Annexe : gradateur à TRIAC ...3
8.1 Présentation du convertisseur ...3
8.2 Fonctionnement sur charge resistive ..3
8.2.1 Principe ...3
8.2.2 Etude de la tension de la charge ..4
8.2.3 Etude des harmoniques du courant de ligne ..4
8.2.4 Comparaison avec la norme EN 61000-3-2 ...5
8.3 Fonctionnement sur charge inductive R-L ..6
8.3.1 Principe ...6
8.3.2 Etude du courant dans la charge ..7
8.3.3 Etude de l'instant d'annulation du courant ..7
8.3.4 Etude la tension de la charge ...8
8.3.5 Etude du courant de la charge ...9
8.3.6 Etude des harmoniques du courant de ligne9
8.4 Fonctionnement sur charge inductive pure ..9
8.5 Bibliographie ..10
Liste des figures :

Figure 8.1. Conversion d’énergie (dessins\famille2.drw) .. 3
Figure 8.2. Gradateur à triac sur charge R (dessins\gradator.drw) ... 3
Figure 8.3. Forme d’ondes sur charge R (dessins\grad_r.drw) .. 3
Figure 8.4. Variation de la tension efficace en fonction de \(\psi \) (triac\grad1.m) 4
Figure 8.5. Variation de la puissance dans la charge en fonction de \(\psi \) (triac\grad1.m) 4
Figure 8.6. Variation des trois premiers harmoniques et du courant efficace en fonction de \(\psi \)
(triac\harmo2.m) .. 5
Figure 8.7. Comparaison des harmoniques du gradateur et de la norme Classe A pour \(\psi = 60^\circ \)
et Imax = 3 A (triac\harmo4.m) .. 5
Figure 8.8. Gradateur sur charge R-L (dessin\triac\rl.drw). .. 6
Figure 8.9. Forme d’onde sur charge R-L (dessin\grad_rl.drw). .. 6
Figure 8.10. Courant dans la charge R-L en fonction du temps en ms, Q = 0.4
(triac\grad2a.m) .. 7
Figure 8.11. Courant dans la charge R-L en fonction de Q = [0.5 ; 1 ; 2 5] (triac\grad2b.m).... 7
Figure 8.12. Angle d’annulation \(\theta_1 \) en fonction de Q pour \(\psi = [50^\circ ; 90^\circ ; 120^\circ 150^\circ] \)
(triac\grad3.m) .. 8
Figure 8.13. Angle d’annulation \(\theta_1 \) en fonction de \(\psi \) pour Q = [0.5 ; 1 ; 2 5] (triac\grad4.m) .. 8
Figure 8.14. Tension aux bornes de la charge. ... 8
Figure 8.15. Tension efficace en fonction de \(\psi \) en ° pour Q = [0.5 ; 1 ; 2 5] (triac\grad5.m).... 8
8 Annexe : gradateur à TRIAC

8.1 Présentation du convertisseur

A partir d'une source alternative (V1, f1), il est possible de fabriquer :
1) une source alternative AC (V3<V1, f1) avec un gradateur ;
2) une source alternative AC (V2, f2) avec le cyclo-convertisseur ;
3) une source continue DC avec un redresseur.

8.2 Fonctionnement sur charge resistive

8.2.1 Principe

La variation de lumières d'un éclairage halogène (charge résistive) ou la régulation en température d'un élément chauffant se fait grâce à un gradateur à triac par découpage de la tension du secteur. L'interrupteur est commandé à la fermeture (Triac ou thyristors montés en tête-bêche) et l'ouverture est spontanée au passage par zéro du courant.

La tension de ligne vaut
\[v_{in}(t) = V_{eff} \sqrt{2} \cdot \sin(\omega t) \]
avec \(\omega = 2\pi \cdot f \), f = 50 Hz la fréquence du réseau.
Le fonctionnement du montage est identique au redresseur monophasé sur charge R.
Avec une charge résistive, le courant de ligne \(i_{in}(t) \) et identique au courant dans la charge \(i_{out}(t) \).
8.2.2 Étude de la tension de la charge

La valeur efficace de la tension aux bornes de la charge est donnée par :

\[V_{\text{out eff}}^2 = \frac{1}{T} \int_{t} V_{\text{out}}^2(t) \cdot dt = \frac{1}{\pi} \int_{-\psi}^{\psi} T_{\text{eff}}^2(\theta) \cdot d\theta = \frac{2}{\pi} T_{\text{eff}}^2 \int_{-\psi}^{\psi} \sin^2(\theta) \text{ avec } \theta = \omega \cdot t. \]

\[V_{\text{out eff}}^2 = \frac{V_{\text{eff}}^2}{\pi} \left[-\frac{1}{2} \cdot \sin(2\cdot\theta) \right] \text{ avec } \sin^2(\theta) = \frac{1}{2} - \frac{\cos(2\cdot\theta)}{2} \text{ et } \int -\cos(2x) = -\frac{1}{2} \sin(2x) \]

\[V_{\text{out eff}}^2 = \frac{V_{\text{eff}}^2}{\pi} \left[\theta - \frac{1}{2} \cdot \sin(2\cdot\theta) \right] \text{ avec } \sin^2(\theta) = \frac{1}{2} - \frac{\cos(2\cdot\theta)}{2} \]

\[\text{et } \int -\cos(2x) = -\frac{1}{2} \sin(2x) \]

\[V_{\text{out eff}}^2 = \frac{V_{\text{eff}}^2}{\pi} \left[\pi - \psi + \frac{1}{2} \cdot \sin(2\cdot\psi) \right] \text{ soit :} \]

\[V_{\text{out eff}} = V_{\text{eff}} \sqrt{1 - \frac{\psi}{\pi} + \frac{\sin(2\psi)}{2\pi}} \]

La puissance transmise à la charge résistive R vaut :

\[P_{\text{out}} = \frac{V_{\text{out eff}}^2}{R}. \]

Avec \(P_{\text{max}} = \frac{V_{\text{eff}}^2}{R} \), on obtient :

\[\frac{P_{\text{charge}}}{P_{\text{max}}} = 1 - \frac{\psi}{\pi} + \frac{\sin(2\psi)}{2\pi} \]

8.2.3 Étude des harmoniques du courant de ligne

Avec une source de tension parfaitement sinusoïdale \(v_{\text{in}}(t) = V_{\text{eff}} \sqrt{2} \cdot \sin(\omega t) \), les harmoniques du courant de ligne seront de la forme \(i(t) = \sum_{k=1}^{\infty} A_k \sin(k\cdot\omega t) + \sum_{k=1}^{\infty} B_k \cos(k\cdot\omega t) \). On obtient alors :

\[A_1 = \frac{V_{\text{eff}} \sqrt{2}}{R} \left[1 - \frac{\psi}{\pi} + \frac{\sin(2\psi)}{2\pi} \right] \text{ et } A_{2k+1} = \frac{V_{\text{eff}} \sqrt{2}}{R} \left[\sin\left(\frac{2(k+1)\psi}{2(k+1)\pi}\right) - \sin\left(\frac{2k\psi}{2k\pi}\right) \right] \] (8.1)

\[B_1 = \frac{V_{\text{eff}} \sqrt{2}}{R} \left[\frac{\cos(2\psi)}{2\pi} - \frac{1}{2\pi} \right] \text{ et } B_{2k+1} = \frac{V_{\text{eff}} \sqrt{2}}{R} \left[\cos\left(\frac{2(k+1)\psi}{2(k+1)\pi}\right) - \cos\left(\frac{2k\psi}{2k\pi}\right) \right] \] (8.2)
La figure suivante donne l'évolution de \(x_{2k+1} = \frac{I_{2k+1}}{I_0} = \sqrt{\frac{A_{2k+1}}{2} + \frac{B_{2k+1}}{2}} \) en fonction de \(\psi \).

\[
0 \quad 20 \quad 40 \quad 60 \quad 80 \quad 100 \quad 120 \quad 140 \quad 160
\]

\[
0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1
\]

Harmoniques du gradateur (in eff) pour \(\psi \) variant de 0 à 180°.

Figure 8.6. Variation des trois premiers harmoniques et du courant efficace en fonction de \(\psi \) (triac\harmo2b.m).

8.2.4 Comparaison avec la norme EN 61000-3-2

Si le gradateur n'est pas intégré à l'équipement d'éclairage, le montage est en classe A [99DIV031] [DIV041].

Les limites de l'amplitude des harmoniques sont alors données en valeur absolue (limite en Ampère).

Les deux paramètres de l'étude sont l'angle d'amorçage \(\psi \) et l'amplitude maximale du courant \(I_0 = \frac{V_{\text{eff}}}{R} \).

Il faut tout d'abord trouver le couple \(\langle \psi ; I_0 \rangle \) qui dépasse les limites de la norme.

\[
0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1
\]

Il est possible de compter le nombre d'harmoniques du gradateur qui dépasse la norme en fonction de \(\langle \psi ; I_0 \rangle \) (triac\harmo5.m). Les problèmes apparaissent pour \(\psi = 90° \), avec l'harmonique de rang 15. Le rapport \(x_{15} = \frac{I_{15}}{I_0} = 0.0455 \). En classe A, la limite du rang 15 vaut 0,15A. Le courant limite vaut alors \(I_0 = 3,2967 \) A (triac\harmo6.m). Pour une tension \(V_{\text{eff}} = 230V \), la puissance limite vaut 758 W.

Il n'y a pas de problème d'harmoniques en classe A, pour des charges résistives d'une puissance inférieure à 760 W pour \(\psi \) variant de 0 à 180° (770W dans [THESE043], condition de test : \(\psi = 90° \)).
8.3 Fonctionnement sur charge inductive R-L

8.3.1 Principe
Le fonctionnement sur charge R-L est possible à condition qu'il y ait annulation du courant afin d'assurer le blocage du triac (blocage spontanée). La commande se fait toujours à l'amorçage en envoyant une impulsion de gâchette à l'instant ψ.

![Figure 8.8. Gradateur sur charge R-L (dessin\triac\rl.drw).](image)

En posant $\theta = \omega t$, dans l'hypothèse où le courant s'annule AVANT $\pi + \psi$ il faut résoudre l'équation différentielle suivante pour $\theta > \psi$:

$$V_{\text{eff}} \sqrt{2} \cdot \sin(\theta) = R \cdot i(\theta) + L \omega \frac{di(\theta)}{d\theta}$$

(8.3)

![Figure 8.9. Forme d'onde sur charge R-L (dessin\grad\rl.drw).](image)
La résolution de cette équation [99DIV028] fait apparaître :

1) la solution en régime permanent sinusoïdale

\[I = \frac{V}{R + jL\omega} \]

soit \(i_1(\theta) = \frac{V_{\text{eff}} \sqrt{2}}{\sqrt{R^2 + (L\omega)^2}} \cdot \sin(\theta - \varphi) \), avec

\[\varphi = \text{Arc tan} \left(\frac{L\omega}{R} \right) \]

2) la solution en régime transitoire

\[i_2(t) = I_0 \cdot e^{-\frac{t}{\tau}} \]

Par la suite on posera \(\tau = \frac{L}{R} \), la constante de temps, \(Q = \frac{L\omega}{R} \), le facteur de qualité de la charge et \(I_{\text{eff}} = \frac{V_{\text{eff}}}{R} \), le courant efficace en régime permanent purement résistif. Pour \(\theta = \psi \), le courant est nul dans la charge donc \(I_0 = -I_{\text{eff}} \sqrt{2} \cdot \sin(\psi - \varphi) \). Le courant dans la charge à pour expression :

\[i_{\text{out}}(\theta) = \frac{I_{\text{eff}} \sqrt{2}}{\sqrt{1 + Q^2}} \left[\sin(\theta - \text{Arc tan}(Q)) - \sin(\psi - \text{Arc tan}(Q)) \cdot e^{\frac{(\theta - \psi)}{Q}} \right] \text{ pour } \theta > \psi \] (8.4)

Afin de normaliser l’étude qui suit, on pose \(x(\theta) = \frac{i_{\text{out}}(\theta)}{I_{\text{eff}} \sqrt{2}} \) et la tension réduite \(v(\theta) = \sqrt{2} \cdot \sin(\theta) \).

8.3.2 Étude du courant dans la charge

On s’intéresse alors à l’évolution du courant dans la charge en fonction du facteur de qualité \(Q \) pour \(\psi = 72° \).

Figure 8.10. Courant dans la charge R-L en fonction du temps en ms., \(Q = 0.4 \) (triac\grad2a.m).

Figure 8.11. Courant dans la charge R-L en fonction de \(Q = [0.5 ; 1 ; 2.5] \) (triac\grad2b.m).

8.3.3 Étude de l’instant d’annulation du courant

On appelle \(t_1 \), l’instant d’annulation du courant dans la charge \((\theta_t = \omega t_1) \). Cet instant nous donne la plage de variation de l’angle d’amorçage puisqu’il faut vérifier que \(\pi + \psi > \theta_t \) pour un fonctionnement correct du gradateur.
La zone utile correspond au demi-plan inférieur défini par la droite $\theta_i = \pi + \psi$.

8.3.4 Étude la tension de la charge

On calcul la valeur efficace de la tension au bornes de la charge (dessins\grad1.drw) par la relation suivante :

$$V_{\text{out eff}}^2 = \frac{1}{\pi} \int_{\psi}^{\theta_i} V_{\text{out}}^2(\theta) \cdot d\theta.$$

Puisque $V_{\text{out}}(\theta) = V_{\text{eff}} \sqrt{2} \cdot \sin(\theta)$ sur l’intervalle considéré, on obtient :

$$V_{\text{out eff}}^2 = x(\psi)_{\psi>\theta} = \frac{1}{\pi} \left(\theta_i - \psi - \frac{1}{2} \left(\sin(2 \cdot \theta_i) - \sin(2 \cdot \psi) \right) \right).$$ (8.5)

On trace pour différente valeur de Q (θ_i dépend de Q) l’évolution de $x(\psi)$.

Figure 8.12. Angle d’annulation θ_i en fonction de Q pour $\psi = \{50° ; 90° ; 120° ; 150°\}$ (triac\grad3.m).

Figure 8.13. Angle d’annulation θ_i en fonction de ψ pour $Q = \{0.5 ; 1 ; 2 \, 5\}$ (triac\grad4.m).

Figure 8.14. Tension aux bornes de la charge.

Figure 8.15. Tension efficace en fonction de ψ en ° pour $Q = \{0.5 ; 1 ; 2 \, 5\}$ (triac\grad5.m).
8.3.5 Étude du courant de la charge

On calcule la valeur efficace du courant dans charge par la relation

\[I_{\text{out eff}}^2 = \frac{1}{\pi} \int_{\theta_1}^{\theta_2} \frac{I_{\text{out}}^2(\theta)}{\d\theta} \cdot d\theta. \]

\[
I_{\text{out eff}}^2 = \frac{1}{\pi} \cdot \frac{1}{\sqrt{Z^2 + \frac{4Q^2}{1 + Q^2} \sin(\psi - \varphi)}} \left[\left(\frac{1}{Q} \sin(\theta_1 - \varphi) + \cos(\theta_1 - \varphi) \right) \cdot e^\frac{2(\theta_1 - \psi)}{Q} - \frac{1}{Q} \sin(\psi - \varphi) + \cos(\psi - \varphi) \right]
\]

8.3.6 Étude des harmoniques du courant de ligne

8.4 Fonctionnement sur charge inductive pure
8.5 Bibliographie

[DIV041] Norme Française, Norme Européenne, NF EN 61000-3-2, *Compatibilité électromagnétique (CEM) partie 3 : limites - section 2 : limites pour les émissions de courant harmonique (courant appelé par les appareils inférieur à 16 A par phase)*, Août 1995, 1er tirage 95-08.

