

TMS320 DSP
DESIGNER’S NOTEBOOK

Obtaining Absolute
Encoder Position on a
TMS320C240
APPLICATION BRIEF: SPRA279

 David M. Alter
 Digital Signal Processing Products
 Semiconductor Group

 Texas Instruments
 July 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract... .. 7
Design Problem.. 8
Solution... .. 8

Figures
Figure 1. Desired and Actual Encoder Number Sequencing for

 an 8 Count/Revolution Encoder ... 9
Figure 2. Binary number sequence of counter for a 2 n encoder with n=3 10
Figure 3. Software rollover adjustment for a 9 count/revolution encoder............. 13
Figure 4. Position Sequence After Sign Adjustment for

 an 8 Count/Revolution Encoder ... 16

Examples
Example 1. Code Listing #1 .. 11
Example 2. Code Listing #2 .. 13

Obtaining Absolute Encoder Position on a TMS320C240 7

Obtaining Absolute Encoder Position
on a TMS320C240

Abstract

Many servo applications require absolute position information as
feedback. This document describes how the encoder count can be
processed to obtain absolute position on the TMS320C240. The
document includes a theoretical discussion, equations, timing
diagrams and a lengthy code example.

8 SPRA279

Design Problem

How can the encoder count be processed to obtain absolute position
on the TMS320C240?

Solution

General Issues: Many servo applications require absolute position
information as feedback. Two separate issues must be addressed
when using an encoder sensor to obtain this. The first issue stems
from a difference between the desired number sequence and the
sequence implemented by the 16-bit counter holding the encoder
count on the ‘C240. Consider for example the sequence from an 8-
count-per-revolution encoder, as shown in Figure 1. The hardware
counter will only wrap at the FFFFh to 0000h boundary. However,
the desired number sequence requires a wrap that corresponds to
the number of counts per revolution, in this case 8h. Three methods
to overcome this problem will be presented in this technical note.

The second issue involves obtaining absolute, rather than relative
(i.e. incremental) position. Interpreting the position count sequence
as absolute requires that it be referenced to some known physical
encoder angle. This can be achieved in one of two ways. The first
approach involves physically locking the encoder at some known
angle during startup. A zero can then be written to the encoder
counter register thereby referencing the position to the locked
position. In permanent magnet motor applications, the entire
process can be fully automated in software by statically activating
one of the motor commutation paths and waiting for the rotor to
rotate into position. This simple method has the advantage of not
needing any additional hardware connections. The code required to
perform this is straightforward although it does vary depending on
the motor application and configuration. It therefore will not be
discussed further in this note. The second approach relies on
accurate knowledge of the physical angle at which the encoder is
mounted. In this case, one can use the encoder index signal, which
pulses once per revolution, to trigger a calibration procedure for the
encoder count. Various implementations of this second method will
be discussed in more detail in the following sections.

Obtaining Absolute Encoder Position on a TMS320C240 9

Figure 1. Desired and Actual Encoder Number Sequencing for an 8
Count/Revolution Encoder

Method 1: 2 n encoder resolution

This method requires an encoder with 2n counts/revolution, where n
is an integer. The key is to notice that the hardware counter will
adhere to the desired number sequence in the least significant n bits
of the count, as illustrated in Figure 2. Software must mask out the
upper 16-n unwanted bits. The following code segment illustrates
the process on the ‘C240 using GP Timer 3 to hold the counts from
an 8 count/revolution encoder (n = 3).

T3CNT .set 7409h ;GP Timer 3 counter register
.bss position,1 ;position variable

.text
LDP #232 ;data page set to event manager
LACC T3CNT ;ACC = count
AND #111b ;mask off unwanted upper bits
LDP #position ;data page set
SACL position ;store position to memory

One can easily modify this code for more realistic encoder
resolutions. For example, with a 1024 count/revolution encoder
(n=10) the AND instruction should be changed to read AND #2ffh .
An additional feature of this method is the ability to discriminate
positions over more than one revolution by masking off fewer bits
(e.g. 0 and 360 degrees will give different count values). This is
often required in servo applications. For example, to obtain position
over 2 complete revolutions of the example 8 count encoder, replace
AND #111b with AND #1111b .

011

000

001

010

100

101

110

111

0
00

0
h

0007h

8000h

F
F

F
F

h

Desired Binary Sequence (unsigned) Actual 16-bit Hardware

10 SPRA279

Figure 2. Binary number sequence of counter for a 2n encoder with n=3

The encoder index signal can be used to reference the absolute
position by connecting it to one of the external interrupt pins on the
DSP (e.g. XINT1, XINT2, or XINT3). During the startup sequence,
the motor should be slowly rotated in some controlled fashion. When
the index pulse triggers an interrupt, the GP Timer holding the
encoder count is zeroed in the interrupt service routine (e.g. T2CNT
or T3CNT registers). After zeroing, the external interrupt should be
disabled (i.e. masked) so that calibration is only performed once.
The position will now be referenced to the physical angle at which
the index pulse occurred. Interrupt latency is normally not a problem.
For example, a 1024-count encoder rotating at 1-revolution-per-
second has 0.977 ms between counts. This allows for over 19,500
instruction cycles on a 20 MIPS DSP!

Methods 2 and 3 are presented next for non-2n encoder resolutions.
Although they can be used with encoders of 2n resolution, they are
inefficient when compared with method 1.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

FFFFh

Obtaining Absolute Encoder Position on a TMS320C240 11

Method 2: Non-2 n encoder resolution, discrimination over a
single rotation

This method can only discriminate position over a single rotation.
The encoder index signal is connected to Capture #3, and the
CAPCON register configured so that Capture #3 records the count
of the GP Timer being used to hold the encoder count. This will
occur once every 360-degree rotation of the encoder. In addition,
the Capture #3 interrupt is enabled and its service routine is
designed to copy the captured value off the CAP3FIFO results stack
and store it in some data memory location (e.g. call it position_ref).
When the encoder count is processed, position_ref is first subtracted
from it. If the resultant is positive, processing is complete. If the
resultant is negative, the number of counts per revolution should be
added. These operations result in a desired number sequence
similar to that shown in Figure 1 but with a different number of
counts per revolution, and referenced to the index pulse position.
Note that Capture #4 could be used instead of Capture #3 if desired.
The following code segments illustrate the process on the ‘C240
with the index signal connected to Capture #3, and GP Timer 3
holding the counts for a 9 count/revolution encoder.

Example 1. Code Listing #1

T3CNT .set 7409h ;GP Timer 3 counter register
CAP3FIFO .set 7425h ;Capture #3 results stack
EVIFRC .set 7431h ;Event Manager Interrupt Flag

; Reg C

.bss position,2,1 ;position
position_ref .set position+1 ;position reference
count_rev .set 9 ;counts per revolution

**
* Encoder Processing Code Segment
**

.text
CLRC OVM ;overflow mode off
SETC SXM ;use signed math
LDP #232 ;DP set to event manager
LACC T3CNT ;ACC = count
LDP #position ;data page set
SUB position_ref ;subtract stored

; capture value
BCND STORE, GEQ ;branch if positive
ADD #count_rev ;add counts per

; revolution
STORE: SACL position ;store position to memory

**
* Capture #3 Interrupt Service Routine
**

12 SPRA279

STATUS .usect "BLOCKB2", 2 ;must be located on
; data page 0

.text
cap3int: SST #0, STATUS ;save ST0

SST #1, STATUS+1 ;save ST1
LDP #232 ;DP set to event manager
SPLK #0100b, EVIFRC ;clear CAP3INT flag
BLDD CAP3FIFO, #position_ref

;save captured value to data memory
LDP #0 ;set data page
LST #1, STATUS+1 ;restore ST1
LST #0, STATUS ;restore ST0
CLRC INTM ;global interrupts
RET ;return

Several points are worth noting about the code. First, the position
obtained is inherently absolute in that it is always referenced to the
index pulse absolute position. No further steps need be taken to
provide for this. Second, the CAP3INT service routine performs the
required context save-and-restore using direct addressing.
Therefore, the uninitialized data section "BLOCKB2" must be linked
to data page 0 since SST always saves to this page when using
direct addressing. Also, the use of the BLDD instruction in the
Capture #3 interrupt service routine rather than a LACC and SACL
combination eliminates the need to context save and restore the
accumulator. Finally, note that the encoder processing code
segment of Method 2 is more computationally intensive than Method
1, although it is still arguably of negligible length. However,
additional CPU cycles are needed once per revolution to execute
the Capture #3 interrupt service routine.

Method 3: Non-2 n encoder resolution, discrimination over
multiple rotations

Unlike method 2, this method can discriminate position over multiple
rotations. The encoder is used in an incremental fashion, where the
change in position from the last sample period is computed as the
difference of the new count minus the old count, i.e.:

position = position + (new_count – old_count).

The old_count is then replaced with the new_count in preparation for
the next sample period, i.e.:

`old_count = new_count.

Finally, the position value must be manually rolled over in order to
obtain the desired number sequence. Figure 3 illustrates the
adjustment for a 9-count-per-revolution encoder.

Obtaining Absolute Encoder Position on a TMS320C240 13

Figure 3. Software rollover adjustment for a 9 count/revolution encoder

The following code illustrates this method using GP Timer 3 to hold
the counts from a 9-count-per-revolution encoder.

Example 2. Code Listing #2

T3CNT .set 7409h
CAP3FIFO .set 7425h
EVIFRC .set 7431h
EVIMRC .set 742Eh

.bss position,3,1
temp .set position+1
old_count .set position+2

.data
count_rev .int 9 ;encoder counts per revolution
upper_lim .int 4 ;upper limit of desired sequence
lower_lim .int -4 ;lower limit of desired sequence

**
* Encoder Processing Code Segment
**

.text
;position = position + (new_count - old_count)

CLRC OVM ;overflow mode off
SETC SXM ;use signed math
LDP #232 ;data page set to event manager
LACC T3CNT ;ACC = new_count
LDP #position ;set data page
SACL temp ;temporarily store new count
SUB old_count ;subtract old count
ADD position ;add previous position
SACL position ;store new position to memory
LACC temp ;ACC = new_count
SACL old_count ;store new_count as old_count

;check for rollover and adjust position if needed
LACC position ;ACC = new position

0
0

00
h

0004h

8000h

FFFCh

Software must check
for above upper limit.

If position is above,
subtract 9h.

Software must check
for below lower limit.

If position is below,
add 9h.

14 SPRA279

LDP #upper_lim ;set data page
SUB upper_lim ;subtract upper limit
BCND over, GT ;branch if above upper limit
LDP #position ;set data page
LACC position ;ACC = new position
LDP #lower_lim ;set data page
SUB lower_lim ;subtract lower limit
BCND done, GEQ ;done if above lower limit

under: ADD lower_lim ;ACC = new position
ADD count_rev ;add count_rev
LDP #position ;set data page
SACL position ;store adjusted position
B done ;done

over: ADD upper_lim ;ACC = new position
SUB count_rev ;subtract count_rev
LDP #position ;set data page
SACL position ;store adjusted position

done: ;main code continues

**
* Capture #3 Interrupt Service Routine
**
STATUS .usect "BLOCKB2", 2 ;must be located on DP 0

.bss CONTEXT, 2, 1 ;context saving area

.text
cap3int: SST #0, STATUS ;save ST0

SST #1, STATUS+1 ;save ST1
LDP #CONTEXT ;set data page
SACH CONTEXT ;save high accumulator
SACL CONTEXT+1 ;save low accumulator
LDP #232 ;DP set to event manager
LACC CAP3FIFO ;ACC = captured value
LDP #position ;set data page
SACL old_count ;init old_count with

; captured value
SPLK #0, position ;zero the position
LACC EVIMRC ;ACC loaded with

; EV Mask Register C
AND #1011b ;mask off CAP3INT bit
SACL EVIMRC ;disable CAP3INT
SPLK #0100b, EVIFRC ;clear CAP3INT flag
LDP #CONTEXT ;set data page
LACL CONTEXT+1 ;restore low accumulator
ADD CONTEXT,16 ;restore high accumulator
LDP #0 ;set data page
LST #1, STATUS+1 ;restore ST1
LST #0, STATUS ;restore ST0
CLRC INTM ;re-enable global interrupts
RET ;return

Obtaining Absolute Encoder Position on a TMS320C240 15

Absolute position referencing has been accomplished through
proper initialization of position and old_count . The above code
uses the encoder index signal in conjunction with Capture #3 to
perform the initialization in the Capture #3 interrupt service routine.
During the interrupt service routine, position is set to zero and
old_count is initialized with the captured count value. The Capture
#3 interrupt is then disabled prior to returning to the main code so
that encoder initialization is only performed once.

The code is easily modified for other encoder resolutions and for
position discrimination over multiple revolutions by changing the
assigned values for count_rev , upper_lim , and lower_lim.
The assigned values must satisfy (N*count_rev – 1) =
(upper_lim - lower_lim) , where N equals the number of
revolutions. For example, to obtain position over two complete
revolutions of the example 9 count/revolution encoder, one could set
upper_lim to 8 and lower_lim to -9. Alternately, one could set
upper_lim to 9 and lower_lim to –8.

Note that position must never cross the boundary at 8000h in
either direction. Normally, this is not a problem except in the
uncommon situation where upper_lim and lower_lim begin to
approach 8000h, or when the sample rate is unusually low so that
new_count minus old_count becomes large. The code would
need to be modified if crossing this boundary becomes a possibility.

Obtaining Signed Position:

The desired number sequence shown in Figure 1 is an unsigned
sequence representing 0 to 360 degrees, as opposed to a signed
sequence representing –180 to +180 degrees. As illustrated in this
paper, Methods 1 and 2 always produce such an unsigned
sequence, while Method 3 can directly produce either a signed or an
unsigned sequence depending on the values assigned to
upper_lim and lower_lim . If a signed sequence is desired when
using Methods 1 or 2, first obtain the unsigned sequence as
previously shown. A 2’s compliment sequence that is properly sign-
extended to 16 bits can then be obtained by subtracting half the
number of counts per revolution from the unsigned position. For
example, with a 1024 count/revolution encoder subtract 512 = 200h.
With a 1000 count/revolution encoder subtract 500 = 1F4h. Figure 4
depicts a subtraction of 4 with an 8-count-per-revolution encoder.
Note that the absolute position is now referenced to a position 180
degrees away from the original reference position.

When discriminating position over multiple revolutions, the
subtracted value should equal half the total number of counts for the
multiple revolutions. For example, when discriminating four
revolutions with an 8-count-per-revolution encoder, the subtracted
value should be 16 = 10h.

16 SPRA279

Figure 4. Position Sequence After Sign Adjustment for an 8 Count/Revolution
Encoder

0h

1h

2h

3h

4h

5h

6h

7h 0 °

180 °

FFFCh

FFFDh

FFFEh

FFFFh

0h

1h

2h

3h 0 °

180 °

Unsigned Sequence Signed Sequence after Subtracting 4h

