Features:

- High Peak Output Current: 9A
- Wide Input Supply Voltage Operating Range:
 - 4.5V to 18V
- High Continuous Output Current: 2A Maximum
- Fast Rise and Fall Times:
 - 30 ns with 4,700 pF Load
 - 180 ns with 47,000 pF Load
- Short Propagation Delays: 30 ns (Typical)
- Low Supply Current:
 - With Logic '1' Input – 200 µA (Typical)
 - With Logic '0' Input – 55 µA (Typical)
- Low Output Impedance: 1.4 Ω (Typical)
- Latch-Up Protected: Will Withstand 1.5A Output Reverse Current
- Input Will Withstand Negative Inputs up to 5V
- Pin-Compatible with the TC4420/TC4429 6A MOSFET Driver
- Space-saving 8-Pin 6x5 DFN-S Package

Applications:

- Line Drivers for Extra Heavily-Loaded Lines
- Pulse Generators
- Driving the Largest MOSFETs and IGBTs
- Local Power ON/OFF Switch
- Motor and Solenoid Driver

General Description:

TC4421/TC4422 are high-current buffers/drivers capable of driving large MOSFETs and IGBTs. These devices are essentially immune to any form of upset, except direct overvoltage or over-dissipation. They cannot be latched under any conditions within their power and voltage ratings. These parts are not subject to damage or improper operation when up to 5V of ground bounce is present on their ground terminals. They can accept, without damage or logic upset, more than 1A inductive current of either polarity being forced back into their outputs. In addition, all terminals are fully protected against up to 4 kV of electrostatic discharge.

The TC4421/TC4422 inputs may be driven directly from either TTL or CMOS (3V to 18V). In addition, 300 mV of hysteresis is built into the input, providing noise immunity and allowing the device to be driven from slowly rising or falling waveforms.

With both surface-mount and pin-through-hole packages and four operating temperature range offerings, the TC4421/TC4422 family of 9A MOSFET drivers fits into any application where high gate/line capacitance drive is required.

Package Types

![Package Diagram]

Note 1: Duplicate pins must both be connected for proper operation.

2: Includes electrically isolated Exposed Thermal Pad (EP), see Table 3-1.
Functional Block Diagram

- **Input**: 4.7V
- **GND**: Effective Input C = 25 pF
- **VC**: 200 µA
- **300 mV**
- **VDD**: Output

TC4421
- Inverting
- **VDD**: Input
- **Output**: 300 mV

TC4422
- Non-Inverting
- **VDD**: Input
- **Output**: 300 mV
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†
Supply Voltage ...+20V
Input Voltage ..(VDD + 0.3V) to (GND – 5V)
Input Current (VIN > VDD) 50 mA
Package Power Dissipation (TA ≤ 70°C)
5-Pin TO-220 ..1.6W
DFN-S .. Note 2
PDIP .. 730 mW
SOIJ .. 750 mW
Package Power Dissipation (TA ≤ 25°C)
5-Pin TO-220 (with heatsink) 12.5W
Thermal Impedances (to case)
5-Pin TO-220 RθJ-C ... 10°C/W

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, TA = +25°C with 4.5V ≤ VDD ≤ 18V.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic '1', High-Input Voltage</td>
<td>VIH</td>
<td>2.4</td>
<td>1.8</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic '0', Low-Input Voltage</td>
<td>VIL</td>
<td>—</td>
<td>1.3</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>VIN</td>
<td>−10</td>
<td>—</td>
<td>+10</td>
<td>µA</td>
<td>0V ≤ VIN ≤ VDD</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Output Voltage</td>
<td>VOH</td>
<td>VDD − 0.025</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>DC test</td>
</tr>
<tr>
<td>Low-Output Voltage</td>
<td>VOL</td>
<td>—</td>
<td>—</td>
<td>0.025</td>
<td>V</td>
<td>DC test</td>
</tr>
<tr>
<td>Output Resistance, High</td>
<td>ROH</td>
<td>—</td>
<td>1.4</td>
<td>—</td>
<td>Ω</td>
<td>IOUT = 10 mA, VDD = 18V</td>
</tr>
<tr>
<td>Output Resistance, Low</td>
<td>ROL</td>
<td>—</td>
<td>0.9</td>
<td>1.7</td>
<td>Ω</td>
<td>IOUT = 10 mA, VDD = 18V</td>
</tr>
<tr>
<td>Peak Output Current</td>
<td>IPK</td>
<td>—</td>
<td>9.0</td>
<td>—</td>
<td>A</td>
<td>VDD = 18V</td>
</tr>
<tr>
<td>Continuous Output Current</td>
<td>IDC</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>A</td>
<td>10V ≤ VDD ≤ 18V, TA = +25°C (TC4421/TC4422 C4T only) (Note 3)</td>
</tr>
<tr>
<td>Latch-Up Protection Withstand Reverse Current</td>
<td>IREV</td>
<td>—</td>
<td>>1.5</td>
<td>—</td>
<td>A</td>
<td>Duty cycle ≤ 2%, t ≤ 300 µsec</td>
</tr>
<tr>
<td>Switching Time (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>tr</td>
<td>—</td>
<td>60</td>
<td>75</td>
<td>ns</td>
<td>Figure 4-1, C_L = 10,000 pF</td>
</tr>
<tr>
<td>Fall Time</td>
<td>tf</td>
<td>—</td>
<td>60</td>
<td>75</td>
<td>ns</td>
<td>Figure 4-1, C_L = 10,000 pF</td>
</tr>
<tr>
<td>Delay Time</td>
<td>tD1</td>
<td>—</td>
<td>30</td>
<td>60</td>
<td>ns</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Delay Time</td>
<td>tD2</td>
<td>—</td>
<td>33</td>
<td>60</td>
<td>ns</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Current</td>
<td>IS</td>
<td>—</td>
<td>0.2</td>
<td>1.5</td>
<td>mA</td>
<td>VIN = 3V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>55</td>
<td>150</td>
<td>µA</td>
<td>VIN = 0V</td>
</tr>
<tr>
<td>Operating Input Voltage</td>
<td>VDD</td>
<td>4.5</td>
<td>—</td>
<td>18</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Switching times ensured by design.
2: Package power dissipation is dependent on the copper pad area on the PCB.
3: Tested during characterization, not production tested.
DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)

Electrical Specifications: Unless otherwise noted, over the operating temperature range with $4.5V \leq V_{DD} \leq 18V$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic '1', High-Input Voltage</td>
<td>V_{IH}</td>
<td>2.4</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic '0', Low-Input Voltage</td>
<td>V_{IL}</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>I_{IN}</td>
<td>—10</td>
<td>—</td>
<td>+10</td>
<td>μA</td>
<td>$0V \leq V_{IN} \leq V_{DD}$</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Output Voltage</td>
<td>V_{OH}</td>
<td>$V_{DD} - 0.025$</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>DC TEST</td>
</tr>
<tr>
<td>Low-Output Voltage</td>
<td>V_{OL}</td>
<td>—</td>
<td>—</td>
<td>0.025</td>
<td>V</td>
<td>DC TEST</td>
</tr>
<tr>
<td>Output Resistance, High</td>
<td>R_{OH}</td>
<td>—</td>
<td>2.4</td>
<td>3.6</td>
<td>Ω</td>
<td>$I_{OUT} = 10mA, V_{DD} = 18V$</td>
</tr>
<tr>
<td>Output Resistance, Low</td>
<td>R_{OL}</td>
<td>—</td>
<td>1.8</td>
<td>2.7</td>
<td>Ω</td>
<td>$I_{OUT} = 10mA, V_{DD} = 18V$</td>
</tr>
<tr>
<td>Switching Time (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_{R}</td>
<td>—</td>
<td>60</td>
<td>120</td>
<td>ns</td>
<td>Figure 4-1, $C_{L} = 10,000pF$</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_{F}</td>
<td>—</td>
<td>60</td>
<td>120</td>
<td>ns</td>
<td>Figure 4-1, $C_{L} = 10,000pF$</td>
</tr>
<tr>
<td>Delay Time</td>
<td>t_{D1}</td>
<td>—</td>
<td>50</td>
<td>80</td>
<td>ns</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Delay Time</td>
<td>t_{D2}</td>
<td>—</td>
<td>65</td>
<td>80</td>
<td>ns</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Current</td>
<td>I_{S}</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>mA</td>
<td>$V_{IN} = 3V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>0.2</td>
<td>mA</td>
<td>$V_{IN} = 0V$</td>
</tr>
<tr>
<td>Operating Input Voltage</td>
<td>V_{DD}</td>
<td>4.5</td>
<td>—</td>
<td>18</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Switching times ensured by design.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all parameters apply with $4.5V \leq V_{DD} \leq 18V$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (C)</td>
<td>T_{A}</td>
<td>0</td>
<td>—</td>
<td>+70</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (E)</td>
<td>T_{A}</td>
<td>—40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (V)</td>
<td>T_{A}</td>
<td>—40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{J}</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{A}</td>
<td>—65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 5L-TO-220</td>
<td>θ_{JA}</td>
<td>39.5</td>
<td>—</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-6x5 DFN-S</td>
<td>θ_{JA}</td>
<td>35.7</td>
<td>—</td>
<td>—</td>
<td>°C/W</td>
<td>Typical 4-layer board with vias to ground plane</td>
</tr>
<tr>
<td>Thermal Resistance, 8L-PDIP</td>
<td>θ_{JA}</td>
<td>89.3</td>
<td>—</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-SOIJ</td>
<td>θ_{JA}</td>
<td>117</td>
<td>—</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V$.

FIGURE 2-1: Rise Time vs. Supply Voltage.

FIGURE 2-2: Rise Time vs. Capacitive Load.

FIGURE 2-3: Rise and Fall Times vs. Temperature.

FIGURE 2-4: Fall Time vs. Supply Voltage.

FIGURE 2-5: Fall Time vs. Capacitive Load.

FIGURE 2-6: Propagation Delay vs. Supply Voltage.
Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V$.

FIGURE 2-7: Supply Current vs. Capacitive Load ($V_{DD} = 18V$).

FIGURE 2-8: Supply Current vs. Capacitive Load ($V_{DD} = 12V$).

FIGURE 2-9: Supply Current vs. Capacitive Load ($V_{DD} = 6V$).

FIGURE 2-10: Supply Current vs. Frequency ($V_{DD} = 18V$).

FIGURE 2-11: Supply Current vs. Frequency ($V_{DD} = 12V$).

FIGURE 2-12: Supply Current vs. Frequency ($V_{DD} = 6V$).
Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V$.

FIGURE 2-14: Crossover Energy vs. Supply Voltage.

FIGURE 2-15: High-State Output Resistance vs. Supply Voltage.

FIGURE 2-16: Propagation Delay vs. Temperature.

FIGURE 2-17: Quiescent Supply Current vs. Temperature.

FIGURE 2-18: Low-State Output Resistance vs. Supply Voltage.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin No. 6x5 DFN-S</th>
<th>Pin No. TO-220</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>—</td>
<td>V_{DD}</td>
<td>Supply input, 4.5V to 18V</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>INPUT</td>
<td>Control input, TTL/CMOS compatible input</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>—</td>
<td>NC</td>
<td>No connection</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>OUTPUT/OUTPUT</td>
<td>CMOS push-pull output</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>—</td>
<td>OUTPUT/OUTPUT</td>
<td>CMOS push-pull output</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>3</td>
<td>V_{DD}</td>
<td>Supply input, 4.5V to 18V</td>
</tr>
<tr>
<td>—</td>
<td>9</td>
<td>—</td>
<td>EP</td>
<td>Exposed thermal pad</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>TAB</td>
<td>V_{DD}</td>
<td>Thermal tab is at the V_{DD} potential</td>
</tr>
</tbody>
</table>

3.1 Supply Input (V_{DD})

The V_{DD} input is the bias supply for the MOSFET driver and is rated for 4.5V to 18V with respect to the ground pin. The V_{DD} input should be bypassed to ground with a local ceramic capacitor. The value of the capacitor should be chosen based on the capacitive load that is being driven. A minimum value of 1.0 µF is suggested.

3.2 Control Input (INPUT)

The MOSFET driver input is a high-impedance, TTL/CMOS compatible input. The input also has 300 mV of hysteresis between the high and low thresholds that prevents output glitching even when the rise and fall time of the input signal is very slow.

3.3 CMOS Push-Pull Output (OUTPUT, OUTPUT)

The MOSFET driver output is a low-impedance, CMOS, push-pull style output capable of driving a capacitive load with 9.0A peak currents. The MOSFET driver output is capable of withstanding 1.5A peak reverse currents of either polarity.

3.4 Ground (GND)

The ground pins are the return path for the bias current and for the high peak currents that discharge the load capacitor. The ground pins should be tied into a ground plane or have very short traces to the bias supply source return.

3.5 Exposed Thermal Pad (EP)

The exposed thermal pad of the 6x5 DFN-S package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane or other copper plane on a printed circuit board to aid in heat removal from the package.
4.0 APPLICATIONS INFORMATION

FIGURE 4-1: Switching Time Test Circuits.

Input: 100 kHz, square wave, \(t_{\text{RISE}} = t_{\text{FALL}} \leq 10 \text{ nsec} \)

Note: Pinout shown is for the DFN-S, PDIP and SOIJ packages.
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend:

XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
* This package is Pb-free. The Pb-free JEDEC designator (*3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
5-Lead Plastic Transistor Outline (AT) [TO-220]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Pin Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D1</td>
</tr>
<tr>
<td>Tab Length</td>
<td>H1</td>
</tr>
<tr>
<td>Tab Thickness</td>
<td>A1</td>
</tr>
<tr>
<td>Mounting Hole Center</td>
<td>Q</td>
</tr>
<tr>
<td>Mounting Hole Diameter</td>
<td>φP</td>
</tr>
<tr>
<td>Lead Length</td>
<td>L</td>
</tr>
<tr>
<td>Base to Bottom of Lead</td>
<td>A2</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
2. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-036B
8-Lead Plastic Dual Flat, No Lead Package (MF) – 6x5 mm Body [DFN-S]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![Diagram of 8-Lead Plastic Dual Flat, No Lead Package (MF) – 6x5 mm Body [DFN-S]]

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated.
4. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-122B
8-Lead Plastic Dual Flat, No Lead Package (MF) - 6x5 mm Body [DFN-S]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

NOTE: THIS PACKAGE MAY ALSO BE USED WITH THE 8L SOIC (3.90 mm) LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimension Limits</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>W2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>T2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2122A

8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com-packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>.100 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>.210</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
<td>.130</td>
<td>.195</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.290</td>
<td>.310</td>
<td>.325</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
<td>.250</td>
<td>.280</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.348</td>
<td>.365</td>
<td>.400</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.115</td>
<td>.130</td>
<td>.150</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
<td>.010</td>
<td>.015</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b1</td>
<td>.040</td>
<td>.060</td>
<td>.070</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b</td>
<td>.014</td>
<td>.018</td>
<td>.022</td>
</tr>
<tr>
<td>Overall Row Spacing §</td>
<td>eB</td>
<td>–</td>
<td>–</td>
<td>.430</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located with the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B
8-Lead Plastic Small Outline (SM) - Medium, 5.28 mm Body [SOIJ]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
TC4421/TC4422

8-Lead Plastic Small Outline (SM) - Medium, 5.28 mm Body [SOIJ]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle</td>
<td>G1</td>
</tr>
<tr>
<td>Lead Angle</td>
<td>G2</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>G3</td>
</tr>
</tbody>
</table>

Notes:
1. SOJ, JEITA/EIAJ Standard, Formerly called SOIC
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
8-Lead Plastic Small Outline (SM) - Medium, 5.28 mm Body [SOIJ]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Overall Width</td>
<td>Z1</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2056C
APPENDIX A: REVISION HISTORY

Revision F (August 2013)

The following is the list of modifications:

1. Updated package type for 8-Pin 6x5 DFN-S in Package Types(1).
2. Updated the values in Temperature Characteristics.
3. Updated the markings in Section 5.0, Packaging Information.
4. Replaced all references to DFN and SOIC with DFN-S and SOIJ, respectively.

Revision E (December 2012)

• Added a note to each package outline drawing.
TC4421/TC4422

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
<th>XXX</th>
<th>X</th>
<th>PB Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>TC4421: 9A High-Speed MOSFET Driver, Inverting</td>
<td>TC4422: 9A High-Speed MOSFET Driver, Non-Inverting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range:</td>
<td>C = 0°C to +70°C (PDIP and TO-220 Only)</td>
<td>E = -40°C to +85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package:</td>
<td>AT = TO-220, 5-lead (C-Temp Only)</td>
<td>MF = Dual, Flat, No-Lead (6x5 mm Body), 8-lead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF713 = Dual, Flat, No-Lead (6x5 mm Body), 8-lead (Tape and Reel)</td>
<td>PA = Plastic DIP (300 mil Body), 8-lead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SM = Plastic SOI (208 mil Body), 8-lead (Tape and Reel)</td>
<td>SM713 = Plastic SOI (208 mil Body), 8-lead (Tape and Reel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB Free:</td>
<td>G = Lead-Free device</td>
<td>= Blank</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

a) TC4421CAT: 9A High-Speed Inverting MOSFET Driver, TO-220 package, 0°C to +70°C.
b) TC4421ESMG: 9A High-Speed Inverting MOSFET Driver, PB Free SOI package, -40°C to +85°C.
c) TC4421VMF: 9A High-Speed Inverting MOSFET Driver, DFN-S package, -40°C to +125°C.
a) TC4422VPA: 9A High-Speed Non-Inverting MOSFET Driver, PDIP package, -40°C to +125°C.
b) TC4422EPA: 9A High-Speed Non-Inverting MOSFET Driver, PDIP package, -40°C to +85°C.
c) TC4422EMF: 9A High-Speed Inverting MOSFET Driver, DFN-S package, -40°C to +85°C.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PICC52 logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Incorporated in the U.S.A. and other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rFLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-8868-6733
Fax: 61-2-8868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service
11/29/12