
Application Report
SPRA588

Digital Signal Processing Solutions September 1999

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240

Erwan Simon Digital Control Systems

Abstract
This application report presents a solution to control a 3-phase Permanent Magnet Synchronous
motor using the Texas Instruments (TI) TMS320F240 digital signal processor (DSP). This
processor is part of a new family of DSPs that enable cost-effective design of intelligent
controllers for brushless motors. The use of this DSP yields enhanced operations, fewer system
components, lower system cost and increased efficiency. The control method presented is field
oriented control (FOC). The sinusoidal voltage waveforms are generated by the DSP using the
space vector modulation technique. A practical solution is described and results are given in this
application report.

Contents

Introduction ..3

PMSM Model..3
Speed and Position Definition ..3
Electrical Equations..4
Mechanical Equations ..6

FOC Control for PMSM ..6
Expression of the Stator Current Vector ...6
The Clarke and Park Transformations..7
PMSM Control Structure...10

Application Description ..11
Motor Characteristics..11
DSP Development Board ...11
Power Electronics Board ..12

Software Organization..12
Initialization Module Description ...13
Interrupt Module Description ..13

Fixed-Point Arithmetic..18
Representation of Numbers..18
PU Model and Base Values..20

Core Modules...21
Co-ordinate Transformations..21
Generation of Sine and Cosine ..23
Space Vector Modulation ...24
PI Regulators..34

Interface Modules ..35
Current Sensing Module...35
Current Scaling Module ..39

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 2

Mechanical Position Sensing and Scaling Module ...41
Electrical Position Scaling Module..45
Mechanical Speed Scaling Module ..46

Experimental Results ...49

User Interface ..52

Software Modularity ...53

Conclusion ...54

Software Variables...56

Appendix A. TMS320F240 FOC Software ...57

Appendix B. Qbasic Graphic User’s Interface..80

Appendix C. Linker Command File ..84

Figures
Figure 1. Three-phase Motor with 4 Magnet Poles (2 Pole Pair) ...4
Figure 2. Stator Current Vector..7
Figure 3. (a,b,c)->(α,β) Projection (ClarkeTransformation) ..7

Figure 4. (α,β)->(d,q) Projection (Park Transformation) ...8
Figure 5. PMSM Control Structure...10
Figure 6. Top View of the TMS320F240 Evaluation Module..12
Figure 7. Software Flowchart and Timing ..14
Figure 8. Rotor Flux Position at Standstill..15
Figure 9. Stalled Rotor...15
Figure 10. +90° Electrical Shift ..16
Figure 11. Interrupt Module Flowchart ...17
Figure 12. Sinθe, Cosθe Calculation using the Sine Look-up Table ..24
Figure 13. 3-Phase Equilibrate System ...25
Figure 14. Power Bridge ..26
Figure 15. Voltage Vectors ..28
Figure 16. Projection of the Reference Voltage Vector ...29
Figure 17. Table Assigning the Right Duty Cycle to the Right Motor Phase..32
Figure 18. Sector 3 PWM Patterns and Duty Cycles...32
Figure 19. Current Sensing Hardware ...35
Figure 20. Current Sensing Scale Translation...36
Figure 21. Scaling Factor Representation ...39
Figure 22. Incremental Optical Encoder ..42
Figure 23. Sensing Scale...43
Figure 24. Electrical Position Scaling ..45
Figure 25. Mechanical Speed Scale ..47
Figure 26. Transient Stator Phase A Current ..49
Figure 27. Transient Currents isd, isq at Start ...50

Figure 28. Speed Transient from 0 to 1000 rpm..51

 Tables
Table 1. Power Bridge Output Voltages (VAO, VBO, VCO) ..26
Table 2. Power Bridge Output Voltages (VAN, VBN, VCN)...27
Table 3. Stator Voltages ...28
Table 4. Motor at 500 rpm ..51
Table 5. Motor at 1500 rpm ..51

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 3

Introduction
A brushless Permanent Magnet Synchronous motor (PMSM) has a wound stator, a
permanent magnet rotor assembly and internal or external devices to sense rotor
position. The sensing devices provide logic signals for electronically switching the stator
windings in the proper sequence to maintain rotation of the magnet assembly. The
combination of an inner permanent magnet rotor and outer windings offers the
advantages of low rotor inertia, efficient heat dissipation, and reduction of the motor size.
Moreover, the elimination of brushes reduces noise, EMI generation and suppresses the
need of brushes maintenance.

Two configurations of permanent magnet brushless motor are usually considered: the
trapezoidal type and the sinusoidal type. Depending on how the stator is wounded, the
back-electromagnetic force will have a different shape (the BEMF is induced in the stator
by the motion of the rotor). To obtain the maximum performance from each type of
PMSM, an appropriate control strategy has to be implemented. The trapezoidal BEMF
motor called DC brushless motor (BLDC) uses a "two phases on" strategy, whereas the
sinusoidal BEMF motor offers its best performances when driven by sinusoidal currents
(three phases on strategy).

This application report presents the implementation of a control for sinusoidal PMSM
motor.

The sinusoidal voltage waveform applied to this motor is created by using the Space
Vector modulation technique.

The Field Oriented Control algorithm will enable real-time control of torque and rotation
speed. As this control is accurate in every mode of operation (steady state and transient),
no oversize of the power transistors is necessary. The transient currents are constantly
controlled in amplitude. Moreover, no torque ripple appears when driving this sinusoidal
BEMF motor with sinusoidal currents.

PMSM Model
The operation of a brushless PM motor relies on the conversion of electrical energy to
magnetic energy and then from magnetic energy to mechanical energy. It is possible to
generate a magnetic rotating field by applying sinusoidal voltages to the 3 stator phases
of a 3 phase motor. A resulting sinusoidal current flows in the coils and generates the
rotating stator flux.

The rotation of the rotor shaft is then created by attraction of the permanent rotor flux with
the stator flux.

Speed and Position Definition

In electric motors, two measures of position and speed are usually defined: mechanical
and electrical. The mechanical position is related to the rotation of the rotor shaft. When
the rotor shaft has accomplished 360 mechanical degrees, the rotor is back in the same
position where it started.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 4

The electrical position of the rotor is related to the rotation of the rotor magnetic field. In
Figure 1, the rotor needs only to move 180 mechanical degrees to obtain an identical
magnetic configuration as when it started. The electrical position of the rotor is then
related to the number of magnetic pole pairs on it.

Figure 1. Three-phase Motor with 4 Magnet Poles (2 Pole Pair)

The electrical position of the rotor is linked to the mechanical position of the rotor by the
relationship

θ e = θ m* p (p is the number of pole pair).

As the speed is related to the position by ω = dθ/dt , a similar relationship also exists
towards electrical speed and mechanical speed.

ω e = ω m* p

The notions of electrical position of the rotor and mechanical speed are extensively used
in this report.

Electrical Equations

)
3

4
cos(

)
3

2
cos(

)cos(

*

*

*

π
ω

π
ω

ω

−=

−=

=

tVv

tVv

tVv

ec

eb

ea

To create the rotating stator flux, the commonly applied phase voltages present a phase
shift of 120 electrical degrees from one to another that takes into account the mechanical
120 degrees angle between coils.

A one phase electrical equation can be written like :

SS

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 5

))((* θmLi
dt

d
Ri

dt

d
RiiZv Ψ++=

Ψ
+==

where ψm corresponds to the amplitude of the natural magnetic flux of the permanent

magnets. The term)(θm
dt

d
Ψ corresponds to the back-emf (induced voltage) and can

also be written like e
d

md
ω

θ
θ

*
)(Ψ

, where ωe corresponds to the electrical speed.

Supposing that the machine is sinusoidal, the induced voltage has the following form:

[])(**

)
3

4
sin(

)
3

2
sin(

)sin(

*

)(

)(

)(

ee

e

e

e

e

c

b

a

Kmm

E

E

E

E θω

π
θ

π
θ

θ

ω
θ
θ
θ

Ψ=























−

−Ψ−=















=

From the electrical power delivered to the motor, a part of it is transformed in Joule
losses, another part is going to the energy stored in the magnetic field and the last part is
transformed in mechanical energy (torque production).

In the PMSM case, the torque is expressed by:

[] [])(*** e
t

s KmIpTe θΨ= , where p is the number of pole pairs.

It can be proven that the best solution to produce a constant torque is to drive a sinusoidal
motor by sinusoidal currents.

))()()((*** θθθ ccbbaam KIKIKIpTe ++Ψ=

Knowing that :

)
3

4
sin(

)
3

2
sin(

)sin(

*

*

*

π
ω

π
ω

ω

−=

−=

=

tII

tII

tII

esc

esb

esa

We obtain

smsm IptttIpTe **
2

3
))

3

4
(sin)

3

2
(sin)((sin** 222 Ψ=−+−+Ψ=

π
ω

π
ωω . It will be

further shown that the FOC enables a continuous control of the torque demand without
ripples.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 6

Mechanical Equations

The torque created by the energy conversion process is then used to drive mechanical
loads. Its expression is related to mechanical parameters via the fundamental law of the
dynamics as follows:

∑ =
dt

dw
JT

Giving:

elmd
m

TTk
dt

d
J =++ ω

ω

As the torque is composed of time and electrical position dependent parameters, its
efficient and accurate control is not easy with standard methods.

The proposed solution is to overcome this issue is based on the real time implementation
of the Field Orientated Control algorithm with a TMS320F240 DSP.

FOC Control for PMSM
The goal of the Field Oriented Control [BPRA073] is to perform real-time control of torque
variations demand, to control the rotor mechanical speed and to regulate phase currents
in order to avoid current spikes during transient phases.

To perform these controls, the electrical equations are projected from a 3 phase non-
rotating frame into a two co-ordinate rotating frame.

This mathematical projection (Clarke & Park) greatly simplifies the expression of the
electrical equations and remove their time and position dependencies.

Expression of the Stator Current Vector

As phase current values are used in the general expression of the torque, the expression
of their values in the new rotating frame are needed afterwards.

The three sinusoidal currents created by the 120° (electrical) phase shifted voltages
applied to the stator are also 120° (electrical) phase shifted one from another.

The stator current vector (Figure 2) is represented in the 3 phase nonrotating frame

(a,b,c) and defined by is = ia + ej2π/3 ib +ej4π/3 ic

J : rotor inertia
Kd: viscosity coefficient
Tl: load torque
ω m: mechanical speed

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 7

Figure 2. Stator Current Vector

a

iS

b

c

ia

α2ic

αib

The Clarke and Park Transformations

The idea of the Clarke transformation is that the rotating stator current vector that is the
sum of the 3 phase currents can also be generated by a bi-phased system placed on the
fixed axis α and β as shown in Figure 3.

Figure 3. (a,b,c)->(α,β) Projection (ClarkeTransformation)

α=a

β

iS

b

c

iSα

iSβ

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 8

The projection of the stator current vector in this fixed frame gives:

In this new frame, the expression of the torque is still dependent on the position of the
rotor flux, preventing any easy solution of the electrical differential equation.

To remove this dependency, the electrical equations are projected in a 2-phase (d,q)
system (Figure 4) that rotates at the speed of the electrical speed of the rotor and where
the d axis is aligned with the electrical position of the rotor flux. In this frame, the electrical
expression of the torque becomes independent from θe.

Figure 4. (α,β)->(d,q) Projection (Park Transformation)

θe
α= a

β

iS

d

q

iSd

iSq

iSα

iSβ

Ψ R

The equations corresponding to this transformation are given by:

In this new system, the expression of the electrical equations are greatly simplified:

d

qdd

rerqqssq

rerdss

dt

d
iRV

dt

d
iRV

ϕωϕ

ϕωϕ

**

**

++=

−+=

0

3

2

3

1

=++

+⋅=

=

cba

bas

as

iii

iii

ii

β

α

)cos()sin(

)sin()cos(

esessq

esessd

iii

iii

θθ

θθ

βα

βα

⋅+⋅−=

⋅+⋅=

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 9

For a multiple pole synchronous motor, the expression of the torque in (d,q) is:

)**(
2

3
qdqd rssre iipT ψψ −=

Where p is the number of pole pairs.

In the specific case of a permanent magnet synchronous motor without salient poles,
most of the natural magnetic flux is on the d axis (ψrd >> ψrq). Moreover, the stator

current vector value is

In order to optimize the torque production for a given is value, the appropriate strategy is

to set isdref to 0.

The action of the current regulators is then to shift the current vector Is onto the q axis.

The torque is now given by

The relationship between mechanical speed and torque is given by the mechanical
differential equation.

To overcome the nominal speed limitation, a field-weakening algorithm can be
implemented with a non-zero isdref.. Setting isdref to a non-zero value will increase the

speed range but the applicable torque must be reduced to ensure that the relationship

is respected. Moreover, it is not recommended to create a magnetic flux opposed to the
natural flux of the permanent magnets over long periods of time. This could lead to
demagnetization of the rotor magnets reducing the torque production, as well as
excessive heat generation.

qd sre iT *ψ∝

22
sqsds iii +=

max
22

ssqsds iiii ≤+=

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 10

PMSM Control Structure

The control scheme proposed for the Speed FOC PMSM drive is shown in Figure 5.

Figure 5. PMSM Control Structure

n

SV
PWM

a,b,c

α,βiSq

iSd

iSα

iSβ

ia

ib

vSqref
PI

PI
vSdref

vSαref

vSβref

iSqref

iSdref

- 3-phase
Inverter

PMSM

motor

VDC

Clarke t.

d,q

α,β

d,q

α,β
Park t.

Park -1 t.

PI
nref

Sensor informationsposition and
speed sensing

θe

va vb vc

Figure 5 shows the software modules with the hardware of the solution. A detailed
description of both aspects will be given in dedicated paragraphs.

ia and ib are measured with a current sensor. The Clarke transform is applied to them to

determine the stator current projection in a two co-ordinate non-rotating frame.

The Park co-ordinate transformation is then applied in order to obtain this projection in the
(d,q) rotating frame.

The (d,q) projections of the stator phase currents are then compared to their reference
values Isqref and Isdref (set to 0) and corrected by mean of PI current controllers. The

outputs of the current controllers are passed through the inverse Park transform and a
new stator voltage vector is impressed to the motor using the Space Vector Modulation
technique. In order to control the mechanical speed of the motor (speed FOC), an outer
loop is driving the reference current Isqref. The mechanical speed reference is denoted

“nref“ and the mechanical speed “n” for notations compliance with previous FOC

application notes.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 11

Application Description
This chapter covers each component put in place to implement the solution of the PMSM
drive. The different elements of the application are:

r 6-pole PMSM motor

r DSP development board

r Power board

Motor Characteristics

The PMSM motor used for the application is a 6-pole three phase Y-connected motor.
The characteristics of this motor are as follow:

Stator phase line to line inductance: 4.8mH
line to line resistance 2.1Ω
Pole pairs 3
Nominal Torque Tn 2.2Nm
Nominal speed 3000rpm
Motor nominal power Pn 690W
Mechanical time constant 1.5ms
Electrical time constant 2.3ms
Torque constant 0.76Nm/A rms
Voltage constant 65Vpk/krpm

An embedded incremental encoder with a resolution of 1024 lines/revolution provides
feedback for speed control.

DSP Development Board

Several TMS320F240 development platforms are available on the market either from TI
or from one of its third parties. The TMS320F240 Evaluation Module (Figure 6) introduced
by TI has been used in this application. The on-board DACs are used to output the values
of several variables (currents, voltages, speed, and position) chosen from the Graphical
User Interface presented at the end of this report. This feature is particularly useful in
development stage.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 12

Figure 6. Top View of the TMS320F240 Evaluation Module

The PLL unit is set for CPUCLK = 20MHz and SYSCLK = 10Mhz.

To disable the Watchdog unit, set Vccp pin voltage to 5V (JP5 position 2-3)

Power Electronics Board

The power hardware used to implement and test this PMSM drive is based on six power
IGBT (IRGPC40F) driven by the DSP Controller via the integrated driver IR2130 This
power inverter supports a rectified DC bus voltage of 310V and a maximum current of
10A. The DSP PWM (pulse width modulation) outputs are isolated from the power board
by opto-couplers. The phases current sensing is performed via two current voltage
transducers (LEM type) supplied with +/-15V. Their maximum input current is +/-10A,
which is converted into a 2.5V output voltage.

Software Organization
The program FOCPMSM.ASM is based on two modules: the initialization module and the
interrupt module.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 13

Initialization Module Description

After a processor reset, the initialization module performs the following tasks:

r DSP setup : core, watchdog, clocks, ADC, SCI, general purpose IO, event manager

r Variables initializations : default values

r Interrupt source selection and enable

r Waiting loop

The waiting loop implemented corresponds to an interruptible communication
between the DSP and a Graphical User Interface. The DSP communicates via its
asynchronous serial port to the COM port of a PC. The user can send commands via
this RS232 link and update variables and flags from the computer.

Interrupt Module Description

The interrupt module handles the whole FOC algorithm. It is periodically computed
according to a fixed PWM (pulse width modulation) period value. The choice of the PWM
frequency depends on the motor electrical constant L/R. If the PWM frequency is too low,
audible noise can be heard from the motor. Usually, PWM frequencies are in the range of
20 kHz. In this report, a PWM frequency of 16kHz has been chosen.

In Figure 7, the sampling period T of 60 µs (16 kHz) is established by setting the timer
period T1PER to 600 (PWMPRD=600). This timer is set in up-down count mode and
generates a periodical interrupt on T1 underflow event.

The goal of the interrupt module is to update the stator voltage reference and to ensure
the regulation of stator currents and rotor mechanical speed.

After the initialization module has completed, the rotation does not start immediately. As
the program is interactive, the DSP waits for the user to select the Init/run menu option
that set the internal flag “initphase”.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 14

Figure 7. Software Flowchart and Timing

Hardware
Initialization

SW Variables
Initialization

Waiting
Loop

Start

PWM
ISR

PWMPRD=600*50ns=30 µs

Sampling Period T=60µσ =2*PWMPRD

Software
 Start

Initialization

T1CNT

τ algorithm Waiting Time τ algorithm

PWM Underflow
Interrupt

Depending on the status of this flag, either a magnetic stall or the complete speed FOC
algorithm is performed.

If initphase = 0, the magnetic stall places the rotor in a known position at start. It is
necessary for two reasons:

r The embedded encoder does not give an absolute information on the rotor position.
Only a relative position can be computed from a known position.

r The rotor electrical position needs to be reset for the FOC.

This stall is performed by applying a constant voltage vector to the stator phase: the
constant phase currents flowing in the coils create a fixed stator flux. As a
consequence, the rotor flux aligns itself naturally onto this stator flux (the rotor is
stalled in this position).

The component Iq of the stator current vector is set to the value Iqrinit (=Inominal), Id
is set to 0. The arbitrary angular position of this vector is called θe.

If initphase = 1, the electrical angle θe is shifted by 90°. As a consequence, the (d,q) axis

are rotated from 90° apart. The d axis corresponds now to the real rotor flux position and
the stator current vector Is is moved to the new q axis. As a consequence, the rotor flux

tends to align itself with the new stator flux vector position. As soon as the rotor starts to
rotate, relative displacement information is sent to the DSP by the encoder. A new stator
vector is computed every interrupt in order to maintain the 90 electrical degrees between
the two fluxes.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 15

These two steps are graphically explained below.

Start of the Motion

After reset, the rotor flux is in an unknown position (Figure 8).

Figure 8. Rotor Flux Position at Standstill

Step 1: Initphase = 0

A fixed stator current vector Isref is applied to the motor. The components of this vector

are: Isdref=0, Isqref=Iqrinit (=Inominal), θe

Figure 9. Stalled Rotor

The rotor flux aligns itself to the axis q. For the time being, the (d,q) axis is not yet
rotating. The rotor flux is in a known position but this position is not yet aligned with the d
axis.

α= a

β
b

c

ψ
r

θe

α=a

β

i sα

d

q

Isref

Ψr

i sβ

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 16

Step 2: Initphase = 1

90 electrical degrees is added to the value of θe, this action is equivalent to a frame

rotation.

Figure 10. +90° Electrical Shift

Instantaneously, the stator current reference vector is moved 90o apart from its first
position. (The rotor is physically at the same position as previously). The d axis now
corresponds exactly to the position of the rotor flux.

As there is this 90 o angular difference between the rotor flux and the stator flux, the
interaction of the two fluxes produces torque and the rotor starts to rotate in order to align
itself with Isref.

The incremental encoder sends rotor position information to the DSP. This information is
stored in a software counter called “encoder”.

Every PWM interrupt, the stator voltage vector is updated to maintain the 90° between the
two magnetic fluxes. This update is done according to the number of increments stored in
the variable encoder.

For convenience , initial value θe of has been chosen in this report to be equal to -90o.

This makes the d axis correspond to the 0o electrical position at start. In fact, the
electrical position is now computed with the formula θe = K*encoder. As the number of

increments in the variable encoder are null after reset, it was convenient to choose the

value -90o as first value for θe.

The flowchart of the interrupt module is given in Figure 11.

θe

α=a

β

d

Ψr

Isβis

q Isref

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 17

Figure 11. Interrupt Module Flowchart

sampled current scaling
i = Kcurrent*ADC value

 calculate rotor flux displacement
θelec = K * encoder

Ia,Ib current
sampling

start control routine
_c_int2

calculate speed
n =

Kspeed*speedtmp

Init / Run?

speedstep = 0 ?

speed regulator
n_ref - n --> iqr

update speed counter
speedtmp += encincr

(a,b,c)->(α,β)

C larke
Transformation

(α,β)->(d,q)

Park Transform

q-current regulator

d-current regulator

(d,q)->(α,β)

Inv Park
Transformation

SVPW M

End Control Routine

Stall the rotor
θelec = -90deg

Iqref= # Iqrinit
Idref = 0

encoder = 0

YES

NO

Init

Run

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 18

On the interrupt module flowchart, several software blocks appear. The shadowed blocks
correspond to interface modules, whereas the nonshadowed blocks correspond to the
core modules. The interface modules are low level routines that convert real wold data
into their suitable numerical counterparts. The core modules use these formatted data to
execute the several tasks of the FOC.

In order to be able to understand how the software modules have been implemented on
the TMS320F240, an overview on the fixed-point arithmetic is needed. The Per-Unit
model will also be discussed in the following section.

Fixed-Point Arithmetic

Representation of Numbers

In binary format, a number can be represented in signed magnitude, where the left-most
bit represents the sign and the remaining bits represent the magnitude:

+6 (decimal) is represented as 101102 (binary) = 1*(0*23+1*22+1*21+0*20)

-6 (decimal) is represented as 101102 (binary) = -1*(0*23+1*22+1*21+0*20)

Two’s complement is an alternative form of representation used in most processors,
including the TMS320. The representation of a positive number is the same in two’s
complement and in signed magnitude. However, the representation of a negative number
is different.

+6 (decimal) is represented as 001102 (2s-comp) = 0*24+0*23+1*22+1*21+0*20

-6 (decimal) is represented as 110102 (2s-comp) = -1*24+1*23+0*22+1*21+0*20

The above words are represented on 5 bits only. The TMS320F240 is part of the
TMS320C2xx 16bit fixed-point DSP family of TI. The native length of a word is 16bit on
this family.

To represent real numbers on this fixed-point architecture, a Qk format has to be chosen

by the user. Qk numbers can be represented by the following general formula:

Z = - b15-k*215-k+ b14-k*214-k +…b0+b-1*2-1+ b-2*2-2+…+ b-k*2-k

An implied dot separates the integer part from the fractional part of the Qk number where

k represents the quantity of fractional bit.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 19

For instance the real number ππ (3.14159) can be represented in Q13 with finite precision

as follow :

011.0 0100 1000 01112 = 0*22+ 1*21 + 1*20 + 0*2-1 + 0*2-2 + 1*2-3 + 0*2-4 + 0*2-5 +

1*2-6 + 0*2-7 + 0*2-8 + 0*2-9 + 0*2-10 + 1*2-11 + 1*2-12 + 1*2-13

The number of bits dedicated to the fractional part affects the accuracy of the result while
the integer part affects the dynamic range of values that can be represented. The Q15
format offers the best precision but only real numbers comprised between –1 and +1 can
be represented.

The Qk format offers a compromise between dynamic range and precision. The Q12
numeric format is used in the major part of this report : 4 bits are dedicated to the integer

part and 12 bits are dedicated to the fractional part. The precision of this format is 2-12

(0.00024414). The represented numbers are in the range of [-8;8] to ensure that values
can handle each drive control quantity, not only during steady state operation but also
during transient operation.

Arithmetic operations

Multiplication

The following example shows how two real numbers (X and Y) coded in Q12 are

multiplied

X = -1.12510 is represented as 1110. 1110 0000 00002 in Q12

Y = +1.37510 is represented as 0001. 0110 0000 00002 in Q12

0001 011(0 0000 0000) (+1.375)
1110 111(0 0000 0000) (-1.125)

 0001 011
 0 0010 11 . (2-scompl.) SUM1= 00100001+(zeroes)
 00 0101 1 . . SUM2=001001101+(zeroes)
 000 0000 . . . SUM3=0001001101+(zeroes)

 0001 011 SUM4=00011111101+(zeroes)
 1 1101 01

z = 1 1111 0.011 101(00…00) (-1.546875)
18 zeroes

*

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 20

The multiplication of a Qk (2k) number by a Qp (2p) number results in a Qk+p (2 k+p)

number (the same rule also exists in base 10. ex : 103 *105 = 108). In the case of a Q12
by Q12 multiplication, the virtual dot is shifted and the 24 least significant bits of the 32-bit

accumulator represents the fractional part of the result (Q12 *Q12= Q24).

As the result of the multiplication gives a 30bit number, the SXM bit (sign extension
mode) is set to propagate the sign to the two most significant bits of the accumulator.

Z will be stored back in Q12 format. To do so, the content of the accumulator is left

shifted four times and the upper word of the accumulator is stored in Z.

Z is stored as 1110. 0011 1010 00002 in Q12 = -1.546875 (decimal)

Addition

The following example shows how two real numbers (X and Y) coded in Q12 are added.

X = +1.12510 is represented as 0001. 0010 0000 00002 in Q12

Y = +1.37510 is represented as 0001. 0110 0000 00002 in Q12

Z is stored as 0010. 1000 0000 00002 in Q12 = 2.5 (decimal)

PU Model and Base Values

The Per Unit model (PU) is associated with reduced value notion. As the TMS320F240 is
a fixed-point DSP, it has been shown that the greatest precision is obtained in Q15 format
but the dynamic range of this format is small: it is comprised between –1 and +1 only.

Using a fixed-point DSP, it is necessary to reduce the amplitude of the variables in order
to get a fractional part with a maximum precision. The notion of Per Unit model is
introduced to use this fixed-point feature. It is usually associated with the nominal values
of the motor.

The per-unit current is usually defined as ipu = I / Inominal

The above equation shows that ipu = 1 when the current reaches its nominal value.

Instead of using the nominal value as reference, a base value is preferred.

For currents and voltages, the reason to choose a base different from the nominal values
is that nominal values usually given by the motor manufacturer are RMS (root mean
square).

Then, the preferred Per Unit model for the current is given by:

i = I / Ibase where 2*II nominalbase =

and the PU model for the voltage is given by:

v = V / Vbase where 2*VV nominalbase =

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 21

For this application, the other PU model defined is:

base

speedrotormechanical
n

ω
=

In this application report, the base value of the mechanical speed corresponds to its
nominal value.

AII nbase 1.49.222 =⋅==

VVV nbase 18012722 ≅⋅==

sec
15.3145022

rad
f nbase =⋅== ππω

Wb
V

base

base
base 571.0

15.314

180
===Ψ

ω

As mentioned earlier, transient currents (for instance) might reach higher values than their
nominal values. Furthermore, the motor speed range might be extended above the
nominal speed (field weakening), then every per unit value might be greater than one.
This remark forces the implementation to handle these situations and thus the suited
numerical format chosen was Q12 for the PU models.

The Q12 representation of 1 is 1000h. The PU value is equal to 1 when the value is equal
to its base.

Core Modules
The core modules use formatted data to execute the different tasks of the FOC. The core
modules described are:

r Co-ordinate transformations : Clarke, Park, Park-1

r Generation of sinθ, cosθ with a lookup table.

r Variable stator voltage vector generation : Space Vector Modulation algorithm

r Speed regulation, current regulation

Co-ordinate Transformations

As first approach for the application of the fixed-point representation concept, the
implementation of the Clarke geometrical transformation is explained below. The other
modules (Park, Park-1) are also implemented in the program FOCPMSM.ASM.

These transformations are also explained in Clarke & Park Transforms on the
TMS320C2xx (BPRA048).

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 22

As mentioned previously, the stator phase current vector is projected from a 3-phase
(a,b,c) system in a (α,β) non-rotating frame by the Clarke transformation. The
mathematical equations are:

The following assembly function handles this mathematical transformation:

* (a,b,c) -> (alfa,beta) axis transformation

* iSalfa = ia

* iSbeta = (2 * ib + ia) / sqrt(3)

* Input variables : ia,ib Q12 format

* Output variables : iSalfa, iSbeta Q12 format

* Local variables modified : tmp Q12 format

 lacc ia

 sacl iSalfa

 lacc ib,1 ;iSbeta = (2 * ib + ia) / sqrt(3)

 add ia

 sacl tmp

 lt tmp

 mpy SQRT3inv ;SQRT3inv = (1 / sqrt(3)) = 093dh

 ;4.12 format = 0.577350269

 pac

 sach iSbeta,4

aii =α

ba iii
3

2

3

1
+⋅=β

0=++ cba iii

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 23

This routine gives a practical example of multiplication of Q12 numbers.To easily find the
correspondence between the fractional format of SQRT-1(3) and its Q12 equivalent, a

simple multiplication by 212 (= 4096) has to be done:

0. 577350269 * 4096 ≈ 2365 à 093Dh

The Clarke (a,b,c)->(α,β) projection requires 9 words of ROM, 5 words of RAM. A
complete table of each function requirements is given in the conclusion.

The Park and Park-1 are also implemented in FOCPMSM.ASM.

Generation of Sine and Cosine

The Park and Park-1 use the value of the rotor electrical position in order to handle the
stator current vector projection in a rotating frame. The electrical position is not directly
used in this transforms but the sine and cosine values of this electrical position.

To obtain both sine and cosine from the electrical angle, a sine look-up table has been
implemented.

The table contains 256 words to represent sine values of electrical angles in the range
[0;360°]. As a result, the resolution on θe is limited to 360/256 =1.40625°.

θe = electrical angle / 360° (with θe in the range [0;FFFh])

θe varies from 0 to 4095 (see position sensing module). As only 256 words are available

to represent this range, θe is divided by 16 and stored into the variable index that will be

used to address the lookup table.

The content of the table raw pointed by the index is fetched in indirect addressing mode
via AR5 auxiliary register. This content coded in Q12 is stored in the variable sin that will
be used in the Park transforms.

Note that to get the cosine value of the electrical angle, 90° are added to θe This

operation corresponds to add 64 (256/4) to the value of index. The result is stored in the
variable cos.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 24

Figure 12. Sinθe, Cosθe Calculation using the Sine Look-up Table

Space Vector Modulation

The Space Vector Modulation is used to generate the voltages applied to the stator
phases. It uses a special scheme to switch the power transistors to generate pseudo
sinusoidal currents in the stator phases.

This switching scheme comes from the translation of the (α,β) voltage reference vector
into an amount of time of commutation (on/off) for each power transistors. In order to
understand some of the assumptions made in the case of the rectified voltage, a brief
description of three phase systems is described in the following section. .

Expression of the 3 Phase Voltages (Phase to Neutral)

Previously, the method used to generate a rotating magnetic field was to use three
independent voltage sources that were dephased from 120 degrees from one another.

0

θ
e >>4

index

sine table
address

π/2

π

3π/2

0

4095

201

0

201

4095

101

4091

4096

4091

101

61441

65335

65335

61441

65435

61445

61440

61445

65435 2π

+

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 25

Figure 13. 3-Phase Equilibrate System

In this standard tri-phased system, 3 sinusoidal voltages are applied to each of the motor
phases to generate the sinusoidal currents. These voltages can be expressed as follows:

In order to calculate the phase to neutral voltages (respectively Van, Vbn, Vcn) from the

applied source voltages (respectively Voa, Vob, Voc), the assumption is made that the

system is equilibrated is made. This leads to the following equations:

Von = Voa +Z*I1

Von = Vob +Z*I2

Von = Voc +Z*I3

then

3*Von= Voa+Vob+Voc+Z(I1+ I2 +I3) where (I1+ I2 +I3) = 0

As Von is now expressed by a combination of the source voltages, the phase to neutral
voltage for phase A can be calculated as:

Van = Von-Voa = (1/3)(Voa+Vob +Voc)-Voa = -2/3Voa +1/3Vob +1/3Voc

Voa

O

I1

I2

I3

Vob

Voc

.

.

.

A

B

C

.Z Z
Z

N

PMSM

)
3

4
cos(2

)
3

2
cos(2

)cos(2

*

*

*

π
ω

π
ω

ω

−=

−=

=

tVV

tVV

tVV

eoc

eob

eoa

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 26

The same calculation is made for the three phases leading to :

Van = (1/3)(2*Vao-Vbo-Vco)

Vbn = (1/3)(2*Vbo-Vao-Vco)

Vcn = (1/3)(2*Vco-Vao-Vbo)

Application to the Static Power Bridge

In the case of a static power bridge, sinusoidal voltage sources are not used. They are
replaced by 6 power transistors that act as on/off switches to the rectified DC bus voltage.
The goal is to recreate a sinusoidal current in the coils to generate the rotating field.
Owing to the inductive nature of the phases, a pseudo sinusoidal current is created by
modulating the duty cycle of the power switches.

In Figure 14, the power transistors are activated by the signals (a,b,c) and their
complemented values.

Figure 14. Power Bridge

Only eight combinations of the switches are possible with this configuration (Table 1). The applied
voltages are referenced to the virtual middle point of rectified voltage.

Table 1. Power Bridge Output Voltages (VAO, VBO, VCO)

A B C VAO VBO VCO

0 0 0 -VDC/2 - VDC/2 - VDC/2

0 0 1 - VDC/2 - VDC/2 + VDC/2

0 1 0 -VDC/2 +VDC/2 - VDC/2

0 1 1 -VDC/2 +VDC/2 + VDC/2

1 0 0 +VDC/2 -VDC/2 - VDC/2

1 0 1 +VDC/2 -VDC/2 + VDC/2

1 1 0 +VDC/2 +VDC/2 - VDC/2

1 1 1 +VDC/2 +VDC/2 + VDC/2

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 27

Because of the equations :

Van = (1/3)(2*Vao-Vbo-Vco)

Vbn = (1/3)(2*Vbo-Vao-Vco)

Vcn = (1/3)(2*Vco-Vao-Vbo)

It is possible to express each phase to neutral voltages, for every combination of the
power transistors as listed in Table 2.

Table 2. Power Bridge Output Voltages (VAN, VBN, VCN)

A B C VAN VBN VCN

0 0 0 0 0 0

0 0 1 - VDC/3 - VDC/3 2VDC/3

0 1 0 - VDC/3 2VDC/3 - VDC/3

0 1 1 -2VDC/3 VDC/3 VDC/3

1 0 0 2VDC/3 - VDC/3 - VDC/3

1 0 1 VDC/3 -2VDC/3 VDC/3

1 1 0 VDC/3 VDC/3 -2VDC/3

1 1 1 0 0 0

Expression of the Stator Voltages in the (αα,ββ) Frame

In the FOC algorithm, the control variables are expressed in a rotating frame. It has been
mentioned that the current vector Isref that directly controls the torque is transformed in a

voltage reference vector by the Park-1 transform. This voltage reference is expressed in
the (α,β) frame. To make the relationship between the 3 phase voltages (VAN, VBN and

VCN) and the voltage reference vector, the 3 phase voltages are also projected in the (α,

β) frame.

The expression of the 3 phase voltages in the (α,β) frame are given by the general Clarke
transform equation:



































−

−−
=









CN

BN

AN

s

s

V

V

V

V

V

2

3

2

3
0

2

1

2

1
1

3

2

β

α

Since only 8 combinations are possible for the power switches, Vsα and Vsβ can also

take only a finite number of values in the (α,β) frame according to the status of the
transistor command signals (a,b,c).

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 28

Table 3. Stator Voltages

A B C Vαα Vββ
0 0 0 0 0

0V
r

0 0 1

3

DCV
−

3

DCV
− 1V

r

0 1 0

3

DCV
−

3

DCV
2V
r

0 1 1
DCV

3

2
−

0
3V
r

1 0 0
DCV

3

2 0
4V
r

1 0 1

3

DCV

3

DCV
− 5V

r

1 1 0

3

DCV

3

DCV
6V
r

1 1 1 0 0
7V
r

The eight voltage vectors defined by the combination of the switches are represented in
Figure 15.

Figure 15. Voltage Vectors

()V 0000()V 1117

1º

2º

3º

4º

5º

6º
()V 0011

()V 0113
()V 0114

()V 0102

()V 1015

()V 1106

α

β

Now, given a reference voltage (coming from the Park-1 transform), the following step is to
use the 8 above defined vectors to approximate this reference voltage.

Projection of the Stator Reference Voltage Vs

The method used to approximate the desired stator reference voltage with only eight
possible states of switches is to combine adjacent vectors of the reference voltage and to
modulate the time of application of each adjacent vector.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 29

Figure 16. Projection of the Reference Voltage Vector

In Figure 16, the reference voltage Vsref is in the third sector and the application time of

each adjacent vector is given by:

The determination of the amount of times T4 and T6 is given by simple projections:















°
=

+=

°=

)60(

)30cos(

4
4

6
6

tg

V
x

xV
T

T
V

V
T

T
V

refs

refs

refs

β

α

β

r

r

Finally, with the (α,β) components values of the vectors given in the previous table, the
amount of times of application of each adjacent vector is:

refs
DC

refsrefs
DC

V
V

T
T

VV
V

T
T

β

βα

3

)33(
2

6

4

=

−=

T4

T
V4

α

β

θ 60°

Vsref

V4 (100)

V6 (110)

Vsαref

Vsβref

x







+=

++=

6
6

4
4

064

V
T

T
V

T

T
V

TTTT

sref

rrr

T6

T V6

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 30

The rest of the period is spent in applying the null vector. The variable T/VDC is named

VDCinvT. T is the period of the PWM interrupt and VDC is the rectified DC voltage.

To keep proportions in the software implementation, the variables VDC and VDCinvT are

expressed in P.U and in Q12 as follow:

where VDC is the DC bus voltage and vDC its correspondent PU value.

For every sector, a commutation duration is calculated. The amount of times of vector
application can all be related to the following variables:

refSDCinvT vvX β3=

SarefDCinvTrefSDCinvT vvvvY
2

3

2

3
+= β

SarefDCinvTrefSDCinvT vvvvZ
2

3

2

3
−= β

In the previous example for sector 3, T4 = -Z and T6 = X.

In order to know which of the above variable apply, the knowledge of the sector in which
the reference voltage vector is, is needed.

To determine this sector, a simple approach is to calculate the projections Va, Vb and Vc
of the reference voltage vector in the (a,b,c) plane. These projections are then compared
to 0.

The projections Va, Vb and Vc are given by the Clarke-1 transform as follow:

The complete algorithm performed by the Space Vector Module is given in the next
section.

Space Vector Algorithm

Now that the meaning of the variables has been given, the order in which the steps are
processed during the PWM interrupt is given.

)3(
2

1

)3(
2

1

refSrefSc

refSrefSb

refSa

vvv

vvv

vv

βα

βα

β

−−=

−=

=

f 4.12 81722.1
180

310
EhB

V

V
v

base

DC
DC ⇔===

Ch
v

PWMPRD

v

T
v

DCDC
DCinvT 15 348

722.1

600

2
⇔==⇔=

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 31

The first step is to determine in which sector the voltage vector defined by vSαref, vSβref is
found. The following few code lines give the sector as output:

The second step is to calculate and saturate the duration of the two sector boundary
vectors application as shown below:

The third step is to compute the three necessary duty cycles. This is shown below:

The last step is to assign the right duty cycle (txon) to the right motor phase (in other
words, to the right CMPRx) according to the sector. The table below depicts this
determination.

CB+A+

=ELSE C,= THEN CIF v

=ELSE B=THEN B IF v

=ELSE A,=THEN A IF v

c

b

a

42:=torsec

0:1:0

0:,1:0

0:1:0

iondeterminatsector

>
>

>













+=
+=

−−
=

2

1

21

2

ttt

ttt

ttPWMPRD
t

boncon

aonbon

aon

21
22

21
11

21

21

21

21

21

21

21

sSaturation

ncalculatio timesend

 6

 5

 4

 3

 2

 1

 sector

tt

PWMPRD
tt

tt

PWMPRD
t t

NPWMPRD THE)tIF (t

ZtY t

YX tt

ZX tt

XZ tt

XY tt

YZ t t

OFCASE

SAT

SAT

+
=

+
=

>+

−=−=
−==

=−=
=−=

−==
==

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 32

Figure 17. Table Assigning the Right Duty Cycle to the Right Motor Phase

tbonCMPR1

1

taonCMPR2

tconCMPR3

tbaon

2

tcon

tbon

taon

3

tbon

tcon

tcon

4

tbon

taon

tcon

5

taon

tbon

tbon

6

tcon

taon

Sector
Phase

Figure 18 shows an example of one vector that would be in sector 3.

Figure 18. Sector 3 PWM Patterns and Duty Cycles

T0/4 T6/2 T6/2 T0/4 T0/4 T6/4 T4/4 T0/4

V0 V6 V4 V7 V7 V6 V4 V0

T

t

t

t

PWM1

PWM3

PWM5

t

CMPR1

CMPR3

CMPR2

tcon

tbon

taon

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 33

Event Manager Configuration

This section describes how to program the TMS320F240 peripherals in order to handle
the space vector module.

TIMER1 is the time base of the PWM interrupts generation. It is configured in up-down
counting mode to generate the symmetrical PWM patterns. Its frequency is set at 16kHz.

PWMPRD .set 258h ;PWM Period T=2*600*50ns=60us

 splk #PWMPRD,T1PER ;Set PWM interrupt period

 splk #0,T1CNT

 splk #0A800h,T1CON ;Ignore Emulation suspend

 ;Up/Down count mode

 ;x/1 prescalar

 ;Use own TENABLE

 ;Disable Timer

 ;Internal Clock Source

 ;Reload Compare Register when T1CNT=0

 ;Disable Timer Compare operation

The Timer 1 control register T1CON is programmed in order to get a 50ns resolution : the
prescalar clock of the timer is set to 1 giving the highest possible resolution. The
individual T1 General Purpose Compare register is reloaded every PWM cycle but not
used in this application. For this reason, the General Purpose Control Register
(GPTCON) is left to its default value. In fact, the only Compare registers used are the 3
Full Compare registers associated to TIMER1.

These 3 Full Compare registers are controlled by the Compare Control register
(COMCON). This register is programmed as follow:

splk #0207h,COMCON ;Reload Full Compare when T1CNT=0

 ;Disable Space Vector

 ;Reload Full Compare Action when T1CNT=0

 ;Enable Full Compare Outputs

 ;Disable Simple Compare Outputs

 ;Select GP timer1 as time base

 ;Full Compare Units in PWM Mode

splk #8207h,COMCON ;enable compare operation

The Full Compare registers are updated at the end of the PWM interrupt routine with the
calculated values taon, tbon, tcon .

The output of the Compare operation are not directly sent to the Output Logic but are
previously passed through the PWM Deadband on-chip circuit. Depending on the power
bridge pre-driver used, the control register DBTCON has to be programmed.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 34

In this application, an IR2130 from International Rectifier has been used and no deadband
time has been programmed because this chosen pre-driver has already an internal
deadband time.

splk #0000h,DBTCON ;no dead band

Once the deadband unit has been passed, the signals are sent to the Output Logic (see
TMS320C24x Vol2 User’s Guide page 2-46) that activates the DSP PWM pins. The
polarity of the PWM pins is chosen in the Full Compare Action Control Register (ACTR)
as follow:

ldp #DP_EV

splk #0666h,ACTR ;Bits 15-12 not used, no space vector

 ;PWM compare actions

 ;PWM5/PWM6 - Active Low/Active High

 ;PWM3/PWM4 - Active Low/Active High

 ;PWM1/PWM2 - Active Low/Active High

The PWM pins are paired to control the high side and the low side of the pre-driver.

PI Regulators

The PI (Proportional-Integral) regulators are implemented with output saturation and with
integral component correction. The constants Ki, Kpi, Kcor (proportional, integral and

integral correction components) have been experimentally determined using the Graphic
User’s interface (option 5 and 6). Their theoretical determination (root locus and pole
placement) is beyond the scope of this report. For this application, the current regulator
parameters are:

Ki . 0.03ó07Ah

Kpi 0.60ó999h

Kcor . 0.05ó0cch

The speed regulators parameters are:

Kispeed 0.03ó7ah

Kpispeed 6.5ó06800h

Kcorspeed 0.0046ó12h

All constants are in Q12 format and the integral correction component is calculated by
using the formula Kcor = Ki/Kpi.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 35

Interface Modules
The interface modules are low level routines that convert real wold data into their suitable
numerical counterparts.

The interface modules described are:

r Current sensing and scaling

r Mechanical position sensing and scaling

r Electrical position and mechanical speed scaling

The Sensing modules handle directly the hardware interface and dialog via the integrated
TMS320F240 peripherals.

The Scaling modules transform the information into a fixed-point representation related to
a Per Unit model

Current Sensing Module

This module handles the conversion of the 3 stator phase currents into their basic binary
representation.

Two LEMs (current-voltage transducer) sense the phase currents. They convert the
current information into voltage information. These voltages are sampled and converted
by the TMS320F240 Analog to Digital Converter and stored in the variable ia and ib.

Hardware Solution

Figure 19 represents the hardware interface put in place to realize the described function.

Figure 19. Current Sensing Hardware

Ia

Z lem

Vlem

+15V

-15V

100R

+15V

-15V

10K 10K

10K

ADCIN0

-2.5V

Vadc

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 36

The selected ADC inputs pins are ADCIN0 for phase a and ADCIN8 for phase b. As those
pins are shared (multiplexed) with general purpose IO pins, the Output Control Register A
(OCRA) will be set up to select the ADC input functionality.

The LEM converts the current information from phase a and b into a voltage information
(Vlem)

Ia and Ib are in the range +/-10A

 A second translation is performed in two steps in order to adapt Vlem to the

TMS320F240 ADC input voltage specification:

First, a gain is applied to Vlem in order to get an intermediate voltage in the range [-2.5v ,

+2.5V]. Then, a voltage shift of 2.5V is applied to meet the [0,5V] input range of the ADC.

The voltages Vadcin0 and Vadcin8 are sample and converted by the dual 10 bit ADC.

The result of the conversion is stored in binary format in the variables ia and ib.

Sensing Scale Translation

Figure 20 represents the correspondence between the stator phase currents and their
binary representations:

Figure 20. Current Sensing Scale Translation

+10A
1024

-10A

0 A
512

0

phase current binary representation
ia, ib

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 37

Associated Low-Level Software

Initialization Module

As the TMS320F240 A-to-D converter is made of commuted capacitors, the ADC clock
has to be defined according to the global clock (CPUCLK) and divided by a factor of
prescaler.

All the internal clocks are derivated form CPUCLK and the oscillator used on the
Evaluation Module is a 10MHz one. CPUCLK of 20 MHz (50ns) is created by this
oscillator associated to the internal PLL as follows.

* Initialization of the TMS320F240 Clocks

 splk #00000010b,CKCR0;PLL disabled

 ;LowPowerMode0

 ;ACLK enabled

 ;SYSCLK 5MHz

 splk #10110001b,CKCR1;10MHz CLKIN

 ;Do not divide PLL

 ;PLL ratio x2 (CPUCLK=20MHz)

 splk #10000011b,CKCR0;PLL enabled

 ;LPM0

 ;ACLK enabled

 ;SYSCLK 10MHz

The system clock (SYSCLK) had been set to 10Mhz. Setting the prescaler to 10 gives an
ADC clock of 1 MHz. The 2-level deep FIFOs are emptied.

**

* A/D initialization

**

 ldp #DP_PF1

 splk #0003h,ADC_CNTL2;prescaler set for a 10MHz oscillator

 lacc ADC_FIFO1 ;empty FIFO

 lacc ADC_FIFO1

 lacc ADC_FIFO2

 lacc ADC_FIFO2

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 38

To select the pins ADCIN0 and ADCIN8, the internal pin multiplexer controlled by the
Output Control Register A (OCRA) is programmed as follows.

**

* Configure function of IO/MUXed shared pins

**

ldp #DP_PF2

splk #0009h,OPCRA ;ADCIN0 and ADCIN8 selected, all other are GPIO

Interrupt Module

Once that the AtoD Converter is correctly set, it will be used during every PWM interrupt
to sample and convert the stator phase currents. A conversion is done as follows.

**

* Current sampling - AD conversions

* only the 10 Least Significant bits are relevant

**

 ldp #DP_PF1

 splk #1801h,ADC_CNTL1 ;ia and ib conversion start

 ;ADCIN0 selected for ia A/D1

 ;ADCIN8 selected for ib A/D2

conversion

 bit ADC_CNTL1,8

 bcnd conversion,tc ;wait end of Conversion

 lacc ADC_FIFO1,10

 ldp #ia

 sach ia

 ldp #DP_PF1

 lacc ADC_FIFO2,10

 ldp #ib

 sach ib

The TMS320F240 integrated ADC converts simultaneously ia and ib. The result of this
conversion lays in the 10 upper bits of the ADC FIFOs. Therefore a left shift of 10 bit is
performed to obtain the result of the conversion in the upper word of the accumulator.
Care must be taken when the sign extension mode is on (SXM = 1), the FIFO values
greater than 512 (bit b15 of FIFO equal to 1) will propagate a negative sign to the upper
accumulator bits. Therefore, in the Current Scaling module, the upper bits of the
accumulator are masked to keep the binary representation of the variables as follows.

ldp #ia

 lacc ia

 and #3ffh ;mask upper bits

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 39

Adaptation to Specific Cases

In this particular application, a LEM was used to measure the phase current. A lower cost
solution would consist in a simple shunt resistor as current sensor. This possibility has
been studied in the application report [7].

Current Scaling Module

The problem is to find a scaling factor K that makes the correspondence between the
binary representation of the currents and their Q12 representation associated to the PU
model of the currents.

Scale Change

Figure 21 depicts the scale changes needed to translate the binary representation of a
current into its Per Unit Q12 representation.

Figure 21. Scaling Factor Representation

First, the binary representation of the current is modified in this module. An offset of 512
has been subtracted to contradict the analog offset of 2.5V that was previously
introduced. +10A is now represented in binary by +512 and –10A by -512.

The problem here is the opposite of the one from the Sensing module. Now, given a
binary representation of a current, the goal is to find a real number corresponding to the
Per Unit value of the current.

In other words, the aim of the translation is to find a factor K such as :

ipuQ12 = ibinary * K

For ibinary = 512, ipuQ12 = (Imax/Ibase) * 212 = 2.439*4096 = 9990

Then : K= ipuQ12 / ibinary = 9990/512 = 19.51

512

-512

0

binary representation
ia, ib

i

Current Sensing

binary

+10A

-10A

0 A

phase current p.u current p.u current in Q12

4.1A (Ibase)

÷ Ibase * 2
12

1

Current Scaling

0

2.439

-2.439

2706h
1000h

0

ipuQ12

D8FAh

*K ?

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 40

K has been determined by knowing the maximal value (10A corresponds to 512). It can
also be determined from base values as follow:

Ibase= 4.1A corresponds to the binary representation 210 (D2h)

For ibinary = 210, ipuQ12 = (Ibase/Ibase) * 212 = 4096

Then K = 4096/210 ≅ 19.51

This method will be preferred to calculate translation factors knowing the base values.

Note that K is outside the Q12 dynamic range. The most appropriate format to
accommodate this constant is the Q8 format.

In the application software, the constant K is called Kcurrent and its representation in Q8

is given by: Kcurrent = 19.51 ó1383h (Q8).

Translation Routine

The following routine performs the translation from the binary representation of the
currents into their Per Unit Q12 format.

* Sampled current scaling

*

 ldp #ia

 lacc ia

 and #3ffh ;mask upper bits

 sub #512 ;subtract the offset (2.5V) to have

 ;positive and negative values of the current

 sacl tmp

 spm 3

 lt tmp

 mpy Kcurrent

 pac

 sfr

 sfr

 sacl ia ;current ia, f 4.12 in PU

As previously mentioned, an offset of 512 is subtracted to the representation coming from
the sensing. The result of this subtraction is stored in a temporary variable called tmp.

One of the most important point is to correctly tune this subtracted offset. In the
FOCPMSM.ASM program, a SUB #440 is done instead of the SUB #512 instruction.

The next step is to multiply to multiply tmp by the scaling factor Kcurrent.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 41

The multiplication performed here is not as obvious as in base 10 representation of
numbers. The problem is that the DSP is not able to perform directly the multiplication of
a binary by a real number (19.51) as it is a fixed-point device.

The real operation performed is to multiply tmp by the Q8 fixed-point representation of
Kcurrent.

For example, when the binary number tmp is 210 (corresponding to the nominal current),
the multiplication in base 10 would be:

210 * 19.51 ≈ 4097 (0x1001h) represents 1 in Q12 format

As it is not possible to multiply directly by 19.51, the real multiplication performed is:

210* (19.51*28) = 210 * 4994

The last operation is to retrieve the value of ipuQ12 from this multiplication. To do so, the

result of the multiplication is right shifted eight times which corresponds to a division by 28

(the instruction ”spm 3” performs 6 right shifts and two sfr complete the 2 right shifts).

Adaptation to Specific Cases

According to your specific motor characteristics (Nominal phase current) or the specific
precision wanted (Qk format), it might be necessary to adapt the Kcurrent scaling factor.

For example, if the nominal phase current of the machine is 3.6A, the base value is 5.1A
(and 261 its binary representation) then Kcurrent = 4096 / 261 = 15.69 ó 0FB1h (Q8). If

the Q12 precision doesn’t fit the user’s specific application (transient currents not greater
than two times the nominal currents), a more precise format can be chosen. For example
in the case of a 10bit ADC with a 3.6A of nominal current and a Q13 representation,
Kcurrent would be:

Kcurrent = 8192 / 210 = 39.00.

The other important point already mentioned is to tune the offset of the current
measurement. You must adjust this offset to obtain sinusoidal stator currents. If the stator
currents are wrongly interpreted in the software, the performance of the drive will be poor.

Mechanical Position Sensing and Scaling Module

This module converts the number of pulses sent by the incremental encoder into an
absolute mechanical position of the rotor shaft. The absolute mechanical position will be
stored in the variable θm. It is possible to obtain an absolute mechanical position with the

incremental encoder by physically locking the rotor in a known position. This stall is done
in the start-up procedure. A zero is written in the encoder counter register thereby
referencing the mechanical position to the locked position.

The number of encoder pulses detected between two PWM period is stored in the
variable called “encincr”. These variables will be used afterwards to determine the
electrical position of the rotor and the mechanical speed of the rotor in dedicated scaling
modules.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 42

Hardware Solution

The photo sensors of the encoder (Figure 22) are activated by the light of an internal LED.
When the light is hidden, the sensor sends a logical “0”. When the light passes through
one of the 1024 slots of the encoder, a logical “1” is sent. Two photo sendlogical
information on Channel A and Channel B. The TMS320F240 on-chip QEP (Quadrature
Encoder Pulse) detects the rising and falling edges of both channels. The count of the
edges detected by the QEP is stored in the counter T3CNT. This counter is in fact related
to the timer T3 that is automatically clocked by the QEP pulses when the QEP mode is
selected.

Figure 22. Incremental Optical Encoder

The embedded encoder of this application generates 1024 pulses per mechanical
revolution. Every slot generates 4 edges : 1 rising and 1 falling edge for both channels A
and B. These edges are detected by the QEP, meaning that 4096 edges are detected per
mechanical revolution. The QEP detects also the sense of rotation of the rotor shaft
depending on the leading sequence (if Channel A signal are in advance or delayed
compared to Channel B).

The number of edges is stored in T3CNT. Depending on the sense of revolution, T3CNT
is incremented or decremented. Once that the QEP mode is selected, the Timer T3 wraps
automatically around a period of FFFFh.

sensor

slots

led

A

B

2

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 43

Sensing Scale Translation

The relative mechanical angular displacement calculated between two sampling period is

equal to °
∆

=∆ 360*
)-T3CNT(t-T3CNT(t)

EncPulses

t
mθ , where Encpulses is here equal to

4096.

Accordingly, the absolute mechanical position is computed every sampling period as
follow:

θm(t)=θm(t-∆t)+∆θm

It has been chosen here to represent 360° mechanical by 1000h (EncPulses). The above
equation is then simplified:

θm(t)=θmold+encincr

with encincr = T3CNT(t)-encoderold and encoderold=T3CNT(t-∆t).

A software rollover is also foreseen in case that the calculated angle exceeds 360°.

This sensing scale translation can be represented by the following diagram:

Figure 23. Sensing Scale

time
PWM
interrupt

3h

(1)000h
1h

2h

0FFFh

0FFEh

t0: T3CNT=0

t1: T3CNT=08ECh

t2: T3CNT=0CFFh

t3: T3CNT=1132h

QEP pulses
detected

mechanical angular position
of the rotor

θm(t0) 0°mechanical

360°mechanical

200°mechanicalθm(t1)

292°mechanicalθm(t2)

27°mechanicalθm(t3)

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 44

Associated low-level software routines

Initialization module

Both Timer3 Control register (T3CON) and Capture Unit Control register (CAPCON) are
configured to enable the QEP functionality:

**

* QEP initialization

**

 ldp #DP_EV

 splk #0000h,T3CNT ;reset counter register

 splk #0ffffh,T3PER ;configure period register

 splk #9870h,T3CON ;configure for QEP and enable Timer T3

 splk #0E2F0h,CAPCON ;T3 is selected as Time base for QEP

As the QEP pins are also shared with capture pins, it is necessary to set up the output
control register (OCRB) to enable the QEP pins:

splk #0038h,OPCRB ;QEP pins selected and IOPC3

Interrupt Module

The following variables are used in the interrupt module:

r encincr : increment of T3CNT between two PWM interrupts

r θm : absolute mechanical position

r encoderold : last T3CNT value

r Encpulses : This constant is equal to four times the number of encoder
pulses/mechanical rotation.

*** Encoder pulses reading

 ldp #DP_EV

 lacc T3CNT ;read the encoder pulses

; neg ; if the encoder channels are plugged in the
 ; negative counting direction;

 ldp #ia

 sacl tmp

 subs encoderold ;increment T3CNT(k)-T3CNT(k-1)

 sacl encincr

 add teta_m ;old mechanical position

 sacl teta_m ;new one

 sub #Encpulses ;soft rollover

 bcnd encminmax,LT ;

 sacl teta_m

encminmax

 lacc tmp

 sacl encoderold ;for next PWM ISR

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 45

In the above code, a software rollover is performed when the new position is greater than
Encpulses to keep the value of θm in the range [0;1000h]. Notice that no software

detection of the sense of rotation has been implemented. Depending on how the user
wraps his two wires to the QEP inputs, a NEG instruction has to be added in order to get
a positive increment in T3CNT.

Adaptation to Specific Cases

In this particular application, a 1024 incremental encoder was used to measure position
and speed of the rotor. In the case of an encoder with a different resolution, the
modifications are: change the value of the variable Encpulses and adapt the
representation of 360 mechanical degrees.

As previously mentioned, the user will have to add the NEG instruction, depending on
how the channel A and B wires are connected to the QEP input pins.

Electrical Position Scaling Module

This module makes the correspondence between the relative mechanical position and the
relative electrical position of the rotor.

Scale Change

Figure 24. Electrical Position Scaling

The aim of the translation is to find a scaling factor K such as K*θm = θe

Given the relationship θ e = θ m* p (p is the number of pole pair), we obtain K=3 for a

three pole pairs motor. In this application, K is called Kencoder.

mechanical angular position
of the rotor

0°mechanical

360°mechanical

120°mechanical

240°mechanical

electrical angular position
of the rotor

0°electrical

360°electrical

360°electrical

360°electrical

θm θe

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 46

Translation Routine

The following routine performs the translation from the mechanical position to the
electrical.

* Teta calculation

 lt teta_m ;multiply mechanical pos by Kencoder

 mpyu Kencoder

 pac

 and #0fffh

 sacl teta_e

The result of the multiplication is masked in order to have a software rollover of the
electrical position when this position completed 360 electrical degrees.

Adaptation to Specific Cases

According to the Number of pole pairs of the motor, it might be necessary to adapt the
Kencoder coefficient as follow : Kencoder=p where p is the number of pole pairs.

Mechanical Speed Scaling Module

This section presents how to relate the increment of QEP pulses that appear between two
speed sampling period to the Q12 representation of the mechanical speed associated its
PU model.

The mechanical speed is computed periodically to provide a feedback to the PI speed
regulator. The update of the speed information is not as critical as the update of the
currents. The reason is that the mechanical response time constant of the system is very
slow compared to the electrical one. Therefore, the mechanical speed is updated on a
lower time base than the electrical quantities (updated every PWM interrupt).

A software counter called speedstep is incremented by one every PWM interrupt. Once it
has reached its period value SPEEDSTEP, the calculation of the mechanical speed is
done, taking into account the number of QEP pulses received from the last speed
computation.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 47

Scale Change

Figure 25. Mechanical Speed Scale

The aim of the translation is to find K such as

K*speedtmp = npuQ12

With: ∑
=

=

=
SPEEDSTEPk

k

kencincrspeedtmp
0

When the software counter reaches its period called SPEEDSTEP (SPEEDSTEP=28),
the time elapsed is 1.68 ms (28*60us).

Base speed nbase is 3000rpm ó50 mechanical revolutions per second

At base speed, the number of pulses counted by the QEP per second is 50 * 4096 =

204800 pulses. It means that speedtmp =204800*1.68*10-3 = 344 pulses

Then:

K= 4096/344 = 11.9069 ó BE7h in 8.8f

In this application the coefficient K is called Kspeed.

time
PWM
interrupt

t0

t1

t2

t3

QEP pulses

..

.
t27

encincr0

encincr1

encincr2

mechanical speed
of the rotor NpuQ12

0 rpm 0h

1000h(3000 rpm)

number of pulses
counted

0

speedtmp
npuQ12

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 48

Translation Routine

* Calculate speed and update reference speed variables

 lacc speedstep ;are we in speed control loop ?

 sub #1 ;

 sacl speedstep ;

 bcnd nocalc,GT ;if we aren't, skip speed calculation

*** Speed calculation from encoder pulses

 lt speedtmp ;multiply encoder pulses by Kspeed

 ;(8.8 format constant) to have the value

;of speed

 mpy #Kspeed ;

 pac ;

 rpt #7 ;

 sfr ;

 sacl n ; n in PU Q12

 lacc #0 ;zero speedtmp for next calculation

 sacl speedtmp ;

 lacc #SPEEDSTEP ;restore speedstep to the value

 ;SPEEDSTEP

 sacl speedstep ;for next speed control loop

The result is stored in Q12 and is related to the PU model value of 3000rpm.

Adaptation to Specific Cases

According to your specific motor characteristics (Nominal Speed) and the specific speed
sensing hardware (Encoder resolution), it might be necessary to adapt the Kspeed
coefficient.

For instance, in the case of a motor with a nominal speed of 1000 rpm, we would obtain
the following Kspeed:

Kspeed = 4096 / (16,66*4096*1.68*10-3) = 35.61

If the encoder resolution is 1000 pulses per revolution, we would obtain a new Kspeed

such as: Kspeed = 4096 / (50*4000**10-3) = 12.19

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 49

Experimental Results
The motor has been mounted on a test bench with adjustable resistive torque in order to
test the behavior of the drive in different configurations.

The DACs of the EVM are 12bit Digital to Analog converters. They have been used to
output the evolution of the variables chosen by the user via the Graphic Interface. The
DACs output are updated at the end of every PWM interrupt.

A written value of 0FFFh (4095) represents the maximal output voltage of +5V. The value
0800h is added in the assembly code to the outputted variables to provide a virtual ground
at +2.5V in order to visualize positive and negative values.

Figure 26 shows the current in the stator phase A at start of rotation of the rotor. The left
side of the figure is given without resistive torque applied whereas the right side of the
figure is given with a resistive torque of 1Nm.

Figure 26. Transient Stator Phase A Current

Ch4: stator phase current ia

In Figure 26, it can be seen that the rotor has been first stalled by applying a constant
stator reference current vector. The electrical angle chosen for this reference vector is
–90 electrical degrees which corresponds physically to apply all the current to the stator
phase a. The two other phases are the return paths for this current.

In this stalled mode, it can be seen that the current is correctly regulated to the nominal
value, meaning that the fed current is controlled in amplitude. This control of the phase
currents prevent the motor from heating.

Once the motion is started, the current fed to the phases depends on the resistive torque
load applied to the rotor. In the case of no resistive torque, the steady-state currents are
quasi null. In the case of the maximal resistive torque applied (2.2 Nm), the steady-state
currents in the phases are equal to the nominal current (4.1A).

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 50

Figure 27. Transient Currents isd, isq at Start

Ch1: isq : current vector q projection (torque control)

Ch2: isd : current vector d projection (rotor flux control)

Ch4: ic : real stator phase c current

Figure 27 shows the behavior of the calculated current projections at start. The reference
speed is set to 500 rpm and no resistive torque is applied. The isd and isq projections are

outputted on the DAC and their values are updated every PWM interrupt.

Current spikes appear in the picture. These spikes are due to the +90 electrical degrees
shift of the stator current vector. The currents in the coils do not disappear instantaneously
due to the electrical time constant of the motor. A certain amount of time is necessary to
apply a new stator current vector that is +90° apart from the initial one. The isd and isq
current regulators act to reduce the error between the projections and the reference
currents.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 51

Figure 28. Speed Transient from 0 to 1000 rpm

Figure 28 shows the behavior of the stator currents at start with a resistive torque load of
1 Nm.

Ch1 : n : mechanical speed Ch1 : isq : torque control component

Ch2 : ib stator phase current Ch2 : ib stator phase current

Ch4 : ia stator phase current Ch4 : ia stator phase current

It can be seen that when the motion starts, the torque control component isq is equal to

the maximal authorized value. This maximal value is controlled by the isq PI current

regulator and is equal to 1.1 of the PU model (10% more than the current base value is
authorized). The amplitude of the stator phase currents are by the way always under
control.

Table 4 relates the behavior of the motor under different loads at 500rpm and Table 5 at
1500rpm.

Table 4. Motor at 500 rpm

Torque Nm 0.1 0.5 1 1.5 2 2.2 2.3

Power W 5 25 50 76 102 113 119

The progression of the ratio power/torque is linear until the nominal torque. With a torque
exceeding the nominal torque, the motor stalls.

Table 5. Motor at 1500 rpm

Torque Nm 0.1 0.5 1 1.5 2 2.2 2.3

Power W 15 78 157 234 311 344 358

The progression of the ratio power/torque is also linear until the nominal torque. At
nominal speed (3000rpm) the maximal power reached was 640W under nominal torque
(2.2Nm).

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 52

User Interface
This section presents the screen picture that has been used as user interface. The
corresponding Quick Basic program and the assembly communication software are given
in Appendix. Below is a copy of the screen picture.

The top part of the Interface is dedicated to the six possible user commands.

r Selection of the mechanical speed reference <1>

r Selection of the outputted variables on the four DACS <2>

r Start the motion <3>

r Select the DC bus voltage (not used)

r Adjust the PI current controllers experimentally

r Adjust the PI speed controllers experimentally

The bottom part of the Interface corresponds to the choice of the variables to be outputted
by the on-board 4 DACs. The DACs will output the real-time values of the variables every
PWM interrupts. This feature is very useful during debugging or benchmarking phases.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 53

Software Modularity
In this report, the software modules have been divided into blocks of codes that can be
tuned individually. In order to ease the debug phase and individual module benchmarks,
software switches have been added into the FOC algorithm. These switches consist of
conditionnal assembly statements and thus induce no overhead in the execution time of
the program.

The list of the individual module switches is given below:

*** Software switches ***

interrupt_module .set 1

current_sensing .set 1

current_scaling .set 1

clarke .set 1

park .set 1

inv_park .set 1

isq_regulator .set 1

isd_regulator .set 1

speed_regulator .set 1

svpwm .set 1

sine_table .set 1

position_sensing .set 1

position_scaling .set 1

speed_scaling .set 1

virtual_menu .set 1

You can then select specific parts of the code to be assembled for test. When the switch
is set to 0, the assembler doesn’t take into account the block of code comprised between
the .if switch and .endif statements. Therefore, the ADC conversion can be tested or the
Space Vector Modulation without having to test the rest of the algorithm.

A special switch has been defined in order to allow the user to run the program without
having to use the Graphical User Interface. This switch is called “virtual_menu”.

When virtual_menu is set to 0, a magnetic stall is performed until a software counter is
decremented to 0 (stall_timer1, stall_timer2), then the motor is started with its nominal
speed reference (3000 rpm).

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 54

Conclusion
The FOC control routine takes an average of 27.5 us for execution. The amount of
program memory used for the whole program is lower than 1Kword. More details are
given in the following tables:

The amount of memory used by this application is given in the following table:

Program Memory Used Data Memory Used

Flash : 988 words (of the 16K) B0 : 69 words (of the 256 available)

B1 : 256 words (of 256)

B2 : 25 words (of 32)

The timing benchmarks for the modules are given below:

Software Module CPU cycles Time

Current sensing 151 7.55 us

Current scaling 31 1.55 us

Park transform 9 0.45 us

Clarke transform 14 0.7 us

Clarke-1 transform 14 0.7 us

Motion sensing 19 0.95 us

Sine, Cosine calculation 32 1.6 us

Regulators (d,q, speed) 34 * 3 5.1 us

Space Vector PWM 166 8.3 us

TOTAL 538 26.9 us

The conversion time of the TMS320F240 is about 6.6 us (ia and ib are converted

simultaneously). The new family of DSPs (TMS320F241, F243) have faster ADCs with
850ns conversion time for each current phase (1.7us to convert ia and ib).

It has been shown that the Field Oriented Control is a powerful algorithm that enables a
real time control of the torque without ripples and stator phase currents amplitudes are
always under control. The space vector algorithm is especially suited to generate the
voltage references in co-ordination with the FOC.

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 55

References

1. Texas Instruments, Field Orientated Control of Three phase AC-motors,
(BPRA073), December 1997.

2. Texas Instruments, DSP Solution for Permanent Magnet Synchronous Motor,
(BPRA044), Nov. 1996.

3. Texas Instruments, Clarke & Park Transforms on the TMS320C2xx, (BPRA048),
Nov. 1996.

4. T.J.E. Miller, Brushless Permanent-Magnet and Reluctance Motor Drives, Oxford
Science Publications, ISBN 0-19-859369-4.

5. Riccardo Di Gabriele, Controllo vettoriale di velocità di un motore asincrono
mediante il Filtro di Kalman Esteso, Tesi di Laurea, Università degli Studi di
L’Aquila, Anno Accademico 1996-97

6. Roberto Petrella, Progettazione e sviluppo di un sistema digitale basato su DSP e
PLD per applicazione negli azionamenti elettrici, Tesi di Laurea, Università degli
Studi di L’Aquila, Anno Accademico 1995-96

7. Texas Instruments, 3-phase Current Measurements using a Single Line Resistor
on the TMS320F240 DSP, (BPRA077), May 1998.

8. Guy Grellet, Guy Clerc, Actionneurs electriques, Eyrolles, Nov 1996.

9. Jean Bonal, Entrainements electriques a vitesse variable, Lavoisier, Jan 1997.

10. Philippe Barret, Regimes transitoires des machines tournantes electriques,
Eyrolles, Fev. 1987

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 56

Software Variables
The following list shows the different variables used in this control software and in the equations and
schemes presented here.

ia, ib, ic stator phase currents

isα, isβ stator current (α,β) components

isd, isq stator current flux & torque components

isdref, isqref flux and torque command

θe rotor flux electrical position

θm rotor flux mechanical position

Vsdref, Vsqref (d,q) components of the reference stator voltage

Vsαref, Vsβref (α,β) components of the stator reference voltage

VDC DC bus voltage

VDCinvT constant using in the SVPWM

Va, Vb, Vc (a,b,c,) components of the stator reference voltage

sector sector variable used in SVPWM

t1, t2 time vector application in SVPWM

taon, tbon, tcon PWM commutation instant

X, Y, Z SVPWM variables

n, nref speed and speed reference

isqrefmin, isqrefmax speed regulator output limitation

Vmin, Vmax d,q current regulator output limitation

Ki, Kpi, Kcor current regulator parameters

Kispeed, Kpispeed,

 Kcorspeed speed regulator parameters

xid, xiq, xispeed regulator integral components

epid, epiq, epispeed d,q-axis, speed regulator errors

Kspeed 4.12 speed formatting constant

Kcurrent 4.12 current formatting constant

Kencoder 4.12 encoder formatting constant

SPEEDSTEP speed loop period

speedstep speed loop counter

encincr encoder pulses storing variable

speedtmp occurred pulses in SPEEDSTEP

sin, cos sine and cosine of the rotor flux position

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 57

Appendix A. TMS320F240 FOC Software

**
* TEXAS INSTRUMENTS *
* Implementation of a Speed Field Orientated Control*
* of 3phase PMSM motor using the TMS320F240 *
* *
**
* File Name: focpmsm.asm *
* Originator: Erwan SIMON *
* Description: PMSM Speed field oriented control *
* DSP development platform : TI TMS320F240 Evaluation Module *
* Power board : IR2130 demo board *
* Motor : Digiplan MD3450 *
* *
* Last modified: 28/07/1999 *
**
* Auxiliary Register used *
* ar4 pointer for context save stack *
* ar5 used as general purpose table pointer *
**

 .include ".\c240app.h"

**
* Interrupt vector table *
**

.global _c_int0

 .sect "vectors"
 b _c_int0 ;reset vector
_c_int1 b _c_int1
 b _c_int2 ; PWM interrupt handler

stack .usect "blockb2",15 ;space for ISR indirect context save
dac_val .usect "blockb2",5 ;space for dac values in Page 0

 .sect "table"
sintab .include sine.tab
 ;sine wave look-up table for sine and cosine waves generation
 ;4.12 format

**
* Variables and constants initializations
**
 .data
*** current sampling constants
Kcurrent .word 01383h ;8.8 format (*19.5) sampled currents normalization
constant
 ;ADCIN0 (ia current sampling)
 ;ADCIN8 (ib current sampling)
*** axis transformation constants
SQRT3inv .word 093dh ;1/SQRT(3) 4.12 format
SQRT32 .word 0ddbh ;SQRT(3)/2 4.12 format

*** PWM modulation constants
 .bss _v_meas,1
PWMPRD .set 258h ;PWM Period=2*600 -> Tc=2*600*50ns=60us (50ns
 ; resolution)
Tonmax .set 0 ;minimum PWM duty cycle
MAXDUTY .set PWMPRD-2*Tonmax ;maximum utilization of the inverter

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 58

*** PI current regulators parameters
Ki .word 07Ah ;4.12 format = 0.03
Kpi .word 999h ;4.12 format = 0.60 (include period)
Kcor .word 0cch ;4.12 format = 0.05
 ;Kcor = Ki/Kpi
*** PI speed regulators parameters
Kispeed .word 7ah ;4.12 format = 0.03
Kpispeed .word 06800h ;4.12 format = 6.5
Kcorspeed .word 12h ;4.12 format = 0.0046

*** Vqr and Vdr limitations
Vbase .set 01000h ;BEMF at base speed
Vmin .set 0ec00h ;4.12 format = -1.25 pu
Vmax .set 01400h ;4.12 format = 1.25 pu

*** Is and Idr limitations
ismax .word 01199h ;4.12 format = 4.51A Inominal+10%,
iSdrefmin .set 0ee67h ;4.12 format = -4.51A (1000h = Ibase)
iSdrefmax .set 00000h ;4.12 format = 0A (1000h = Ibase)
zero .word 0h

*** Initialization phase Iqr
iSqrefinit .set 01000h ;4.12 format = 4.1A (1000h = Ibase)

*** Encoder variables and constants
Kencoder .word 3
 ;this constant is used to convert encoder pulses
 ;[0;4095] to an electric angle [0;360]=[0000h;1000h]
Encpulses .set 4096 ;number of encoder pulses per mechanical
 ;revolution

*** Speed and estimated speed calculation constants
Nbase .set 1000h ;Base speed
Kspeed .set 0be7h ;used to convert encoder pulses to a speed value
 ;8.8 format = 11.9 (see manual for details about
 ;this constant calculation)
 ;base speed 3000rpm, PWMPR 258h
SPEEDSTEP set 28 ;speed sampling period = current sampling period * 40

*** Speed and estimated speed calculation constants
 .bss tmp,1 ;temporary variable (to use in ISR only !!!)
 .bss option,1 ;virtual menu option number
 .bss daout,1 ;address of the variable to send to the DACs
 .bss daouttmp,1 ;value to send to the DACs

*** DAC displaying table starts here
 .bss ia,1 ;phase current ia
 .bss ib,1 ;phase current ib
 .bss ic,1 ;phase current ic
 .bss Ua,1 ; (not used)
 .bss Ub,1 ; (not used)
 .bss Uc,1 ; (not used)
 .bss sin,1 ;generated sine wave value
 .bss t1,1 ;SVPWM T1 (see SV PWM references for details)
 .bss t2,1 ;SVPWM T2 (see SV PWM references for details)
 .bss cos,1 ;generated cosine wave value
 .bss Va,1 ;Phase 1 voltage for sector calculation
 .bss Vb,1 ;Phase 2 voltage for sector calculation
 .bss Vc,1 ;Phase 3 voltage for sector calculation
 .bss VDC,1 ;DC Bus Voltage
 .bss taon,1 ;PWM commutation instant phase 1
 .bss tbon,1 ;PWM commutation instant phase 2
 .bss tcon,1 ;PWM commutation instant phase 3
 .bss teta_e,1 ;rotor electrical position in the range [0;1000h]
 ;4.12 format = [0;360] degrees

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 59

 .bss iSalfa,1 ;alfa-axis current
 .bss iSbeta,1 ;beta-axis current
 .bss vSal_ref,1 ;alfa-axis reference voltage
 .bss vSbe_ref,1 ;beta-axis reference voltage
 .bss iSdref,1 ;d-axis reference current
 .bss iSqref,1 ;q-axis reference current
 .bss iSd,1 ;d-axis current
 .bss iSq,1 ;q-axis current
 .bss vSdref,1 ;d-axis reference voltage
 .bss vSqref,1 ;q-axis reference voltage
 .bss epiq,1 ;q-axis current regulator error
 .bss epid,1 ;d-axis current regulator error
 .bss xiq,1 ;q-axis current regulator integral component
 .bss xid,1 ;d-axis current regulator integral component
 .bss n,1 ;speed
 .bss n_ref,1 ;speed reference
 .bss epispeed,1 ;speed error (used in speed regulator)
 .bss xispeed,1 ;speed regulator integral component
 .bss X,1 ;SVPWM variable
 .bss Y,1 ;SVPWM variable
 .bss Z,1 ;SVPWM variable
 .bss sectordisp,1 ;SVPWM sector for display
 .bss initphase,1 ;flag for initialization phase
 .bss teta_m,1
 .bss Vr,1 ;(not used)
 .bss iSqrefmin,1 ;iSq min limitation
 .bss iSqrefmax,1 ;iSq max limitation
*** END DAC displaying table

 .bss sector,1 ;SVPWM sector
 .bss serialtmp,1 ;serial communication temporary variable
 .bss da1,1 ;DAC displaying table offset for DAC1
 .bss da2,1 ;DAC displaying table offset for DAC2
 .bss da3,1 ;DAC displaying table offset for DAC3
 .bss da4,1 ;DAC displaying table offset for DAC4
 .bss VDCinvT,1 ;used in SVPWM
 .bss index,1 ;pointer used to access sine look-up table
 .bss upi,1 ;PI regulators (current and speed) output
 .bss elpi,1 ;PI regulators (current and speed) limitation error

 .bss tmp1,1 ;tmp word
 .bss accb,2 ;2 words buffer
 .bss acc_tmp,2 ;2 words to allow swapping of ACC

 .bss encoderold,1 ;encoder pulses value stored in the previous
 ;sampling period
 .bss encincr,1 ;encoder pulses increment between two
 ;consecutive sampling periods
 .bss speedtmp,1 ;used to accumulate encoder pulses increments
 ;(to calculate the speed each speed sampling period)
 .bss speedstep,1 ;sampling periods down counter used to
 ;define speed
 ;sampling period
*** END Variables and constants initializations

*** Software switches ***
interrupt_module .set 1
current_sensing .set 1
current_scaling .set 1
clarke .set 1
park .set 1
inv_park .set 1
isq_regulator .set 1
isd_regulator .set 1

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 60

speed_regulator .set 1
svpwm .set 1
sine_table .set 1
position_sensing .set 1
position_scaling .set 1
speed_scaling .set 1

virtual_menu .set 1

 .bss stall_timer1,1
 .bss stall_timer2,1
 .text
**
* Initialisation Module *
**

_c_int0:

* C2xx core general settings

 clrc CNF ;set Block B0 as Data RAM (default)
 setc OVM ;saturate when overflow
 spm 0 ;no accumulator shift after multiplication
 setc sxm ;sign extension mode on
**
* Initialize ar4 as the stack for context save
* space reserved: DARAM B2 60h-80h (page 0)
**
 lar ar4,#79h
 lar ar5,#60h
**
* Disable the watchdog timer *
**
 ldp #DP_PF1
 splk #006Fh, WD_CNTL
 splk #05555h, WD_KEY
 splk #0AAAAh, WD_KEY
 splk #006Fh, WD_CNTL

* Initialization of the TMS320F240 Clocks

 splk #00000010b,CKCR0;PLL disabled
 ;LowPowerMode0
 ;ACLK enabled
 ;SYSCLK 5MHz
 splk #10110001b,CKCR1;10MHz CLKIN
 ;Do not divide PLL
 ;PLL ratio x2 (CPUCLK=20MHz)
 splk #10000011b,CKCR0;PLL enabled
 ;LPM0
 ;ACLK enabled
 ;SYSCLK 10MHz
 splk #40C0h,SYSCR ;Set up CLKOUT to be SYSCLK

* F240 specific control register settings

 ; reset system control register
 lacc SYSSR
 and #69FFh
 sacl SYSSR
**
* A/D initialization
**
 splk #0003h,ADC_CNTL2;prescaler set for a 10MHz oscillator
 lacc ADC_FIFO1 ;empty FIFO

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 61

 lacc ADC_FIFO1
 lacc ADC_FIFO2
 lacc ADC_FIFO2
**
* Serial communication initialization
**
 splk #00010111b,SCICCR ;one stop bit, no parity, 8bits
 splk #0013h,SCICTL1 ;enable RX, TX, clk
 splk #0000h,SCICTL2 ;disable SCI interrupts
 splk #0000h,SCIHBAUD ;MSB |
 splk #0082h,SCILBAUD ;LSB |9600 Baud for sysclk 10MHz
 splk #0022h,SCIPC2 ;I/O setting
 splk #0033h,SCICTL1 ;end initialization

**
* PWM Channel enable
* 74HC541 chip enable connected to IOPC3 of Digital input/output
**
 ; Configure IO\function MUXing of pins
 ldp #DP_PF2 ;Enable Power Security Function
 splk #0009h,OPCRA ;Ports A/B all IO except ADCs
 splk #0038h,OPCRB ;Port C as non IO function except IOPC0&3
 splk #0FF08h,PCDATDIR;bit IOPC3

**
* Incremental encoder initialization
**
 ldp #DP_EV
 splk #0000h,T3CNT ;configure counter register
 splk #0ffffh,T3PER ;configure period register
 splk #9870h,T3CON ;configure for QEP and enable Timer T3
 splk #0E2F0h,CAPCON ;T3 is selected as Time base for QEP
**
* Wait state generator init
**
 ldp #ia
 splk #04h,tmp
 out tmp,WSGR

* Variables initialization
**
 ldp #ia
 lacc ismax
 sacl iSqrefmax
 neg
 sacl iSqrefmin
 zac
 sacl iSqref
 sacl iSdref
 sacl n_ref
 sacl iSdref
 sacl index
 sacl xid
 sacl xiq
 sacl xispeed
 sacl upi
 sacl elpi
 sacl Va
 sacl Vb
 sacl Vc
 sacl initphase
 sacl da1
 lacc #1
 sacl da2
 lacc #2

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 62

 sacl da3
 lacc #3
 sacl da4
 splk #015Ch,VDCinvT

 splk #07FFFh,stall_timer1
 splk #07FFFh,stall_timer2

* Event manager settings

 ldp #DP_EV
 splk #0666h,ACTR ;Bits 15-12 not used, no space vector
 ;PWM compare actions
 ;PWM5/PWM6 - Active Low/Active High
 ;PWM3/PWM4 - Active Low/Active High
 ;PWM1/PWM2 - Active Low/Active High
 splk #300,CMPR1 ;no current sent to the motor
 splk #300,CMPR2
 splk #300,CMPR3
 splk #0000h,DBTCON ;no dead band
 splk #0207h,COMCON ;Reload Full Compare when T1CNT=0
 ;Disable Space Vector
 ;Reload Full Compare Action when T1CNT=0
 ;Enable Full Compare Outputs
 ;Disable Simple Compare Outputs
 ;Select GP timer1 as time base
 ;Full Compare Units in PWM Mode
 splk #8207h,COMCON ;enable compare operation

 splk #PWMPRD,T1PER ;Set PWM interrupt period
 splk #0,T1CNT
 splk #0A800h,T1CON ;Ignore Emulation suspend
 ;Up/Down count mode
 ;x/1 prescalar
 ;Use own TENABLE
 ;Disable Timer
 ;Internal Clock Source
 ;Reload Compare Register when T1CNT=0
 ;Disable Timer Compare operation
 ; Enable Timer 1 operation
 lacc T1CON
 or #40h
 sacl T1CON

**
* Enable PWM control Interrupt
**
 ; Clear EV IFR and IMR regs
 splk #07FFh,IFRA
 splk #00FFh,IFRB
 splk #000Fh,IFRC

 ; Enable T1 Underflow Int
 splk #0200h,IMRA
 splk #0000h,IMRB
 splk #0000h,IMRC

 ;Set IMR for INT2
 ldp #0h
 lacc #0FFh
 sacl IFR ;clear interrupt flags
 lacc #0000010b
 sacl IMR
 clrc INTM ;enable all interrupts

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 63

 b menu ;branch to menu loop

* _c_int2 Interrupt Service Routine
* synchronization of the control algorithm with the PWM
* underflow interrupt

_c_int2:

* Context Saving

 mar *,ar4 ;AR4 active auxiliary reg (stack pointer)
 mar *-
 sst #1,*- ;save status register 1
 sst #0,*- ;save status register 0
 sach *- ;save MS word of accu
 sacl *- ;save LS word of accu
* END Context Saving *
 mar *,ar5 ;AR5 active auxiliary reg
 ldp #DP_EV ;DP points to Event Manager control reg page
 lacc IVRA ;read the interrupt vector

.if interrupt_module

ControlRoutine

.if current_sensing
**
* Current sampling - AD conversions
* N.B. we will have to take only 10 bit (LSB)
**
 ldp #DP_PF1
 splk #1801h,ADC_CNTL1;ia and ib conversion start
 ;ADCIN0 selected for ia A/D1
 ;ADCIN8 selected for ib A/D2
conversion
 bit ADC_CNTL1,8
 bcnd conversion,tc ;wait approximatly 6us
 lacc ADC_FIFO1,10
 ldp #ia
 sach ia
 ldp #DP_PF1
 lacc ADC_FIFO2,10
 ldp #ib
 sach ib
 .endif

*** Initialization phase
 lacl initphase ;are we in initialization phase ?
 bcnd Run,NEQ
 lacc #0fc00h ;if yes, set teta = 0fc00h 4.12 format = -90
 ; degrees
 ;(align rotor with phase 1 flux)
 sacl teta_e ;
 lacc #iSqrefinit ;q-axis reference current = initialization
 ;q-axis reference current
 sacl iSqref ;
 lacc #0 ;zero some variables and flags
 sacl iSdref ;
 sacl teta_m ;
 sacl encoderold ;
 sacl n ;
 sacl speedtmp ;
 lacc #SPEEDSTEP ;restore speedstep to the value SPEEDSTEP

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 64

 ; for next speed
 ;control loop
 sacl speedstep ;
 ldp #DP_EV
 splk #0,T3CNT ;zero Incremental Encoder value if
 ;initialization step
 ldp #initphase
 b Init ;there is no need to do position and
 ;calculation
 ;in initialization phase (the rotor is locked)

Run
.if position_sensing

*** Encoder pulses reading
 ldp #DP_EV
 lacc T3CNT ;we read the encoder pulses and ...
 neg ;encoder plug in the opposite direction ?
 ldp #ia
 sacl tmp
 sub encoderold ;subtract the previous sampling period value
 ;to have the increment that we'll
 ;accumulate in encoder
 sacl encincr ;
 add teta_m ;
 bcnd encmagzero,GT,EQ;here we start to normalize teta_m
 ; value to the range [0;Encpulses-1]
 add #Encpulses ;the value of teta_m could be negative
 ;it depends on the rotating direction
 ;(depends on motor windings
 ;to PWM Channels connections)
encmagzero
 sacl teta_m ;now teta_m value is positive but could be
 ;greater than Encpulses-1
 sub #Encpulses ;we subtract Encpulses and we check whether
 ;the difference is negative. If it is we
 ;already have the right value in teta_m
 bcnd encminmax,LT ;
 sacl teta_m ;otherwise the value of teta_m is greater
 ;than Encpulses and so we have to store the
encminmax ;right value ok, now teta_m contains the
 ; right value in the range
 lacc tmp ;[0,Encpulses-1]
 ;the actual value will be the old one during
 ; the next sampling period
 sacl encoderold
 .endif

 .if position_scaling

* Teta calculation

 lt teta_m ;multiply teta_m pulses by Kencoder (4.12
 ;format constant) to have the rotor
 ;electrical position
 mpyu Kencoder ;encoder pulses = 0 -> teta = 0fffh = 0 degrees
 pac ;encoder pulses = 1600 -> teta = 1fffh = 1*360
 ;encoder pulses = 3200 -> teta = 2fffh = 2*360
 and #0fffh
 sacl teta_e
 .endif

 .if speed_scaling

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 65

* Calculate speed and update reference speed variables

 lacc speedstep ;are we in speed control loop ? (SPEEDSTEP
 ;times current control loop)
 sub #1 ;
 sacl speedstep ;
 bcnd nocalc,GT ;if we aren't, skip speed calculation

*** Speed calculation from encoder pulses
 lt speedtmp ;multiply encoder pulses by Kspeed (8.8
 ; format constant)
 ;to have the value of speed
 mpy #Kspeed ;
 pac ;
 rpt #7 ;
 sfr ;
 sacl n
 lacc #0 ;zero speedtmp for next calculation
 sacl speedtmp ;
 lacc #SPEEDSTEP ;restore speedstep to the value SPEEDSTEP
 sacl speedstep ;for next speed control loop
 .endif

 .if speed_regulator

* Speed regulator with integral component correction

 lacc n_ref
 sub n
 sacl epispeed
 lacc xispeed,12
 lt epispeed
 mpy Kpispeed
 apac
 sach upi,4
 ;here start to saturate
 bit upi,0
 bcnd upimagzeros,NTC ;If value +ve branch
 lacc iSqrefmin
 sub upi
 bcnd neg_sat,GT ;if upi<iqrmin then branch to saturate
 lacc upi ;value of upi is valid
 b limiters
neg_sat
 lacc iSqrefmin ;set acc to -ve saturated value
 b limiters

upimagzeros ;Value is positive
 lacc iSqrefmax
 sub upi ;
 bcnd pos_sat,LT ;if upi>iqrmax then branch to saturate
 lacc upi ;value of upi valid
 b limiters
pos_sat
 lacc iSqrefmax ;set acc to +ve saturated value

limiters
 sacl iSqref ;Store the acc as reference value
 sub upi
 sacl elpi
 lt elpi
 mpy Kcorspeed
 pac
 lt epispeed
 mpy Kispeed

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 66

 apac
 add xispeed,12
 sach xispeed,4
 .endif

 .if speed_scaling
**
* Encoder update
**
nocalc ;branch here if we don't have to calculate
 ; the speed
 lacc speedtmp ;use the actual encoder increment to update
 ;the increments accumulator used to
 ; calculate the speed
 add encincr ;
 sacl speedtmp ;
 .endif

Init

.if current_scaling

* Sampled current scaling
* to nominal current 1000h <-> I_nominal

 ldp #ia
 lacc ia
 and #3ffh
 sub #440 ;then we have to subtract the offset (2.5V) to
 ; have positive and negative values of the
 ; sampled current
 sacl tmp
 spm 3
 lt tmp
 mpy Kcurrent
 pac
 sfr
 sfr
 sacl ia ;sampled current ia, f 4.12
 lacc ib
 and #3ffh
 sub #440
 sacl tmp
 lt tmp
 mpy Kcurrent
 pac
 sfr
 sfr
 sacl ib
 add ia
 neg
 sacl ic ;ic = -(ib+ia)
 spm 0
 .endif

 .if clarke

* (a,b,c) -> (alfa,beta) axis transformation
* iSalfa = ia
* iSbeta = (2 * ib + ia) / sqrt(3)

 lacc ia
 sacl iSalfa

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 67

 lacc ib,1 ;iSbeta = (2 * ib + ia) / sqrt(3)
 add ia
 sacl tmp
 lt tmp
 mpy SQRT3inv ;SQRT3inv = (1 / sqrt(3)) = 093dh
 ;4.12 format = 0.577350269
 pac
 sach iSbeta,4
 .endif

.if sine_table

* Sine and cosine wave calculation from
* teta values using sine look-up table

 lacc teta_e ;teta range is [0;1000h] 4.12 format = [0;360]
 ;so we have a pointer (in the range [0;0ffh])
 ;to the sine look-up table in the second and
 ;third nibble
 rpt #3
 sfr
 and #0ffh ;now ACC contains the pointer to access the table
 sacl index
 add #sintab
 sacl tmp
 lar ar5,tmp
 nop ; prevent pipeline conflict
 nop
 mar *,ar5
 lacl *
 nop
 sacl sin ;now we have sine value

 lacl index ;the same thing for cosine ... cos(teta)
 ;sin(teta+90°)
 add #040h ;90 degrees = 40h elements of the table
 and #0ffh
 sacl index ;we use the same pointer (we don't care)
 add #sintab
 sacl tmp
 lar ar5,tmp
 lacc *
 sacl cos ;now we have cosine value
 .endif

.if park

* d-axis and q-axis current calculation
* (alfa,beta) -> (d,q) axis transformation
* iSd = iSalfa * cos(teta_e) + iSbeta * sin(teta_e)
* iSq =-iSalfa * sin(teta_e) + iSbeta * cos(teta_e)

 lacc #0
 lt iSbeta ;TREG0=iSbeta
 mpy sin ;PREG=iSbeta*sin(teta_e)
 lta iSalfa ;ACC+=PREG ; TREG0=iSalfa
 mpy cos ;PREG=iSalfa*cos(teta_e)
 mpya sin ;ACC+=PREG ; PREG=iSalfa*sin(teta_e)
 sach iSd,4
 lacc #0 ;ACC=0
 lt iSbeta ;TREG0=ibeta
 mpys cos ;ACC-=(PREG=iSalfa*sin(teta_e))

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 68

 apac ;ACC+=PREG
 sach iSq,4
 .endif

.if isq_regulator
**
* q-axis current regulator with integral component correction
* (iSq,iSqref)->(vSqref)
**
iq_reg:
 lacc iSqref
 sub iSq
 sacl epiq
 lacc xiq,12
 lt epiq
 mpy Kpi
 apac
 sach upi,4

 bit upi,0
 bcnd upimagzeroq,NTC
 lacc #Vmin
 sub upi
 bcnd neg_satq,GT ;if upi<Vmin branch to saturate
 lacc upi ;value of upi is valid
 b limiterq
neg_satq
 lacc #Vmin ;set ACC to neg saturation
 b limiterq

upimagzeroq ;Value was positive
 lacc #Vmax
 sub upi ;
 bcnd pos_satq,LT ;if upi>Vmax branch to saturate
 lacc upi ;value of upi is valid
 b limiterq
pos_satq
 lacc #Vmax ;set ACC to pos saturation

limiterq
 sacl vSqref ;Save ACC as reference value
 sub upi
 sacl elpi
 lt elpi
 mpy Kcor
 pac
 lt epiq
 mpy Ki
 apac
 add xiq,12
 sach xiq,4
 .endif

.if isd_regulator
**
* d-axis current regulator with integral component correction
* (iSd,iSdref)->(vSdref)
**
 lacc iSdref
 sub iSd
 sacl epid
 lacc xid,12
 lt epid

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 69

 mpy Kpi
 apac
 sach upi,4
 bit upi,0
 bcnd upimagzerod,NTC
 lacc #Vmin
 sub upi
 bcnd neg_satd,GT ;if upi<Vmin branch to saturate
 lacc upi ;value of upi is valid
 b limiterd
neg_satd
 lacc #Vmin ;set ACC to neg saturation
 b limiterd

upimagzerod ;Value was positive
 lacc #Vmax
 sub upi ;
 bcnd pos_satd,LT ;if upi>Vmax branch to saturate
 lacc upi ;value of upi is valid
 b limiterd
pos_satd
 lacc #Vmax ;set ACC to pos saturation
limiterd
 sacl vSdref ;Save ACC as reference value
 sub upi
 sacl elpi
 lt elpi
 mpy Kcor
 pac
 lt epid
 mpy Ki
 apac
 add xid,12
 sach xid,4
 .endif

.if inv_park

* alfa-axis and beta-axis voltages calculation
* (d,q) -> (alfa,beta) axis transformation
* vSbe_ref = vSqref * cos(teta_e) + vSdref * sin(teta_e)
* vSal_ref =-vSqref * sin(teta_e) + vSdref * cos(teta_e)

 lacc #0
 lt vSdref ;TREG0=vSdref
 mpy sin ;PREG=vSdref*sin(teta_e)
 lta vSqref ;ACC+=PREG ; TREG0=vSqref
 mpy cos ;PREG=vSqref*cos(teta_e)
 mpya sin ;ACC+=PREG ; PREG=vSqref*sin(teta_e)
 sach vSbe_ref,4
 lacc #0 ;ACC=0
 lt vSdref ;TREG0=vSdref
 mpys cos ;ACC-=(PREG=vSqref*sin(teta_e))
 apac ;ACC+=PREG
 sach vSal_ref,4
.endif

.if svpwm
**
* Phase 1(=a) 2(=b) 3(=c) Voltage calculation
* (alfa,beta) -> (a,b,c) axis transformation
* modified exchanging alfa axis with beta axis
* for a correct sector calculation in SVPWM
* Va = vSbe_ref

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 70

* Vb = (-vSbe_ref + sqrt(3) * vSal_ref) / 2
* Vc = (-vSbe_ref - sqrt(3) * vSal_ref) / 2

 lt vSal_ref ;TREG0=vSal_ref
 mpy SQRT32 ;PREG=vSal_ref*(SQRT(3)/2)
 pac ;ACC=PREG
 sub vSbe_ref,11 ;ACC-=vSbe_ref*2^11
 sach Vb,4
 pac ;ACC=PREG
 neg ;ACC=-ACC
 sub vSbe_ref,11 ;ACC-=vSbe_ref*2^11
 sach Vc,4
 lacl vSbe_ref ;ACC=vSbe_ref
 sacl Va ;Va=ACCL

* SPACE VECTOR Pulse Width Modulation
* (see SVPWM references)

 lt VDCinvT
 mpy SQRT32
 pac
 sach tmp,4
 lt tmp
 mpy vSbe_ref
 pac
 sach X,4
 lacc X ;ACC = vSbe_ref*K1
 sach accb
 sacl accb+1 ;ACCB = vSbe_ref*K1
 sacl X,1 ;X=2*vSbe_ref*K1
 lt VDCinvT
 splk #1800h,tmp
 mpy tmp ;implement mpy #01800h
 pac
 sach tmp,4
 lt tmp
 mpy vSal_ref
 pac
 sach tmp,4
 lacc tmp ;reload ACC with vSal_ref*K2
 add accb+1
 add accb,16
 sacl Y ;Y = K1 * vSbe_ref + K2 * vSal_ref
 sub tmp,1
 sacl Z ;Z = K1 * vSbe_ref - K2 * vSal_ref

*** 60 degrees sector determination
 lacl #0
 sacl sector
 lacc Va
 bcnd Va_neg,LEQ ;If Va<0 do not set bit 1 of sector
 lacc sector
 or #1
 sacl sector ;implement opl #1,sector
Va_neg lacc Vb
 bcnd Vb_neg,LEQ ;If Vb<0 do not set bit 2 of sector
 lacc sector
 or #2
 sacl sector ;implement opl #2,sector
Vb_neg lacc Vc
 bcnd Vc_neg,LEQ ;If Vc<0 do not set bit 3 of sector
 lacc sector
 or #4
 sacl sector ;implement opl #4,sector
Vc_neg

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 71

*** END 60 degrees sector determination

*** T1 and T2 (= t1 and t2) calculation depending on the sector number
 lacl sector ;(see SPACE VECTOR Modulation references for
 ;details)
 sub #1
 bcnd no1,NEQ
 lacc Z
 sacl t1
 lacc Y
 sacl t2
 b t1t2out
no1
 lacl sector
 sub #2
 bcnd no2,NEQ
 lacc Y
 sacl t1
 lacc X
 neg
 sacl t2
 b t1t2out
no2
 lacl sector
 sub #3
 bcnd no3,NEQ
 lacc Z
 neg
 sacl t1
 lacc X
 sacl t2
 b t1t2out
no3
 lacl sector
 sub #4
 bcnd no4,NEQ
 lacc X
 neg
 sacl t1
 lacc Z
 sacl t2
 b t1t2out
no4
 lacl sector
 sub #5
 bcnd no5,NEQ
 lacc X
 sacl t1
 lacc Y
 neg
 sacl t2
 b t1t2out
no5
 lacc Y
 neg
 sacl t1
 lacc Z
 neg
 sacl t2
t1t2out
 lacc t1 ;t1 and t2 minumum values must be Tonmax
 sub #Tonmax
 bcnd t1_ok,GEQ ;if t1>Tonmax then t1_ok
 lacl #Tonmax
 sacl t1

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 72

t1_ok
 lacc t2
 sub #Tonmax
 bcnd t2_ok,GEQ ;if t2>Tonmax then t2_ok
 lacl #Tonmax
 sacl t2
t2_ok
*** END t1 and t2 calculation

 lacc t1 ;if t1+t2>2*Tonmax we have to saturate t1 and t2
 add t2 ;
 sacl tmp ;
 sub #MAXDUTY ;
 bcnd nosaturation,LT,EQ

*** t1 and t2 saturation
 lacc #MAXDUTY,15 ;divide MAXDUTY by (t1+t2)
 rpt #15 ;
 subc tmp ;
 sacl tmp ;
 lt tmp ;calculate saturate values of t1 and t2
 mpy t1 ;t1 (saturated)=t1*(MAXDUTY/(t1+t2))
 pac ;
 sach t1,1 ;
 mpy t2 ;t2 (saturated)=t2*(MAXDUTY/(t1+t2))
 pac ;
 sach t2,1 ;
*** END t1 and t2 saturation

nosaturation
*** taon,tbon and tcon calculation
 lacc #PWMPRD ;calculate the commutation instants taon,
 ;tbon and tcon
 sub t1 ;of the 3 PWM channels
 sub t2 ;taon=(PWMPRD-t1-t2)/2
 sfr ;
 sacl taon ;
 add t1 ;tbon=taon+t1
 sacl tbon ;
 add t2 ;tcon=tbon+t2
 sacl tcon ;
*** END taon,tbon and tcon calculation

*** sector switching
 lacl sector ;depending on the sector number we have
 sub #1 ;to switch the calculated taon, tbon and tcon
 bcnd nosect1,NEQ ;to the correct PWM channel
 ;(see SPACE VECTOR Modulation references for
 ; details)
 bldd tbon,#CMPR1 ;sector 1
 bldd taon,#CMPR2
 bldd tcon,#CMPR3
 b dacout
nosect1
 lacl sector
 sub #2
 bcnd nosect2,NEQ
 bldd taon,#CMPR1 ;sector 2
 bldd tcon,#CMPR2 ;
 bldd tbon,#CMPR3 ;
 b dacout
nosect2
 lacl sector
 sub #3
 bcnd nosect3,NEQ

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 73

 bldd taon,#CMPR1 ;sector 3
 bldd tbon,#CMPR2 ;
 bldd tcon,#CMPR3 ;
 b dacout
nosect3
 lacl sector
 sub #4
 bcnd nosect4,NEQ
 bldd tcon,#CMPR1 ;sector 4
 bldd tbon,#CMPR2 ;
 bldd taon,#CMPR3 ;
 b dacout
nosect4
 lacl sector
 sub #5
 bcnd nosect5,NEQ
 bldd tcon,#CMPR1 ;sector 5
 bldd taon,#CMPR2 ;
 bldd tbon,#CMPR3 ;
 b dacout
nosect5
 bldd tbon,#CMPR1 ;sector 6
 bldd tcon,#CMPR2 ;
 bldd taon,#CMPR3 ;
*** END sector switching
*** END * SPACE VECTOR Pulse Width Modulation
 .endif

dacout
**
* DAC output of channels 'da1', 'da2', 'da3' and 'da4' *
* Output on 12 bit Digital analog Converter *
* 5V equivalent to FFFh *
**
 ldp #sector
 lacc sector,7 ;scale sector by 2^7 to have good displaying
 sacl sectordisp ;only for display purposes

*** DAC out channel 'da1'
 lacc #ia ;get the address of the first elements
 add da1 ;add the selected output variable offset
 ; 'da1' sent by the terminal
 sacl daout ;now daout contains the address of the
 ; variable to send to DAC1
 lar ar5,daout ;store it in AR5

 lacc * ;indirect addressing, load the value to send out
 ;the following 3 instructions are required to
 ;adapt the numeric format to the DAC resolution
 sfr ;on a 12 bit DAC, +/- 2000h = [0,5] Volt
 sfr ;-2000h is 0 Volt
 add #800h ;0 is 2.5 Volt.
 sacl daouttmp ;to prepare the triggering of DAC1 buffer
 out daouttmp,DAC0_VAL

*** DAC out channel 'da2'
 lacc #ia ;get the address of the first elements
 add da2 ;add the selected output variable offset
 ;'da1' sent by the terminal
 sacl daout ;now daout contains the address of the
 ; variable to send to DAC1
 lar ar5,daout ;store it in AR5

 lacc * ;indirect addressing, load the value to send out
 ;the following 3 instructions are required to

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 74

 ;adapt the numeric format to the DAC resolution
 sfr ;we have 10 bit DAC, we want to have the
 ;number 2000h = 5 Volt
 sfr
 add #800h ;
 sacl daouttmp ;to prepare the triggering of DAC1 buffer
 out daouttmp,DAC1_VAL

*** DAC out channel 'da3'
 lacc #ia ;get the address of the first elements
 add da3 ;add the selected output variable offset 'da1'
 ;sent by the terminal
 sacl daout ;now daout contains the address of the variable
 ;to send to DAC1
 lar ar5,daout ;store it in AR5

 lacc * ;indirect addressing, load the value to send out
 ;the following 3 instructions are required to
 ;adapt the numeric format to the DAC resolution
 sfr ;we have 10 bit DAC, we want to have the number
 ;2000h = 5 Volt
 sfr
 add #800h
 sacl daouttmp ;to prepare the triggering of DAC1 buffer
 out daouttmp,DAC2_VAL

*** DAC out channel 'da4'
 lacc #ia ;get the address of the first elements
 add da4 ;add the selected output variable offset 'da1'
;sent by the terminal
 sacl daout ;now daout contains the address of the
 ;variable to send to DAC1
 lar ar5,daout ;store it in AR5

 lacc * ;indirect addressing, load the value to send out
 ;the following 3 instructions are required
 ;to adapt the numeric format to the DAC resolution
 sfr ;we have 10 bit DAC, we want to have the
 ;number 2000h = 5 Volt
 sfr
 add #800h
 sacl daouttmp ;to prepare the triggering of DAC1 buffer
 out daouttmp,DAC3_VAL
*** END DAC out

 OUT tmp,DAC_VAL ;start D to A convertion

*** END: PWM enable

 b ContextRestoreReturn
*END ControlRoutine

.endif

ContextRestoreReturn

* Context restore and Return

 larp ar4
 mar *+
 lacl *+ ;Accu. restored for context restore
 add *+,16
 lst #0,*+

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 75

 lst #1,*+
 clrc INTM
 ret
* END Context Restore and Return *

* Virtual Menu

menu

.if virtual_menu

 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available ?
 bcnd menu,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0ffh ;only 8 bits !!!
 ldp #option ;if yes, get it and store it in option
 sacl option ;now in option we have the option number
 ;of the virtual menu
 sub #031h ;is it option 1 ?
 bcnd notone,neq ;if not branch to notone

* Option 1): Speed reference

navail11
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail11,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #serialtmp
 sacl serialtmp ;if yes, get it and store it in serialtmp
navail12
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;8 MSB available ?
 bcnd navail12,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF,8 ;load ACC the upper byte
 ldp #serialtmp
 add serialtmp ;add ACC with lower byte
 sacl n_ref ;store it
 b menu ;return to the main polling cycle
*** END Option 1): speed reference

notone
 lacc option
 sub #032h ;is it option 2 ?
 bcnd nottwo,neq ;if not branch to nottwo

* Option 2): DAC update

navail21
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail21,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #da1
 sacl da1 ;if yes, get it and store it in da1
navail22
 ldp #DP_PF1

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 76

 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail22,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #da1
 sacl da2 ;if yes, get it and store it in da2
navail23
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail23,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #da1
 sacl da3 ;if yes, get it and store it in da3
navail24
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail24,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #da1
 sacl da4 ;if yes, get it and store it in da4
 b menu ;return to the main polling cycle
*** END Option 2): DAC update

nottwo
 lacc option
 sub #033h ;is it option 3 ?
 bcnd notthree,neq ;if not branch to notthree

* Option 3): initphase

navail31
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail31,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #serialtmp
 sacl serialtmp ;if yes, get it and store it in serialtmp
navail32
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;8 MSB available ?
 bcnd navail32,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF,8 ;load ACC the upper byte
 ldp #serialtmp
 add serialtmp ;add ACC with lower byte
 sacl initphase ;store it
 b menu ;return to the main polling cycle
*** END Option 3): initphase

notthree
 lacc option
 sub #034h ;is it option 4 ?
 bcnd notfour,neq ;if not branch to notfour

* Option 4): vDCinvTc

navail41
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail41,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 77

 and #0FFh ;take the 8 LSB
 ldp #serialtmp
 sacl serialtmp ;if yes, get it and store it in serialtmp
navail42
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;8 MSB available ?
 bcnd navail42,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF,8 ;load ACC the upper byte
 ldp #serialtmp
 add serialtmp ;add ACC with lower byte
 sacl VDCinvT ;store it
 b menu ;return to the main polling cycle
*** END Option 4): vDCinvTc

notfour
 lacc option
 sub #035h ;is it option 5 ?
 bcnd notfive,neq ;if not branch to notfive

* Option 5): Kpi, Ki, Kcor

navail51
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail51,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #serialtmp
 sacl serialtmp ;if yes, get it and store it in serialtmp
navail52
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;8 MSB available ?
 bcnd navail52,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF,8 ;load ACC the upper byte
 ldp #serialtmp
 add serialtmp ;add ACC with lower byte
 sacl Kpi ;store it
navail53
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail53,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #serialtmp
 sacl serialtmp ;if yes, get it and store it in serialtmp
navail54
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;8 MSB available ?
 bcnd navail54,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF,8 ;load ACC the upper byte
 ldp #serialtmp
 add serialtmp ;add ACC with lower byte
 sacl Ki ;store it
navail55
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail55,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #serialtmp
 sacl serialtmp ;if yes, get it and store it in serialtmp
navail56
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;8 MSB available ?

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 78

 bcnd navail56,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF,8 ;load ACC the upper byte
 ldp #serialtmp
 add serialtmp ;add ACC with lower byte
 sacl Kcor ;store it
 b menu ;return to the main polling cycle
*** END Option

notfive
 lacc option
 sub #036h ;is it option 6 ?
 bcnd notsix,neq ;if not branch to notsix

* Option 6): Kpispeed , Kispeed , Kcorspeed

navail61
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail61,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #serialtmp
 sacl serialtmp ;if yes, get it and store it in serialtmp
navail62
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;8 MSB available ?
 bcnd navail62,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF,8 ;load ACC the upper byte
 ldp #serialtmp
 add serialtmp ;add ACC with lower byte
 sacl Kpispeed ;store it
navail63
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail63,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #serialtmp
 sacl serialtmp ;if yes, get it and store it in serialtmp
navail64
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;8 MSB available ?
 bcnd navail64,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF,8 ;load ACC the upper byte
 ldp #serialtmp
 add serialtmp ;add ACC with lower byte
 sacl Kispeed ;store it
navail65
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
 bcnd navail65,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF
 and #0FFh ;take the 8 LSB
 ldp #serialtmp
 sacl serialtmp ;if yes, get it and store it in serialtmp
navail66
 ldp #DP_PF1
 bit SCIRXST,BIT6 ;8 MSB available ?
 bcnd navail66,ntc ;if not repeat the cycle (polling)
 lacc SCIRXBUF,8 ;load ACC the upper byte
 ldp #serialtmp
 add serialtmp ;add ACC with lower byte
 sacl Kcorspeed ;store it
 b menu ;return to the main polling cycle

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 79

*** END Option

notsix
 b menu

 .else

 ldp #n_ref
 splk #1000h,n_ref

 lacc stall_timer1 ;cascaded timers to ensure correct stall
 ;at start
 sub #1 ;when no Graphic User's Interface is available
 sacl stall_timer1
 bcnd norun,GT

 lacc stall_timer2
 sub #1
 sacl stall_timer2
 bcnd norun,GT

 splk #01000h,initphase
 splk #0,stall_timer1
 splk #0,stall_timer2

 b menu
norun
 splk #0,initphase
 b menu
 .endif

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 80

Appendix B. Qbasic Graphic User’s Interface
REM File name : FOC_PMSM.BAS

OPEN "COM1: 9600,N,8,1,CD0,CS0,DS0,OP0,RS,TB1,RB1" FOR OUTPUT AS #1
PRINT #1, "1"; CHR$(0); CHR$(0); : REM speed reference initialization to 0
PRINT #1, "2"; CHR$(23); CHR$(25); CHR$(41); CHR$(3); : REM dac initialization
PRINT #1, "3"; CHR$(0); CHR$(0); : REM initialization phase to 0

est = 0
speedref = 0
init = 0
VDC = 311
da1 = 33: da2 = 32
da3 = 24: da4 = 25
Ki = .03
Kpi = .6
Kcor = .05
Kispeed = .03
Kpispeed = 6.5
Kcorspeed = .0046

initphase$(0) = "Init"
initphase$(1) = "Run"

Tc = 896: REM PWM period in us
speedpu = 3000: REM base speed
ibase = 2: REM base current
Vbase = 120

DIM daout$(200)
daout$(0) = "ia"
daout$(1) = "ib"
daout$(2) = "ic"
daout$(3) = "Ua"
daout$(4) = "Ub"
daout$(5) = "Uc"
daout$(6) = "seno1"
daout$(7) = "t1"
daout$(8) = "t2"
daout$(9) = "coseno"
daout$(10) = "Va"
daout$(11) = "Vb"
daout$(12) = "Vc"
daout$(13) = "VDC"
daout$(14) = "taon"
daout$(15) = "tbon"
daout$(16) = "tcon"
daout$(17) = "teta"
daout$(18) = "ialfa"
daout$(19) = "ibeta"
daout$(20) = "Valfar"
daout$(21) = "Vbetar"
daout$(22) = "idr"
daout$(23) = "iqr"
daout$(24) = "idS"
daout$(25) = "iqS"
daout$(26) = "Vdr"
daout$(27) = "Vqr"
daout$(28) = "epiq"
daout$(29) = "epid"
daout$(30) = "xiq"

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 81

daout$(31) = "xid"
daout$(32) = "n"
daout$(33) = "n_ref"
daout$(34) = "epispeed"
daout$(35) = "xispeed"
daout$(36) = "X"
daout$(37) = "Y"
daout$(38) = "Z"
daout$(39) = "sector"
daout$(40) = "initphase"
REM daout$(41) = "Vr"
REM daout$(42) = "idrref"
daout$(43) = ""
daout$(44) = ""
daout$(45) = ""

nDA = 10

1 CLS
FOR i = 0 TO nDA
COLOR 11
LOCATE (12 + i), 2: PRINT "("; : PRINT USING "##"; i; : PRINT ") "; daout$(i)
LOCATE (12 + i), 22: PRINT "("; : PRINT USING "##"; i + nDA + 1; : PRINT ") "; daout$(i +
nDA + 1)
LOCATE (12 + i), 42: PRINT "("; : PRINT USING "##"; i + 2 * nDA + 2; : PRINT ") ";
daout$(i + 2 * nDA + 2)
LOCATE (12 + i), 62: PRINT "("; : PRINT USING "##"; i + 3 * nDA + 3; : PRINT ") ";
daout$(i + 3 * nDA + 3)
NEXT i
LOCATE 1, 15
COLOR 12: PRINT " Digital Control of a Permanent Magnet Motor"
PRINT
COLOR 10: PRINT "<1>"; : COLOR 2: PRINT " Speed_reference ("; speedref; "rpm)"
COLOR 10: PRINT "<2>"; : COLOR 2: PRINT " DAC_Outputs DAC1: ("; daout$(da1); ")"
LOCATE 4, 35: PRINT "DAC2: ("; daout$(da2); ")"
PRINT " DAC3: ("; daout$(da3); ")"
LOCATE 5, 35: PRINT "DAC4: ("; daout$(da4); ")"
COLOR 10: PRINT "<3>"; : COLOR 2: PRINT " Init_phase (0=Init) ("; initphase$(init); ")"
COLOR 10: PRINT "<4>"; : COLOR 2: PRINT " Vbase ("; Vbase; "Volts)"
COLOR 10: LOCATE 3, 50: PRINT " <5>"; : COLOR 2: PRINT " Kpi ("; Kpi; "pu)"
COLOR 10: LOCATE 4, 50: PRINT " "; : COLOR 2: PRINT " Ki ("; Ki; "pu)"
COLOR 10: LOCATE 5, 50: PRINT " "; : COLOR 2: PRINT " Kcor ("; Kcor; "pu)"
COLOR 10: LOCATE 6, 50: PRINT " <6>"; : COLOR 2: PRINT " Kpispeed ("; Kpispeed; "pu)"
COLOR 10: LOCATE 7, 50: PRINT " "; : COLOR 2: PRINT " Kispeed ("; Kispeed; "pu)"
COLOR 10: LOCATE 8, 50: PRINT " "; : COLOR 2: PRINT " Kcorspeed ("; Kcorspeed; "pu)"

COLOR 10: LOCATE 10, 14: PRINT "Choice : ";
DO

a$ = INKEY$
LOOP UNTIL ((a$ <= "6") AND (a$ >= "1")) OR (a$ = "r") OR (a$ = "R")

SELECT CASE a$
CASE "1"
 REM 4.12 format
 PRINT a$; ") ";
 PRINT "Speed_Reference ("; speedref; "rpm) : ";
 INPUT speedref$
 IF speedref$ = "" THEN 1
 speedrpu = VAL(speedref$) / speedpu
 IF (speedrpu >= 7.999755859#) THEN speedrpu = 7.999755859#
 IF (speedrpu <= -8) THEN speedrpu = -8
 speedrefpu = CLNG(speedrpu * 4096)
 IF (speedref < 0) THEN speedrefpu = 65536 + speedrefpu

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 82

 PRINT #1, "1"; CHR$(speedrefpu AND 255); CHR$((speedrefpu AND 65280) / 256)
 speedref = speedrpu * speedpu
 GOTO 1
CASE "2"
 REM standard decimal format
 PRINT a$; ") ";
 PRINT "DAC1, DAC2, DAC3 or DAC4 ? ";
2 dach$ = INKEY$
 IF dach$ = "" THEN 2
 IF dach$ = CHR$(13) THEN 1
 IF dach$ = "1" THEN
 PRINT "DAC1 Output ("; da1; ") : ";
 INPUT da$
 IF da$ = "" THEN 1
 da1 = VAL(da$)
 END IF
 IF dach$ = "2" THEN
 PRINT "DAC2 Output ("; da2; ") : ";
 INPUT da$
 IF da$ = "" THEN 1
 da2 = VAL(da$)
 END IF
 IF dach$ = "3" THEN
 PRINT "DAC3 Output ("; da3; ") : ";
 INPUT da$
 IF da$ = "" THEN 1
 da3 = VAL(da$)
 END IF
 IF dach$ = "4" THEN
 PRINT "DAC4 Output ("; da4; ") : ";
 INPUT da$
 IF da$ = "" THEN 1
 da4 = VAL(da$)
 END IF
 PRINT #1, "2"; CHR$(da1 AND 255); CHR$(da2 AND 255); CHR$(da3 AND 255); CHR$(da4 AND
255)
 GOTO 1
CASE "3"
 REM 8.8 format
 est = 0
 IF init = 1 THEN init = 0 ELSE init = 1
 IF (init >= 255.9960938#) THEN init = 255.9960938#
 IF (init < 0) THEN init = 0
 init88 = CLNG(init * 256)
 PRINT #1, "3"; CHR$(init88 AND 255); CHR$((init88 AND 65280) / 256)
 GOTO 1

CASE "4"
 REM 4.12 format
 PRINT a$; ") ";
 PRINT "Vbase ("; Vbase; "Volts) : ";
 INPUT Vbase$
 IF Vbase$ = "" THEN 1
 IF (Vbase <= 0) THEN 1
 VDCpu = VDC / VAL(Vbase$)
 IF (VDCpu >= 7.999755859#) THEN VDCpu = 7.999755859#
 IF (VDCpu <= -8) THEN VDCpu = -8
 VDCinvTc = Tc / VDCpu
 PRINT #1, "4"; CHR$(VDCinvTc AND 255); CHR$((VDCinvTc AND 65280) / 256)
 Vbase = VDC / VDCpu
 GOTO 1

CASE "5"
 REM 4.12 format
 PRINT a$; ") ";

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 83

 PRINT "Kpi ("; Kpi; ") : ";
 INPUT Kpi$
 IF Kpi$ = "" THEN 51
 Kpi = VAL(Kpi$)
 IF (Kpi >= 1) THEN Kpi = 1
 IF (Kpi <= -1) THEN Kpi = -1
51
 PRINT " Ki ("; Ki; ") : ";
 INPUT Ki$
 IF Ki$ = "" THEN 52
 Ki = VAL(Ki$)
 IF (Ki >= 1) THEN Ki = 1
 IF (Ki <= -1) THEN Ki = -1
52
 Kpipu = 4096 * Kpi
 Kipu = 4096 * Ki
 Kcor = (Ki / Kpi)
 Kcorpu = 4096 * Kcor
 PRINT #1, "5"; CHR$(Kpipu AND 255); CHR$((Kpipu AND 65280) / 256); CHR$(Kipu AND 255);
CHR$((Kipu AND 65280) / 256); CHR$(Kcorpu AND 255); CHR$((Kcorpu AND 65280) / 256)
 GOTO 1

CASE "6"
 REM 4.12 format
 PRINT a$; ") ";
 PRINT "Kpispeed ("; Kpispeed; ") : ";
 INPUT Kpispeed$
 IF Kpispeed$ = "" THEN 61
 Kpispeed = VAL(Kpispeed$)
 IF (Kpispeed >= 7.9) THEN Kpispeed = 7.9
 IF (Kpispeed <= 0) THEN Kpispeed = 0
61
 PRINT " Kispeed ("; Kispeed; ") : ";
 INPUT Kispeed$
 IF Kispeed$ = "" THEN 62
 Kispeed = VAL(Kispeed$)
 IF (Kispeed >= 1) THEN Kispeed = 1
 IF (Kispeed <= 0) THEN Kispeed = 0
62
 Kpispeedpu = 4096 * Kpispeed
 Kispeedpu = 4096 * Kispeed
 Kcorspeed = (Kispeed / Kpispeed)
 Kcorspeedpu = 4096 * Kcorspeed
 REM Send "Option" - "LSB" - "MSB"
 PRINT #1, "6"; CHR$(Kpispeedpu AND 255); CHR$((Kpispeedpu AND 65280) / 256);
CHR$(Kispeedpu AND 255); CHR$((Kispeedpu AND 65280) / 256); CHR$(Kcorspeedpu AND 255);
CHR$((Kcorspeedpu AND 65280) / 256)
 GOTO 1

CASE ELSE
 PRINT #1, "1"; CHR$(speedrefpu AND 255); CHR$((speedrefpu AND 65280) / 256)
 PRINT #1, "2"; CHR$(da1 AND 255); CHR$(da2 AND 255); CHR$(da3 AND 255); CHR$(da4 AND
255)
REM PRINT #1, "3"; CHR$(init88 AND 255); CHR$((init88 AND 65280) / 256)
REM PRINT #1, "4"; CHR$(VDCinvTc AND 255); CHR$((VDCinvTc AND 65280) / 256)
REM PRINT #1, "5"; CHR$(Kpipu AND 255); CHR$((Kpipu AND 65280) / 256); CHR$(Kipu AND
255); CHR$((Kipu AND 65280) / 256); CHR$(Kcorpu AND 255); CHR$((Kcorpu AND 65280) / 256)
REM PRINT #1, "6"; CHR$(Kpispeedpu AND 255); CHR$((Kpispeedpu AND 65280) / 256);
CHR$(Kispeedpu AND 255); CHR$((Kispeedpu AND 65280) / 256); CHR$(Kcorspeedpu AND 255);
CHR$((Kcorspeedpu AND 65280) / 256)
 GOTO 1
END SELECT
CLOSE #1

Application Report
SPRA588

Implementation of a Speed Field Oriented Control
of 3-phase PMSM Motor using TMS320F240 84

Appendix C. Linker Command File
foc_pmsm.obj
-m foc_pmsm.map
-o foc_pmsm.out

MEMORY
{
 PAGE 0:
 FLASH_VEC : origin = 0h, length = 40h
 FLASH : origin = 040h, length = 00FC0h

 PAGE 1:
 REGS : origin = 0h, length = 60h
 BLK_B22 : origin = 60h, length = 20h
 BLK_B0 : origin = 200h, length = 100h
 BLK_B1 : origin = 300h, length = 100h
 EXT_DATA : origin = 8000h, length = 1000h
}

/*---*/
/* SECTIONS ALLOCATION */
/*---*/
SECTIONS
{
 vectors : { } > FLASH_VEC PAGE 0 /* INTERRUPT VECTOR TABLE */
 .text : { } > FLASH PAGE 0 /* CODE */
 .stack : { } > BLK_B22 PAGE 1 /* Data storage on DP 0 */
 .dacval : { } > BLK_B22 PAGE 1
 .data : { } > BLK_B0 PAGE 1
 .bss : { } > BLK_B0 PAGE 1 /* GLOBAL VARS, STACK, HEAP*/
 table : { } > BLK_B1 PAGE 1
}

TI Contact Numbers

INTERNET

TI Semiconductor Home Page
www.ti.com/sc

TI Distributors
www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

Americas
Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com

Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Español +34-(0) 90 23 54 0 28
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67

Fax +44-(0) 1604 66 33 34
Email epic@ti.com

Japan
Phone

International +81-3-3344-5311
Domestic 0120-81-0026

Fax
International +81-3-3344-5317
Domestic 0120-81-0036

Email pic-japan@ti.com

Asia
Phone

International +886-2-23786800
Domestic

Australia 1-800-881-011
TI Number -800-800-1450

China 10810
TI Number -800-800-1450

Hong Kong 800-96-1111
TI Number -800-800-1450

India 000-117
TI Number -800-800-1450

Indonesia 001-801-10
TI Number -800-800-1450

Korea 080-551-2804
Malaysia 1-800-800-011

TI Number -800-800-1450
New Zealand 000-911

TI Number -800-800-1450
Philippines 105-11

TI Number -800-800-1450
Singapore 800-0111-111

TI Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

TI Number -800-800-1450
Fax 886-2-2378-6808
Email tiasia@ti.com

TI is a trademark of Texas Instruments Incorporated.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright  1999 Texas Instruments Incorporated

