Implementation of PID

and Deadbeat
Controllers with the

TMS320 Family

APPLICATION REPORT: SPRAO083

Irfan Ahmed
Digital Signal Processor Products

Semiconductor Group
Texas Instruments

Digital Signal Processing Solutions

%‘ TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE
US TMS320 FAX

US TMS320 BBS

US TMS320 email

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com

Implementation of PID and Deadbeat
Controllers with the TMS320 Family

Abstract

This report discusses implementation of the PID and deadbeat
controllers with the TMS320 family of DSPs. These application-
specific processors are designed to process signals, including
control signals, very efficiently.

The report covers the following topics:

a Control Systems
B Analog Controllers
B Digital Controllers

B Analog versus Digital Controllers

QO Processor Selection Issues
B DSP Architectures

Q Design of Digital Control Systems
B Discretization of Analog Systems
Plant Modeling
Digital Controller design
Design and Implementation of PID Controllers
Deadbeat

SPRAO083

O Implementing Digital Controllers

Finite Wordlength Effects

Fixed-Point versus Floating-Point Arithmetic Processors
Sampling Rate Selection

Controller Design Tools

Hardware Design

Q Applications

Computer Peripherals
Power Electronics

B Automotive

Q Summary and References

The report also includes the following appendixes:

Q

0O 0O 0O O

Appendix A Plant Modeling

Appendix B PID Controller

Appendix C Deadbeat Controller

Appendix D PC-Matlab Design and Display Programs
Appendix E TMS320C15 Assembly Code

Implementation of PID and Deadbeat Controllers with the TMS320 Family

*i’
SPRA083

Product Support

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. New users
must register with TI&ME before they can access the data sheet
archive. TI&ME allows users to build custom information pages
and receive new product updates automatically via email.

Email

For technical issues or clarification on switching products, please
send a detailed email to dsph@ti.com. Questions receive prompt
attention and are usually answered within one business day.

Implementation of PID and Deadbeat Controllers with the TMS320 Family 7

Introduction

Control systems are a necessary part of modern manufacturing, industrial processes, and our
daily lives. They range from simple controls like those on our air conditioning to more intricate
controls like those for a missile guidance system. Control mechanisms have evolved from mechani-
cal, pneumatic, and electromechanical systems to electronic control systems. Electronic controls
have been implemented with analog components like resistors, capacitors and op-amps (operation-
al amplifiers). However, with the availability of microprocessors, control systems are being im-
plemented in digital form. The use of microprocessors in digital control systems has created not
only some new opportunities due to the powerful processing capabilities of microprocessors, but
also a need for a new body of knowledge that utilizes some of these processing capabilities.

This report discusses implementation of PID (proportional integral derivative) and deadbeat
digital controllers with the TMS320 family of digital signal processors. These digital signal proces-
sors are application-specific processors designed to process signals, including control signals, very
efficiently. In numerically intensive applications, digital signal processors are at least an order of
magnitude higher in performance than conventional processors and minimize the numerical prob-
lems of processing signals digitally.

This report is arranged in the following order:

e Control Systems — Provides an introduction to digital controllers and discusses selection
of processors for a digital controller.

® Design of Digital Control Systems — Discusses the design of digital controllers.
® Implementing Digital Controllers — Discusses implementation of digital controllers.

o Applications—Describes applications of digital controllers using the TMS320 digital sig-
nal processors.

® Appendices A through C - Lists the mathematical procedures needed to design the control-
lers.

® Appendix D - Lists the PC-Matlab programs used for simulation of these controllers.

® Appendix E —Lists the TMS320C15 assembly code required to implement the controller
algorithms.

Control Systems

A control system is a system that commands or regulates a process in order to achieve a desired
output from the process. A control system consists of three main components:

® Sensors
® Actuators
® A controller

Sensors measure the behavior of the system or the process and provide feedback information.
Typical sensors used in control systems are resolvers, shaft encoders, and potentiometers that pro-
vide position information; tachometers that provide speed information, and current sensors that
provide current information. Actuators supply the driving and corrective forces to achieve a desired
output. Typical actuators are DC and AC motors in electromechnical systems, and valves in hy-
draulic or pneumatic systems.

The controller generates actuator commands in response to the commands received from the
system controller and in response to feedback information provided by the sensors. The controller
consists of some computation elements that process the command and feedback signals to achieve
adesired response from the entire system. The function of the controller is to ensure that the actua-
tor responds to the commands as quickly as possible and, at the same time, that the system remains
stable under all operating conditions. Typically, a controller will modify the frequency response
of the system. The computational elements of the controller can be implemented with analog or
digital components. '

Analog Controllers

Control systems have traditionally been implemented using analog components like opera-
tional amplifiers, resistors, and capacitors. The combination of these elements implements fil-
ter-like structures that modify the frequency response of the system. Although more powerful ana-
log processing elements like multipliers are available, they are generally not used because of their
high cost. In spite of their simpler processing elements, analog controllers can be used to implement
high-performance systems.

Digital Control Systems

With the performance and reliability inherent to microprocessors and microcontrollers, digi-
tal controllers are taking over many applications from analog controllers. In a digital control sys-
tem, the controller is implemented with a microprocessor or amicrocontroller, which is responsible
for processing the signal. However, the actuator commands from the controller are di gital and may
have to be converted into analog signals by a D/A (di gital-to-analog) converter. Similarly, the mea-
surements from the sensor may be analog and will have to be converted into a digital signal by an
A/D (analog-to-digital) converter.

Figure 1 shows the block diagram of a digital control system. The D/A converter converts
the digital output of the microcomputer, u(n), into an analog signal, u(t). The output, u(t), of the
D/A needs power amplification and drives the motor to the desired or reference state, r(n). The out-

put of the motor, y(t), is measured by a sensor and converted into a digital signal, y(n), by the A/D.
The feedback signal is subtracted from the reference signal r(n) to create an error signal e(n). The
error signal, e(n), is used by the controller to issue the corresponding control action u(n).

Figure 1. Digital Control System

r(n) t/\ e(n) DIGITAL u(n) u(t) PLANT y(t)
+ CONTROLLER D/A (DC SERVO >
REFERENCE Gc(2) MOTOR)
INPUT - c
y(n)
A/D SENSOR

Analog Versus Digital Controllers

Tradeoffs have to be made in the selection of controllers for a system. Analog controllers pro-
vide continous processing of the signal and can be used for very high bandwidth systems. They also
give almost infinite resolution of the signal they are measuring, thus providing precise control.
Analog controllers have been around for a long time; their behavior is well understood, and this
makes them easy to design. They can be implemented with relatively inexpensive components and
therefore are sometimes cheaper.

On the negative side, analog controllers suffer from component aging and temperature drifts.
Thus, a perfectly designed controller will start to exhibit undesired characteristics after a while.
Analog controllers are hardwired solutions; this makes modifications or upgrades in the design dif-
ficult. Analog controllers are also limited to simpler algorithms from classical control theory like
PID and compensation techniques.

Digital controllers sample the signal at discrete time intervals. This limits the bandwidth
(bandwidth is 1/6 to 1/10 sampling rate) that can be handled by the controller. The processing of
the signal takes a finite amount of time, adding to phase delay in the system. In addition, the resolu-
tion of the signal is limited by the resolution or wordlength of the processor. Digital controllers also
require additional components like A/D and D/A; although newer processors include these compo-
nents on the same chip. Digital controllers are relatively new, and their behavior is not very well
understood, thus making design of digital controllers relatively difficult in comparison to analog
controllers.

However, digital controllers have some advantages also. They are not affected by component
aging and temperature drift, and they provide stable performance. When the design is done in the
z-domain, the behavior of digital controllers can be more precisely controlled. They can also be
used to implement more sophisticated techniques from modern control theory, such as state con-
trollers, optimal control, and adaptive control. Digital controllers are programmable, thus making
them easy to upgrade and maintaining design investment. They can also be time shared to imple-
ment different functions in the system, like notch filters and system control, thus reducing system

cost. If digital controllers are designed properly, their advantages outweigh their disadvantages.
Table 1 compares analog and digital controllers.

Table 1. Comparison of Analog versus Digital Controllers

Controller Advantages Disadvantages
Analog High bandwidth Component aging
High resolution Temperature drift
Ease of design Hardwired design
Good only for simpler designs
Digital Programmable solution Creates numerical problems
Insensitive to environment Must use high-performance processor
Shows precise behavior Difficult to design
Implements advanced algorithms
Capable of additional functions

Processor Selection Issues

The choice of processor is critical in determing the performance and behavior of the digital
controller. The usual choices are microcontrollers, general purpose microprocessors, and digital
signal processors (DSP). RISC processors and bit-slice processors can also be used; however it is
not practical to use them in most cases because of their cost.

Digital controllers monitor signals at discrete time intervals or finite sampling rates. If the
signal is not sampled fast enough, some of the information may be lost. The processing of the signal
takes a finite amount of time. The processing has to be completed before the arrival of the next sam-
ple, or preferably as soon as possible. Too much delay in the output can cause loss of information
orexcessive phase delay in the system, leading to instability. These conditions impose certain mini-
mum performance requirements on the processor. Most of the processors currently used to imple-
ment controllers are usually not fast enough to process signals in real time; they rely upon lookup
tables with precomputed results.

Digital controllers use discrete steps to represent a signal, which is limited to the wordlength
of the processor. Coefficients or gain constants also have to be represented in the limited word-
length. This discretization or loss of resolution is referred to as quantization error. In addition, re-
sults of mathematical operations have to fit in a limited wordlength and may lose part of the result
due to this limitation. This is referred to as truncation error. Both of these errors cause oscillations
or limit cycles and can lead to instability.

Another problem that occurs indigital controllers is overflow of registers. Successive mathe-
matical operations can cause registers to overflow. Registers in most processors wrap around, caus-
ing the result of a calculation to go from most positive to least negative, in turn causing the output
to reverse directions. Most of these problems occur in microcontrollers and microprocessors be-
cause their architectures are not designed for signal processing.

Early microprocessors (WP) and microcontrollers (1C) were designed to replace hardwired
logic, TTL gates, etc. Newer microprocessors and microcontrollers have retained most of the old

architectures. These processors are adequate for simple applications that require little or no signal
processing. In a control system, the controller is responsible for processing the command and feed-
back signal. Thus, applications such as control systems, speech, and telecommunications require
intensive numeric processing of analog signals. PPsand pCs are usually unable to do the process-
ing correctly, so using them can cause significant numerical problems.

Most of these problems occur in processors that have 8/16-bit ALUs and registers. This
8/16-bit architecture limits the accuracy of intermediate and final results and generates truncation/
quantization errors. Lack of scaling shifters to maintain the required significant bits can cause addi-
tional quantization/truncation errors. Most processors also lack the performance to perform real
time processing, so they rely upon lookup tables, thus limiting precision to low-performance or
low-bandwidth systems. Lack of processing capability also limits these processors to simpler con-
trol techniques. They are unable to take advantage of sophisticated techniques from modern control
theory. If used in higher-performance systems, they can cause excessive loop delays, leading to in-
stability. Most of the problems discussed can be eliminated with the use of digital signal processors
as controllers.

DSP Architectures

DSP architectures like those in the TMS320 family have been designed for signal processing
systems. The TMS320 family not only has an architecture that minimizes numerical problems in
signal processing, but also has the performance to meet the bandwidth requirements of high per-
formance systems using sophisticated techniques.

DSP architectures are optimized to give the highest possible performance. To achieve high
processing speed, the TMS320 DSPs perform all functions in internally hardwired logic. Thus, it
takes a single clock cycle to execute most functions. Other processors perform the same functions
in software or microcode, thus taking a large number of cycles for execution. To enhance the per-
formance even further, the TMS320 architecture employs a multiple-bus internal architecture. This
allows simultaneous fetch of instructions and data operands. Most instructions on the TMS320, in-
cluding arithmetic operations, are executed in a single clock cycle.

In digital signal processing, most algorithms, including control algorithms, can be repre-
sented as difference equations consisting of multiply accumulates. The TMS320 DSPs contain a
hardware multiplier that performs a 16 x 16 multiply in a single instruction cycle. This high speed
allows the TMS320to execute most control algorithms in real time. The fast processing speed mini-
mizes the computation delay time for generating the output from the controller and also allows very
fast sampling rates to be implemented for high bandwidth systems. Additional features in the
TMS320 architecture include an instruction set that is optimized for data sampled systems. The
DMOV instruction implements the z"! operator. The MACD instruction implements four opera-
tions simultaneously:

® A multiply

® Data move

® Accumulate previous result

® Load T register

For greater precision, the TMS320 has 32-bit registers for storing intermediate results. In ad-
dition, the TMS320 has multiple hardware parallel shifters to allow scaling and prevent overflows.
These shifters enable shifting to take place simultaneously with other operations without additional
overhead or execution time. The 32-bit registers and shifters minimize quantization and truncation
errors because a very high precision can be maintained both for intermediate and final results. The
TMS320 also contains an overflow mode, which, in case of overflow, allows the accumulator to
saturate at most positive or least negative values (similar to analog circuits), instead of rolling over
and varying between positive and negative values. For fast context saves, the TMS320 contains an
on-chip hardware stack, reducing interrupt response time and minimizing stack pointer manipula-
tions. Since the TMS320 is a family of microcontrollers, it also minimizes system costs with fea-
tures such as on-chip RAM, on-chip ROM/EPROM, and on-chip peripherals like serial ports, tim-
ers, and parallel I/O. The high degree of on-chip functionality, flexible instruction set, pipelined
architecture, and high performance make the TMS320 the preferred choice in most control and sig-
nal processing applications. Table 2 lists a comparison between the TMS320C14, TMS320C25,
and several uCs and uPs.

Table 2. Features Comparison

Feature ’320C14 ’320C25 80C196 68000 68020
Instruction cycle time-ns 160 100 333 400 120
Frequency — Mhz 25 40 12 10 24
Multiply 16x16 — 32 (us) 0.16 0.1 22 7.0 1.0
PID loop (ps) 22 13 27.0 25.0 438
Matrix multiply (3x3, 1x3 — ps) 43 2.7 243 65.2 9.7

TMS320 Digital Signal Processors

The TMS320 digital signals processors can be divided into two families: a fixed-point arith-
metic family and a floating-point arithmetic family. Each family is further divided into different
generations and offers different performance ranges between generations. Within each generation,
members are object code and, in some cases, pin compatible.

TMS320 Family of Fixed-Point Arithmetic DSPs

The fixed-point arithmetic family is made up of three generations, TMS320Clx,
TMS320C2x, and TMS320C5x. All members of the fixed-point arithmetic family have a 16-bit
architecture with 32-bit ALU and accumulator. They are based on a Harvard architecture with sepa-
rate buses for program and data, allowing both instructions and operands to be fetched simulta-
neously. They also feature a 16 x 16=32 hardware multiplier for a single-cycle multiply, and ahard-
ware stack for fast context saves. An overflow saturation mode is included to prevent wraparound.
All instructions (except branches) are executed in a single clock cycle. Performance ranges from
5 MIPS (million of instructions per second) to 28.5 MIPS among the three generations.

TMS320CI1x

The TMS320C1x generation is based on the TMS32010, the first DSP, introduced in 1982.
It comes with 144 words of on-chip RAM and 4K-words of address space. Instruction cycle time
goes down to 160 ns. Other members of the first generation include the TMS320C15 and its

Y LV) PV SRR LY I » 3 7 a TR I 2 YRR | RN - D T D T T .w P

EPROM version (TMS320E15), TMS320C17/E17, and TMS320C14/E14. All of these devices
have an expanded memory of 256 words of on-chip RAM and 4K-words of on-chip ROM/
EPROM. The TMS320C14/E14 is optimized for digital control applications and has 16 pins of bit
I/O, four timers (including a watchdog timer), a USART, 6/4 channels of pulse width modulation
(PWM), and 2/4 capture inputs for optical encoder interface and PWM[1,2].

TMS320C2x

The TMS320C2x generation is based on the TMS320C25. It comes with 544 words of
on-chip RAM and 4K-words of on-chip ROM. Total address space is expanded to 64K words for
both data and program. The instruction set is considerably enhanced from the C1x generation. In-
struction cycle time is reduced to 80 ns. Other members include the TMS320E25, TMS32020, and
TMS320C26(3].

TMS320C5x

The TMS320C5x generation is based on the TMS320CS50. It features 8K-words of on-chip
RAM and 2K-words of on-chip ROM. The instruction set is considerably enhanced from the
TMS320C2x generation. Some of the new features include a separate PLU, shadow registers for

fast context save, JTAG serial scan emulation, and software wait states. Instruction cycle time is
35 ns.

TMS320 Family of Floating-Point Arithmetic DSPs

The floating-point arithmetic DSPs consist of two generations: the TMS320C3x and the
TMS320C4x. All members of the floating-point arithmetic family have a 32-bit architecture with
40-bit extended precision registers. The floating-point arithmetic family is based on Von Neuman
architecture. However, multiple buses are included to give even faster throughput than traditional
Harvard architectures. Features include hardware floating-point multiplier and a floating-point
ALU.

TMS320C3x

The TMS320C3x family is based on the TMS320C30. It features 2K x 32 words of on-chip
RAM, 4K x 32 of on-chip ROM, and 64 words instruction cache. Other features include a separate
DMA, two serial ports and two timers. The TMS320C30 features two external 32-bit data buses
and a 16M-word address space. Instruction cycle time is 60 ns, and performance is up to 33
MFLOPS (million floating-point operations/second)[4].

Design of Digital Control Systems

Design of a control system involves two major steps:

1) Theprocess or plant has to be put into mathematical form so that its behavior can be ana-
lyzed and evaluated (i.e., a plant model has to be derived).

2) An appropriate controller must be designed so that the plant gives the desired response
under influence of the control system.

Designing adigital control system requires additional steps that convert the system into adis-
crete form. This conversion can be done in two different ways.

1) The design of the controller can be carried out entirely in the analog form in s-domain,
and then converted into discrete form at the final stage for implementation.

2) Thedesign of the controller may also be carried out entirely in discrete form. In this case,
the plant model has to converted into discrete form or z-domain.

This section describes how to

® Discretize analog systems

® Reduce a plant into a mathematical form
® Design the controller.

Discretization of Analog Systems

There are several ways to convert existing continuous or analog control systems into discrete
or digital systems. However, the conversion from the s-domain to the z-domain causes some distor-
tion in the location of the poles in the z-domain, and must therefore be taken into account.

Zero-Order Hold (ZOH)

This technique assumes that the controller is preceded by a ZOH (D/A converter) and fol-
lowed by a sampler (A/D converter), so that both input and output of the resulting system are di gital.
Both the ZOH and sampler are included in the conversion scheme. The conversion is given by the
following equation:

H(z) = (1-2")Z [L'\(H(s)/5)] . @)

It is assumed that the Laplace transform will be split up using partial fractions and z-trans-
form tables will be used.

Matched Pole-Zero

In this technique, the poles of the s-domain are directly mapped into the z-domain according
to the relationship z =€, where T is the sampling period. To equal the number of poles and zeros,
additional zeros are added at z =—1. The gain of the two systems is matched at a critical frequency
by choosing an arbitrary gain constant. This method does not take into consideration any aliasing
effects.

Bilinear Transformation

This technique, also called the Tustin or trapezoidal approximation, uses the relationship

s = %(z—l)/(z+l) 2

to transform an s-domain function into the z-domain. The left half of the s-plane is mapped into the
unit circle in the z-plane. However, this method warps the frequency response at the critical fre-
quencies of the system. To overcome this problem, the critical frequencies of the original s-domain
are prewarped so that the critical frequencies of the z-domain system end up where they belong. The
critical frequency W, is prewarped to another frequency by the transformation

2 T
W* = ?tan(Wo-z-) (3)

where T is the sampling period.

Before these techniques can be used, an appropriate plant transfer function must be derived,
or a controller may have to be designed. The next section describes derivation of a plant transfer
function and the controller design.

Plant Modeling '

The first part of designing any control system is to describe the plant in a mathematical form
or identify the plant’s parameters. This section describes the derivation of a mathematical model
for a plant.

A DC servo motor is used in the example, and a model is developed for the motor. The motor
is an analog device, and the given electrical and mechanical characteristics describe its behavior
in the continuous time form. This model must be transferred into a discrete form or the z-domain
for use with a digital controller. The ZOH method is used to transform the model into a discrete
form.

In general, the electrical characteristics of a DC motor are given by

di
L— +Ri =V-em 4
ar T f
where
L = inductance of motor
R = resistance
Vv = applied voltage
i = current

emf =backemf=K, x0

The mechanical characteristics are given by

de dé de
Jy— + B— + KO =T, -J,—- ®)
Md? d, P
where

Jy =motor inertia
0 = angular displacement
K = stiffness constant
B = damping constant
J = load inertia
1 =load torque = K; X i

K, = torque constant

Figure 2 shows a representation of the equivalent electrical and mechanical model of a DC
Servo motor.

Figure 2. Model of DC Motor

- O—

The motor selected for this report is a Pittman model 9412G316. It has the following parame-
ters:

R =64Q
J =1.54 x 100 kg x m2
K, =0.0207 (N x m)/A

K, =0.0206 volt/(rad/s)

The electrical and mechanical characteristics of the motor given by (4) and (5) can be com-
bined. After the values of the motor parameters are substituted, the complete transfer function for
the mathematical model of the motor as derived in Appendix A can be stated as

53.906
_ 33906 6
Gl = 5% 1.116) ©)

This transfer function is then transformed into the z-domain using the zero-hold approxima-
tion as shown in Appendix A. The transfer function or the model in the discrete form is stated as

2694z + 2693272
Gn(2) = x K, ™
& =T 1999+ 999,7
where
K,, =the numerator gain constant.

Digital Controller Design

The next step in designing a digital control system is to design the controller. The controller
may be designed in the continuous domain and then converted into discrete form. Alternatively,

the entire design may be carried out in the discrete domain. It is assumed that the design is carried
out in the discrete domain. The next few sections give an overview of different types of control al-
gorithms and discuss design of a PID controller and a deadbeat controller. However, before design
of a digital controller is done, some discussion of behavior of poles in the z-domain is essential.
The next section discusses behavior of poles in the z-domain.

Behavior of Poles in Z-domain

Use of the conversion techniques allows the conversion of an existing analog design into a
digital design. However, to insure successful implementation of the control system design, some
knowledge of the behavior of the poles in the z-domain is essential. Any poles (real or imaginary)
located outside the unit circle are unstable and have an unbounded response. Poles located inside
the unit circle give a stable response. Poles that lie on the unit circle manifest oscillatory behavior.
As poles move towards the origin, their response decays at a faster rate. Figure 3 shows the different
pole locations and their corresponding responses.

Figure 3. Behavior of Poles in Z-Domain

Control Algorithms

The next step in designing the controller is to select an appropriate algorithm or controller
structure. The processing burden imposed upon the controller is directly dependent upon the com-
plexity and type of controller structure.

Compensation Techniques

Compensation techniques are one of the most commonly used control techniques. In this
technique, the controller adds poles and zeros to get a desired system response. For a continuous
control system, the controller is designed in the s-domain by using some of the well known methods
such as root locus, Bode plots, and Nyquist plots. The analog or s-domain design is then transferred
into a discrete form (z- domain) by using a transformation technique. Alternatively, the compensa-
tor can be designed directly in the z-domain by using z-domain frequency response methods or the
z-domain root locus method. Compensation techniques allow a precise modification to system be-
havior. Implementation of compensation techniques is described in an application report, Control
System Compensation and Implementation with the TMS32010[5].

PID

The PID is acommonly used analog control technique. In a PID controller, terms proportion-
al to the error term, its integral, and its derivative are summed to achieve the controller output. A
PID controller may be designed in the s-domain, and then transferred into the z-domain by using
one of the transformation methods. Alternatively, the PID algorithm is converted into a discrete
form, and the design is carried out entirely in the z-domain. PID is probably the most commonly
used algorithm. PID controllers are very robust; although the design of coefficients is somewhat
arbitrary[6, 7].

Deadbeat

A deadbeat algorithm is used when a quick settling time is required. Deadbeat design is car-
ried out entirely in the z-domain. A deadbeat controller replaces the poles of the system with poles
at the origin of z-domain[8].

State Models

In a state model, a complete representation of the system is made in matrix form. This is ac-
complished by identifying and developing the relationship between the different states or variables
of the plant. An appropriate feedback gain can be chosen to place the poles of the system at any
desired location in the z-domain. State controllers are used where multiple variables or states need
to be controlled. State controllers are sometimes impractical to implement because it may not be
possible to measure all states. They are usually used in conjunction with observers. State controllers
allow very precise control of system behavior(6, 9, 10].

Observer Models

Often, in control systems, some of the states of the system are not available for measurement.
The measurement of known states in an observer model can be used to estimate unknown states
in the control system. The estimated states, along with an appropriate feedback gain, can be used

to complete the control loop and place the poles at any desired location. Observers are typically
used in conjunction with state controllers, where access to all state variables may not be available[6,
9, 10, 11]. :

Optimal Control

Optimal control synthesis is used when a specific performance or cost criteria (e.g., time or
energy) must be minimized. The given criteria or cost function is used to derive an appropriate con-
trol law, which is then implemented with a controller or compensator[7, 12].

Kalman Filter .

An observer model can be used in a system where an exact measurement of some states is
available. However, in stochastic systems, the presence of noise or uncertainty makes it impossible
to make an exact measurement. A Kalman filter is an observer model in a noisy or stochastic sys-
tem[7, 13, 14].

Adaptive Control

Adaptive control is used in systems in which there is insufficient information about the plant
parameters, making it impossible to derive a plant model. It is also used in systems where plant pa-
rameters or plant models change over time, making the controller unstable. An adaptive controller
tracks changes in the plant by redesigning the controller to give an optimum control system[6, 8,
16]. .

Design and Implementation of PID Controllers

This section describes design and implementation of a PID controller. PID is a commonly
used technique in classical control. In designing controllers, it is often found that just minimizing
a term proportional to the error is not sufficient. Including the integral of the error term reduces the
steady-state error to zero because it represents the accumulated error. To further improve stability
and plant dynamics, a differential of the error term is introduced. This term represents the error rate.
A PID controller that includes all three terms can give very good results. This technique is also be-
ing used in discrete form with digital control systems.

Two different approaches are used for conversion of PID into discrete form: rectangular and
trapezoidal approximations. For the rectangular approximation, the design is done in the analog
domain and then converted into z-domain. For the trapezoidal approximation, the design is done
directly in the z-domain, using pole placement techniques.

The analog PID algorithm is given by

d
u(e) = Ket) + K, J d, + Kdi @®)
where
Kp, Kj,and K; =PID constants
u(t) = output of controller

e(t) = error signal

Rectangular Approximation

To discretize, assume that the sampling interval for the system is T. The rectangular approxi-
mation is the easiest to use and gives satisfactory results. For the rectangular approximation, as-
sume the integral [edt is an accumulation of small rectangles given by T x e(i)fori=1ton (see
Figure 4). The differential de/dt (if T is sufficiently small) can be approximated by

e(n) - e(n - 1) J (9)
T .

where e(n) = the nth sample.

Figure 4. Rectangular Approximation

—

A

e

After conversion into its discrete form and transferring into time domain, the final form is
shown in (7). The complete derivation is described in Appendix B.

u(n) = u(n-2) + Kie(n) + K,e(n-1) + Kse(n-2) (10)

where

K; = 19 +Ky/T + K;T

K =KT- 2K,/T

K3 =K4/T-K,

u(n) = control signal at time interval n

u(n-2) = (n-2)th sample

e(n) = error signal at time n

e(n-1) = error signal at time n-1

T = sampling interval

Appendix E shows the code to implement (7) on the PID controller with rectangular approxi-
mation. The code takes 11 instructions on the TMS320C15 and executes in 2.6 ps at 20 MHz. The

MPY instruction performs a multiply in a single cycle. The LTD instruction loads the T register,
implements a data shift or z'! operation, and adds the result of the multiply to the previous value
in the accumulator, all in a single cycle.

K}, K>, and K3 are obtained by designing K}, Kj, and K; and using conventional techniques
from classical control[6, 7] (see Appendix B). Figure 7 through Figure 6 show the step response
of the PID controller with different values of Kp, K;, and K.

Figure 5. Step Response of the PID Controller with First Set of K, K; and K; Values

POSITION STEP RESPONSE
1.8 T I T — 1 1

1.6

POSITION IN RADIANS
4 o o =
o © - N &

o
>

o
()

‘ I i
0o 10 20 30 40 50 60 70 80 90 100
TIME IN # SAMPLES

Figure 6. Step Response of the PID Controller with Second Set of Ky, K;, and K; Values
POSITION STEP RESPONSE

o 3 8
! ! J | =4 2 ! J J ' T
, , ~ ' ' '
Lo T " “ “ I 89w
' ' J ' ' 0o
-t i .0 Qauw- 48 x - - - --- - b st waan {8
' ' ' o
' ! i ! ' LU .M \ , , , a._ o E
' ' — 3 XX XX
“ . ” ; ; XN S ; “ _ _
' ' . '
|||“|||L|||“.|l|_||||“|||.—|||1|||m K!; '1..|“|||||m..||||“||l|1“ ||||| R w
' ' ' , ' . '
' . ' f ' ' '
” [' ” ' " % ' ' ' ! ”
_ ! L Lo o It _ u ” _ ! °
iR SIS S > el e n
' ' ! ' ! 1 w2 ~
' ' [! [' '
' J ' ! ' ! ' ”M —&
' nn 1 ” 1 .“. ' o - 2
= = - - - == ryp -l - 1= - - l‘l-"lles T o
[' ' ! ' ') w = o
[' ' ' ' ' ' H = [
' ! ' ' ' ' ' s m _m_
' ' 1 ! ' ' 1 < .
STl TR I S B - S] &
[' ' ! ' ! 1 * - =
' ' ' ' ' ! ' = m (/2]
' ! ' ' ' ' ' - b~ 2
' [[w =
' ' ' ') le]
il b S |l|.|||l.l||._.lll.||||.wM C n
[' d ! ' ! ' - D
[' ' ! [l ' ' m o]
[! ' ' ' ' ' o.
') ' ! ' ' ' o m“
e Sl I ST) =
' ' ' ! ' ' ' et
'
[! ' “ ' " 1 0m
' ' ' '
' [! ' ' ' P=Y w
— ||AL|||1|||.1|||.|r|.—|l|.|all-_2 =
' . ' . ' ' m.
D ' [! [' ' 7
[' ' ' ' ' ' Q
' ' ' ' ' ' P= -4
"lJI'IFl ||||—|||4|||r|||-||l1 p
' ' ' ' ' ' &
' ' ' ! ' ' W
1 ' ' ' ' ' .
] | 1 | ! | o N
© < o - © © < o o 5
- - - o o o o 7)) N
oo -
SNVIQVH NI NOLLISOd =

TIME IN # SAMPLES

Trapezoidal Approximation

If a more accurate conversion is required, the trapezoidal approximation or Tustin transfor-
mation is used. The area of the integral f edt is given by the summation of small trapezoids (see
Figure 8).

Figure 8. Trapezoidal Approximation

L+

The integral f edt can also be solved by taking the Laplace transform of (8) and substituting
s =2/T X (z-1/z+1) 11)
After substitution and solving,
u(n) = u(n-2) + Ke(n) + Ke(n—1) + Kse(n-2) (12)

where

K; =K, +2K4/T + K;T/2

K =K T-4Ky/T

K3 =2K3/T- K, + K T2

u(n) = nth sample of output of controller
u(n-2) = (n-2)nd sample of output

The complete derivation of this equation is described in Appendix B. The code to implement
(12) on the PID controller is shown in Appendix E; it takes 12 instructions and executes in 2.8 us.

The gain constants K7, K, and K3 are designed by selecting the poles for the system transfer
function[15] (see Appendix B). The dominant poles are selected by choosing a desired characteris-
tic equation. The rest of the poles can be selected by placing them near the origin. These polar loca-
tions are chosen to ensure system stability and a desired system response. However, some fine tun-
ing may be necessary to achieve an optimum response from the system. As the poles move toward

the unit circle, the system response speed decreases while the overshoot decreases; the system may
become unstable if the poles are selected too near or outside the unit circle. Figure 9 through
Figure 11 show the step response of the PID controller for various pole locations for the system.

Figure 9. PID Controller Step Response for System’s First Pole Locations

POSITION STEP RESPONSE

1°4 '] '] N '
12 P~ --=-a--- -: ----- b—----: R S : ----- »-----: ----- [
2 ! : : : ! ' ! i !
I 1o R AR Frocs T oo il
n 1 ') ') ') ' 1
<) ' L} ' 1 ' 1 ')
[+ o ' . ' . ' , [, 1
208 [~----f----r--auoao - b To-- - - - - - - L---
E . ! : ! : ! - ! : :
0nO0. i Al N Lt T 1= === - IR Fee-sdoo oo 1= = = = -
o) ! 1 !) !] ! 1
u) ') ! 1 ! L} ! . o
) ! ' ' . ' . '+ Pole Locations
Lo N S . s N . 1z, =0.90 i
04 ! . ; ! ; . ! \ 2, =091
' ! ' ! ' ' ' ' Z3=0.95
] : ' : ' : ' : Z4=0.95
el ol R Pl s e R LR Kn=10* .
0]] |] | | |] |
0 10 20 30 40 50 60 70 80 90 100

TIME IN # SAMPLES

Figure 10. PID Controller Step Response for System’s Second Pole Locations

100

: _ _
_ _ @
' ! 2
L -
)
...... P 88388y (B
' ! J000O0
' X @ nnonnu
' 13
...... i ENRONY g
L}
“ 1 L}
] L
“ L) '
|||||||||| P FERENE NS I =]
nl 1 1 7
w ' ' '
m ' L} 1
' ! ! [72]
o----- EREES SREEEE S - 84
7] . ' ' m_-
(1T} f ' ' M
o _ _ " -
wr----- “.. ||||| [l T T T T T Ro..”
T) '
o ! . ' =
4 !] ' w
)
o ___. - m e - [N PR MM
= _ ! _ =
s ']]
o f 1 '
P ' 1 L}
||||| _.onnu.._lnn-u-n--'p...-|||n.w
f)]
') 1}
') L}
N 1)
llllll _llllll-lllllllll|IJl|IIlm
')]
’) 1
'] L}
] [}
_||Illul IIIII T T T TR T T T T T T T T T w
'] .U 1
o '
L \ .
| 1] I °o
) [n - 0 o
o o

SNVIQVH NI NOLLISOd

Figure 11. PID Controller Step Response for System’s Third Pole Locations

L e ’
1
' ' _.om
! ' RO OW
S R oot _m9.921.40 —18
' [—_OOOO
' ' @ hnnonn
[o] €
' ' o NN SN
e I I 1o - - - - ' -
i ' ' ' . w
[' ' '
[' ' '
' ' ' '

—----F----3----- (. [.tnnulm
w ' ' ' '

[} [1 ['
m 5 ' | ' '

e - -} - - - - - e = = = = e e e e el cc e e den - - @
y ” ' ' ' ' ©
w . ' [' [

(V4 ' ' ' '

a “ [' ' ' o

——_—I__'ulll_nlannu. ||||| (. [[l 07
[[' '

nh “ 1 ' 1 '

o N ' ' ['

b - - - 4 T e e = - = e o = = - L e e o
E r . _ _ . g
o _ ; _ _ "

a “ ' ' ' ' o

- l. ||||| [[l S e I

' ' [[
“ ' ' ' '
[' ' '
'ull.“ ||||| [I [..nullLi..nl'”
' ' ' '
“ ' ' ['
' ' ' '
“ ' ' ' ' o
il ll.lllll.- lllll (i == === [
' [' ' '
-) ' ' '
I T N
| I I I _ °

o - o © < o o

- o o o o
SNVIQVH NI NOLLISOd

TIME IN # SAMPLES

Our final algorithm comes out to
u(n) = u(n—-2) + 0.162¢(n) - 0.439(n — 1) +0.3185¢(n—2) 13)

Figure 12 shows the the block diagram of a system using a PID controller. The zero-order
hold represents the function of a D/A, and the sampler represents the function of an A/D.

Figure 12. PID Controller System Block Diagram

PID ZERO DC SERVO
rn) *_| controLLer|-™ | droeR MOTOR yin)
d Gep(2) HOLD Gy2) SAMPLER
Deadbeat

One of the desired characteristics in a control system design is a quick settling time. In an
analog controller, it takes the system output an infinite time to settle exactly to the reference input
signal. A deadbeat controller is used when a quick or finite settling time is required. A deadbeat
controller reaches a steady state in n+1 samples, where n is the order of the controller. Essentially,
adeadbeat controller cancels all the poles of the system and replaces them with poles at the origin.
Anotheradvantage of deadbeat controllers is that they require few calculations. Therefore, they can
be used in systems where synthesis must be repeated frequently (e.g., in adaptive control systems).

Deadbeat controllers compensate for the poles of the system; therefore, they should not be
applied to systems with poles outside or in the vicinity of the unit circle in the z-plane. Thus, dead-
beat controllers should be used only with stable plants or processes; otherwise they may cause insta-
bility. Deadbeat controllers may also require a large amount of gain, thus leading to actuator satura-
tion.

Deadbeat controllers also give alarge overshoot. The only design parameter in deadbeat con-
trollers is the sampling period that influences the magnitude of the control signal. When deadbeat
control is used, the magnitude of the control signal increases as the sampling period decreases,
otherwise, a larger overshoot occurs. Thus, it is important to choose the sampling period carefully
when using deadbeat control. Besides increasing the sampling period, there are two other ways to
reduce the overshoot.

1) Oneis to design an extended-order deadbeat controller([8], which allows u(0) or the ini-
tial control action to be specified. Since u(0) has the largest magnitude, this allows the
overshoot to be controlled. .

2) Analternate method is divide the r(t) (the desired final state) into two or three sublevels
and reach final steady state in 2(n+1) or 3(n+1) sample times instead of n+1 sample
times. This has the same effect as increasing the sample time. However, the final over-
shoot can be more precisely controlled, depending on how 1(t) is subdivided.

The transfer function of a deadbeat controller is given by

- Do + plz" + p22~2 + ... p,,z"' (14)
Go + @iz + @277+ ... gz

The order n of the controller transfer function is the same as the order of the plant transfer
function, or n=2. The deadbeat controller will reach final state in n+1 or three sample time intervals.
The coefficients py, p;, P2, 99 91, and ¢ are found from the plant parameters. Appendix C de-
scribes the complete equations to find these parameters. Solving for the parameters of the control-
ler, the final transfer function for the controller is

Gy = 0.1566 — 0.3129z™' + 0.1564z2 (15)
1 — 0.4218z7 - 0.4216z>

Figure 13 shows the block diagram of a deadbeat controller and Figure 16 through Figure 15
show the step response of the deadbeat controller. The code to implement the deadbeat controller
is given in Appendix E.

Figure 13. Deadbeat Controller Block Diagram

DEADBEAT | uin) [zemo DC SERVO ")
)™ | ontrorterl— | Zeen MOTOR |-+—0—o0—91_
d Gay(2) HOLD Gpl2) SAMPLER

Figure 14. Step Response of the Deadbeat Controller

1T T 1T T T T T 7
' '] ' 1 :
' ' '

' '] ' ' [3)

' 0 ' ! ' ' ' “ !

' ' ' " ' 1 " m4nv “

' [' \ ' 0 , O~ ,

l|1||1..|1||.|||1n|.|||. [ity

' ' ' ' ' I3

[]] “ ' [“ X ”

' '] ' '

' [' ! ' ' ! ' !

[' ' ! ' 0 ! ' !

T S SR

' ' [! ' ' ! ' !

w 0 [' “ ' ' “ 0 ”
(77} [} [[] [1

4 ' ' ' ' 1 ' ' ' !
m ' [[“ ' ' ” ' “

' [' ' 0 '
$l||.|||.|||_n||“|||.|||...|.“|||.||.”||_
[1 I [' ' '

a ' ' ' ! ' ' ! ' !
_—._I._ ' ' ' “] ' .. 1 "
1 [[' ' '
“ ' [' " ' ' “ ' "
= S A R L 1= = = - -
m ' ' ' ! ' ' ' ' !
m 0 ' ' ” ' ' " ' "
' ' ' ' ' [
o 1 ' [! 0 ' ! ' !
Q. ' ' ' ! ' ' ! ' '
P T SO T SR

' ' ' ' ' ' ? ' T

' ' ' ! ' ' ! ' !

' ' ' ! ' ' ! ' !

' ' 0 ! ' ' ' ' !

) ' ' ' ' ' ' ' !

' ' ' ! ' ' ! ['

B e il e el eI R

' 0 ' ! 0 ' ! ' !

' ' ! ' ' ! ' '

' ' " 4 L ! ' !

' ' ' ! 0 ' y .

' ' '

I I R T I N T

- 2 @ ~r @ n ¥ 0 & = o

o o (=] o (=] o o o o

SNVIQvH NI NOLLISOd

15 20 25 30 35

TIME IN # SAMPLES

10

Figure 15. Step Response of the Deadbeat Controller

i e S il Sl Sy
' ' ' ' ! '
ﬁ ' i ' [' 1
2 [] ' ' ' '
[S T O B S
“-v ' ' ' ' [f
' ' '] ' '
w ' ' '
LR
Y| o T S
= ' ' ' ' ']
(/2] ' 1 ' [']
Z ' ' ' [' 3
O ' ' ' ' ' s
m l|_.|llﬂlII.—llll-lllJllll.llll
0 ' ' ' ' ' '
O ! ' ' [' 1
o ' ' ' f ['
e T L S
' ' ' 1 ']
' ' '
' “ ! ” ' “
' ' ' f ')
il JE T B [
' ' ' ' ' '
' ' ' [1 '
' f [) ' '
' ' '] ']
e A B Sl Sl Sl
1 ' ' ' ' '
] ' '] ' '
' r
I | 1 1 1 1
0 (] n 2 5 - ow o
o o M c o
sN¥Tave N NoLwSod

- .- ek oe---

N

[
1

D T T Sy N

100

40 50 60 70
TIME IN # SAMPLES

30

10

Figure 1
6. Ste
pR
esponse of the Deadbeat C
at Controll
er

R - -3 - - - - - -
---a - o
-
o
— - - - - - - - - - - - - —
[N -r - L L 1 4
-r -
r i
o ' f ' ' ' ' ' ' '
(7)) -p---- - - - - -—--- - - - -
-
T - a
-1 -
- —
o.llllll-vll - -k = - - . - - 4 - - = -
-
-
=z -
o
p— - - - - -- -- - - - - - =
L -r -1 4 4
-T b
-9 - J
e = - - - -- - - - - - - - q -
- - - !
LA,
r * + ——

SN i .
'Viavyd NI NO!

LLISOd

30

n 20
ME IN # SAMPLES *

15

10

Implementing Digital Controllers

This section will discuss some of the issues in implementing digital controllers[5, 17] with-
out going into mathematical details. For mathematical models refer to references [6 through 11].
Perhaps the most critical issue in implementation is the effects of finite wordlength.

Finite Wordlength Effects

Most digital controllers use fixed-point arithmetic processors. In a fixed-point arithmetic
processor, only a finite amount of storage length (i.e., 4, 8, or 16 bits) is available to represent the
magnitude of a signal or a gain constant. Si gnals and coefficients have to be scaled to fit in the dy-
namic range and wordlength of the processor. This limited storage capacity is referred to as the fi-
nite wordlength issue. The effects of finite wordlength show up as noise or limit cycles in the sys-
tem, and may even cause instability. These effects are also referred to as quantization noise.

Another effect of finite wordlength shows up in the processing of signals. As intermediate
calculations are carried out, higher precision is needed. For example, a 16x16 multiply needs a
32-bit register to store the result. If only 16 bits are available, the lower 16 bits are thrown away.
This results in a loss of precision in the result, referred to as roundoff error. As successive calcula-
tions are carried out, these errors will accumulate. Another effect of finite wordlength is overflow
management. Too often, registers will overflow during calculations. This usually causes registers
to wrap around from most positive to most negative.

_ To minimize finite wordlength effects, a minimum of 16-bit wordlength is required, with
32-bit registers for internal precision. In addition, extensive simulations should be carried out to
determine the dynamic range of the signals. Once system dynamics are known, proper scaling fac-
tors along with structure optimization techniques can reduce most of the effects of finite word-
length.

Selection of a proper scaling factor is critical in minimizing the effects of finite wordlength.
The scale factor should support the full dynamic range of signals and coefficients. A large scale
factor may cause overflows. Although overflow protection is built into the TMS320 architecture,
it is advisable to minimize overflows. To minimize overflow, sometimes it may be necessary to
choose a smaller (1213 bits) scale factor. A small scale factor, on the other hand, may cause quanti-
zation noise or even underflow.

Usually, there is little choice in handling the dynamic range of signals. If the dynamic range
is too big, it may dictate selection of a floating-point instead of a fixed-point arithmetic processor.
Simulations are required to determine the dynamic range. However, in some cases, it may be possi-
ble to switch modes and change scale factors.

If gain coefficients have a large dynamic range, direct structures should be avoided and bro-
ken into smaller cascaded structures. Different scale factors can be chosen for different sections.
Another approach is to use structure transformation techniques like Schur transformation or Modal
transformation to optimize structures. These transformation techniques not only reduce the dynam-
icrange of coefficients, but also reduce the number of nonzero elements in the structure. This mini-
mizes processor calculations.

Fixed-Point Versus Floating-Point Arithmetic Processors

One of the ways to avoid finite wordlength effects is to use a floating-point arithmetic proces-
sor. Floating-point arithmetic processors have a very large dynamic range. A 32-bit floating-point
arithmetic processor has adynamic range large enough for most control system applications. Float-
ing-point arithmetic processors are usually expensive; their costcan be justified in only a few appli-
cations. Floating-point arithmetic processors may be needed in applications where either signals
or gain coefficients are time varying and have a large dynamic range. Another case that justifies
floating-point arithmetic processors is one in which cost of development cost is more significant
than component cost and very low volumes are required.

If gain coefficients have a large dynamic range but are constant, their dynamic range can usu-
ally be reduced by structure optimization techniques. Floating-point arithmetic processors usually
allow code to be developed in high-level languages and reduce the need to fully identify system
dynamic range.

Sampling Rate Selection

An important consideration is the selection of sampling rate. In signal processing, the sam-
pling rate is chosen to be at least twice the bandwidth, or the highest frequency component in the
systems. In control systems, the sampling rate chosen is six to ten times the system bandwidth. If
lower sampling rates are selected, noise from higher frequency components may be introduced into
the system and can be indistinguishable from the signal. Anti-aliasing filters are used before the
controller to filter out high frequency components. A first-order filter should be used to minimize
the phase shift. :

Controller Design Tools

A major consideration in using digital controllers is the design of hardware and software. One
advantage of using digital controllers is that a large number of CASE (computer aided software en-
gineering) tools are becoming available. These tools tremendously increase the productivity of the
control designer.

Code Development

Software or code development cost is a major concern in implementing digital controllers.
The programmable approach to controllers allows easy upgrade and maintenance. It also protects
development investment, but at the same time it requires more initial development effort. Six dif-
ferent approaches can be taken for software development:
® High-Level Languages (HLL)—- Use of an HLL like C, Pascal, or FORTRAN can substan-
tially cut development effort. Such languages are familiar and easy to program. However,
they are not optimized with respect to signal processing orto a particular processor’s ar-
chitecture. Code compiled on a processor may be two to four times the size of assembly
code. This is a high penalty in time-critical signal processing applications.
e Assembly Language—The most efficient coding occurs in assembly language. Evenwhen
an HLL language is used, it may be necessary to use assembly language for the more

P

time-critical sections. Assembly language programming requires an intimate knowledge
of the processor architecture. However, the nature of performance requirements in signal
processing requires maximum code efficiency, leaving very little choice in some cases.

® Signal Processing Languages — This may provide a mid-ground between the two ap-
proaches discussed above. Special languages designed for signal processing may give the
ease of development of standard HLL languages. At the same time, they can give some
of the efficiency of assembly language since they are designed for specific signal process-
ing applications. One example of these special languages is DSPL from dSPACE[18].
However, there are no standards for these languages, and none of the languages are widely
known.

® Code Generation Software — Code generation packages are becoming available that auto-
matically generate assembly code for particular processors. For example, the Impex soft-
ware package[19] from dSPACE will generate TMS320 assembly code from a mathemat-
ical description of the controller. The DFDP (Digital Filter Design Package)[20] from
ASPI will generate assembly code for TMS320 processors from a description of a filter.
These packages are becoming increasingly popularbecause they allow the control design-
er to focus on design issues instead of processor architecture in developing software.

® Controller Design and Simulation Software — Controller design and simulation packages
are also becoming popular. Packages like Matrix-X[21] and PC-Matlab[22] can be used
for simulation and design of controllers. These packages allow use of pole placement and
other techniques. Packages like Simnon[23] are extremely good for simulation of contin-
uous and discrete controllers. These packages greatly increase the productivity of the con-
trol engineer. .

® Device Simulators — Another very useful tool in designing software is the device simula-
tor. Simulators for the TMS320 family run on common platforms like PC or VAX and
provide full simulation of the instruction set, along with instruction timing. These allow
simulation of the controller software to fully check the effects of math on internal registers
and memory without the necessity of building hardware.

Hardware Design

Alarge variety of tools is available for designing the hardware for a controller. These include
target systems and EVMs that plug into a PC or stand alone, and in-circuit emulators that can be
used for complete system debugging. Also available are device behavioral models. These models
can be used to simulate the timing and behavior of a complete target system without building any
actual hardware. Logic Automation provides behavioral models for most members of the TMS320
family that run on popular workstations. Also available are logic analyzers from manufacturers like
HP and Tektronix that can be used for extensive tracin g. Theselogic analyzers can disassemble cap-
tured data to allow debugging of code[24].

Applications

An increasing number of designers for control system applications are turning to DSPs to
solve their problems. The capabilities of DSPs are also making applications practical that were pre-
viously impossible to implement or not cost effective. As costs of DSPs come down, they will re-
place microcontrollers and analog components in most control applications. Some of the control
system applications in which DSPs are already cost effective are servo control in computer periph-
erals, vector control in AC motors, motion control in robotics and NC machines, and power control
. in power supplies and uninterruptible power supplies.

Computer Peripherals

A large number of applications in computer peripherals are starting to use DSPs. These appli-
cations include read/write head control in winchester disk drives, tape control in tape drives, pen
control in plotters, beam positioning and focusing in optical disks and in paper feed and print head
control in printers.

Disk Drives

Disk drive designers were early adopters of DSPs. DSPs are used for servo control of the ac-
tuator driving the read/write head. Disk drives employ a voice-coil motor with high bandwidth. In
addition, data is read from the disk at a very high rate. Sampling rates of up to 50 kHz are sometimes
used. Besides implementing the compensator, DSPs implement notch filters to cancel mechanical
resonances or vibrations[25]. Figure 17 shows the block diagram of a disk drive.

Figure 17. Disk Drive Block Diagram

scsl
VF
SCsl READ/WRITE
CONTROL- ELECTRONICS
LER
RW
POWER
AMP ACTUATOR]
DIGITAL SERVO A/D
—1 AND SYSTEM AND
CONTROLLER D/A
TMS320C25 POWER
AMP
SPINDLE
MOTOR
Tape Drives

In tape drives, DSPs are used for control of the tape mechanism. A tape drive has two servo
loops that control tape speed and tension on the tape. Position feedback is obtained from an optical

encoder, and tension information is fed from a tension sensor. In addition, DSPs are also used to
cancel mechanical resonances. Figure 18 shows the block diagram of a tape drive.

Figure 18. Block Diagram of a Tape Drive Controller

1 DATA

HEAD ASSEMBLY
AMP AMP
SUPPLY
REEL TAPE PATH <
TMS320C14 . ENCODER
SERVO CONTROLLER

Power Electronics

DSPs can be used for multiple applications in power electronics. These applications include
AC servo drives, converter control, robotics, and motion control.

AC Servo Drives

In ACservodrives, DSPs are used for vector control of AC motors. AC drives are less expen-
sive and easier to maintain than DC drives. However, AC drives have complex control structures
resulting from the cross-coupling of three-phase currents. Vector rotation techniques are used to
transform three-phase to rotating two-phase d-q axes. This simplifies the analysis to a field-wound
DC motor[26, 27, 28]. Figure 19 shows the block diagram of AC servo control.

vy - ™ - - o . e .

Figure 19. AC Servo Control

CURRENT
SENSORS
COMMAND| CURRENT/ VECTOR
———— VeLocity ROTATION
CONTROL-
LER PWM
INVERTOR |
TMS320C14
ENCODER
UPS/Power Converters

In uninterruptible power supplies and power converters, DSPs are used for PWM generation
along with power factor correction and harmonic elimination. Advanced mathematical techniques
can be used to control the firing angles of the inverter to create low harmonic PWM with unity pow-
er factors[29, 30].

Robotics/Motion Control

DSPs are being used in large applications in robotics and other axis-control applications.
DSPs allow high-precision control along with implementation of advanced techniques like state
estimators and adaptive control. A single controller can handle speed/position control along with
current control. Time-varying loads can be handled by using adaptive control techniques. Adaptive
control techniques can also be used to create universal controllers that can be used with different
motors. In addition to implementing controllers, DSPs can be used to implement notch filters to
cancel resonances or vibrations[31].

Automotive

DSPs can be used for many applications in automotive design. These applications include
active suspension, anti-skid braking, engine and transmission control, and noise cancellation [32,
33].

Active Suspension

Active suspension systems use four hydraulic actuators, one at each corner of the vehicle.
DSPs can take into consideration body dynamics, such as pitch, heave, and roll. This information
is used to control the four actuators independently, and to dynamically counter the external forces

- and car attitude changes[34]. Figure 20 shows block diagram of an active suspension system.

Figure 20. An Active Suspension System

PITCH HEAVE
VEHICLE
DYNAMICS
ROL
FUNCTIONAL BLOCK DIAGRAM
ACTUATOR
HUB DISPLACE-
MENT WHEEL
FORWARD
VELOCITY CAR
FORWARD
SPEED [REsERVOIH
ANALOG
FRONTEND TMS320 DSP

LATERAL
ACC. BODY
ATTITUDE
TRANSDUCER
INPUTS HOST

FROM EACH COMPUTER /
WHEEL SERVOVALV

Anti-Skid Braking

In anti-skid braking systems, DSPs can be used to read the wheel speed from sensors, calcu-
late the skid, and control the pressure in the wheel brake cylinder. Traction control can be added
to control the vehicle in extreme condition (wheel lock and spinning) and to further increase vehicle
stability, steerability, and drivability. Figure 21 shows a block diagram of an ABS system.

Figure 21. Anti-Lock Braking System (ABS) Block Diagram

WHEEL SPEED
SENSOR TMS320 DSP
SIGNAL SOLENOID
PROC. & VALVES
CONTROL
WHEEL SPEED AMPLIFIER OPélgﬁl!lcONs OUTPUT:
SENSOR FILTER CONTROL
AND A/D THE PRESSURE
IN THE
WHEEL SPEED Wg&ﬁhgggg'i
SENSOR TMS320 DSP SOLENOID
(REDUN- VALVES
DANT) CONTROL
WHEEL SPEED
SENSOR
Engine Control

Inengine control applications, DSPs can be used with in-cylinder pressure sensors to perform
engine pressure waveform analysis. This information can be used to determine the best spark tim-
ing, firing angles, and the optimal air/fuel ratios. The closed-loop engine control scheme can toler-
ate external turbulences, aging, wearing, etc., and maintains optimum engine performance and fuel
efficiency.

Summary

This report has discussed implementation of digital control systems with the TMS320 family
of processors, using various control algorithms. The report has focused on showing design proce-
dures and implementation of generic digital control systems without going into specific applica-
tions or choosing a particular approach or algorithm. Obviously, selection of a specific approach
depends on the requirements of a particular application. However, the procedures outlined in this
report can be applied with minor modifications to a wide range of applications. This report has also
attempted to provide a bridge for control system designers who have been trained in analog control
design and want to convert their analog designs into digital designs for stability, higher perform-
ance, or other reasons.

TMS320-based digital control systems have numerous advantages over analog-based de-
signs. The high processing speed of the TMS320 family allows sophisticated control techniques
to be used to build a high-precision control system. Digital systems are insensitive to component
aging and temperature drift, thus minimizing variation in controller gain coefficients. With the
TMS320 an adaptive control system can also be designed, thus creating a truly robust system that
is insensitive to plant parameter variation. A digital control system using the TMS320 can also be
employed to control multiple devices or time shared between different processes. An observer sys-
tem may also be designed with a TMS320-based system to eliminate expensive sensors.

In addition to the advantages outlined above for TMS320-based control systems, the trade-
offs and disadvantages in implementing digital control are no longer applicable. The 16-bit word
length, and 32-bit ALU and 32-bit accumulator of the TMS320 make quantization errors negligi-
~ ble. The hardware scaling shifters of the TMS320 family further minimize errors due to quantiza-
tionand truncation. The fast processing speed of the TMS320 allows hi gh sampling rates to be used,
thus giving analog-like performance and minimizing delay time.

References

1) TMS320CI1x User’s Guide, literature number SPRU013B, Texas Instruments, 1989.
2) TMS320C14/E14 Users Guide, literature number SPRU032, Texas Instruments, 1988.
3) TMS320C2x User’s Guide, literature number SPRU014A, Texas Instruments, 1989.
4) TMS320C3x User’s Guide, literature number SPRU031, Texas Instruments, 1988.

5) Digital Signal Processing Applications with the TMS320 Family, literature number
SPRAO12, Texas Instruments, 1986.

6) Astrom, K., and Wittenmark, B., Computer Controlled Systems, Prentice-Hall Inc.,
1984.

7) Phillips, C., and Nagel, H., Digital Control System and Analysis and Design, Prentice-
Hall Inc., 1984.

8) Iserman, R., Digital Control Systems, Springer-Verlag, 1981.

9) Franklin, G., and Powell, D., Digital Control of Dynamic Systems, Addison-Wesley,
1980.

10) Jacquot, R., Digital Control Systems, Marcel Dekker, 1981.

11) Katz, P, Digital Control Using Microprocessors, Prentice-Hall Inc., 1981.

12) Lewis, E, Optimal Control, John Wiley and Sons, 1986.

13) Lewis, E,, Optimal Estimation, John Wiley and Sons, 1986

14) Kyriakopoulos,N. and Tan,J., “Implementation of a Tracking KalmanFilter ona Digital
Signal Processor,” IEEE Transactions on Industrial Electronics, pp. 126-134, Volume
35, Number 1, February 1988.

15) Astrom, K. and Hagglund, T., “Automatic Tuning of PID Controllers,” Instrument Soci-
ety of America, 1988.

16) Astrom, K., and Wittenmark, B., “Adaptive Control,” Addison-Wesley, 1988.

17) Hanselmann, H., “Implementation of Digital Controllers — A Survey,” Automatica, Vol-
ume 23, Number 1, pp. 7-32, (1987).

18) Hanselmann, H., and Schwarte, A. “Generation of Fast Target Processor Code from
High Level Controller Descriptions,” Proceedings of 10th IFAC World Congress, Mu-
nich, July 1987. '

19) Impex is a trademark of dSPACE, Paderborn, Germany.

20) DFDP is a trademark of Atlanta Signal Processors, Atlanta, GA.

21) Matrix-X is a trademark of Integrated Controls, Santa Clara, CA.

22) Matlab is a trademark of Mathworks, Inc, South Natick, Ma.

23) Simnon is a trademark of Lund Institute of Technology, Lund, Sweden.

24) TMS320 Family Development Support Reference Guide, literature number SPRAO11A,
Texas Instruments, 1989.

25) Hanselmann, H., and Engelke, A., “LQG - Control of a Highly Resonant Disc Drive
Head Positioning Actuator,” IEEE Transactions on Industrial Electronics, Volume 35,
Number 1, pp. 100-104, February 1988.

26) Bose, B. K., and Szczesny, P., “A Microcomputer-Based Control and Simulation of an
Advanced IPM Synchronous Machine Drive System for Electric Vehicle Propulsion,”
Proceedings of IECON’ 87, pp. 454463, October 1987.

27) Matsui, N., and Ohasi, H., “DSP-Based Adaptive Control of a Brushless Motor,” Pro-
ceedings of IECON’ 88, pp. 375-380, October 1988.

28) Leonhard, W., Lessmeier, R., and Schumacher, W., “Microprocessor-Controlled
AC-Servo Drives With Synchronous or Induction Motors: Which is Preferable?,” IEEE
Transactions on Industry Applications, September/ October 1986.

29) Chance, R., and Taufig, T., “A TMS32010 Based Near Optimized Pulse Width Modu-
lated Waveform Generator,” Third International Conference on Power Electronics &
Variable Speed Drives, Conference Publication Number 291 , July 1988.

30) Garate, I., Carrasco, R., and Bowden, A., “An Integrated Digital Controller for Brush-
less AC Motors Using a DSP Microprocessor,” Third International Conference on Pow-
er Electronics & Variable Speed Drives, Conference Publication Number 291, PP-
249-252, July 1988

31) Tomizuka, M., Horowitz, R., and Anwar, G., “Implementation of a MRAC for a Two
Axis Direct Drive Robot Manipulator Using a Digital Signal Processor,” Proceedings
of American Control Conference, pp. 658—660, 1988.

32) Costin, M. and Elzinga, D., “Active Reduction of Low-Frequency Tire Impact Noise
Using Digital Feedback Control,” IEEE Control Systems Magazine, pp. 3-6, August
1989.

33) Lin, K., “ Trends of Digital Signal Processing In Automotive,” Proceedings of CON-
VERGENCE ’ 88, October 1988.

34) Williams, D. and Oxley, S., “Application of the Digital Si gnal Processor to an Automo-
tive Control System,” Proceedings of the Sixth International Conference on Automotive
Electronics, Great Britain, October 1987.

Appendix A

Plant Modeling

characteristics of the motor. The mechanical characteristics are:

The discrete time model for a DC motor can be derived from the electrical and mechanical

JO +BO + KO=T, —J,0

where \

Jm = motor inertia

B = viscous damping

K = stiffness

JL =load inertia
0 = position or angular displacement
6 = d0/dt = angular velocity

6 =d%/dr’ = angular acceleration
17, =load torque = K; X i

K, = torque constant

i = current

The electrical characteristics are given by

Lﬂ + Ri =V —EMF
dt
where
L = inductance
R = resistance
Vv = applied voltage
EMF =K, x 0 =back emf
K, = emf constant
6 = angular velocity

B/J.

(16)

17)

The electrical time constant is given by L/R, and the mechanical time constant is given by

Inpractice, L/R <<B/J;i.e., electrical steady-state conditions are reached quickly. Assuming
steady-state current is reached, (17) is reduced to

Ri =V -EMF =V -K#8

Combining (16) and (18) gives

W, +J)0 + BO + K6 =K, (V-K9)/R

(18)

(19)

Assuming J,, + J; =] = system inertia, and K = 0 = stiffness constant, the system equation
becomes ¢

6 + 1/J(B + KK,/R) 6 = 1/I(K,/R)V (20)

where
a =1/J(B+K K,/R)
b =1/ (KtR)
The Laplace transform of (20) is

(s* + as)f(s) = bV(s)

or 1)

0(s)/V(s) = b/s(s +a)

(21) is the final form of the transfer function of the motor in continuous form. This must be
converted into a discrete form. The ZOH transformation is used.

ZOH states that

G(2) = (1 —=zHZ(L'G(s)/s) (22)
Then,
G (S) - b - b (23)
s s(s+a)(s) s(s+a)

Expanding as partial fractions, (23) is expressed as
Ge) _ A, A, A (24)
s s s s+a
Solving for Ay, Aj, and A3 gives

GG) _ (bja | (bfa) , (Ba) 25)
s s s s+a

When multiplying by (1 —z™!) and using tables to derive the z-transform,

_ b/a* (T - 1 + al)z' + b/a*(1 — e*T — aTe™") 272 (26)
1-(1+ ez + T2

G(@)

where T = sampling period.
Substituting values for a, b, and T of

a =1.116
b =53.906
T =0.001

the transfer function of the motor becomes

-1 -2
0(2) _ 0.269z7' + 0.269z % K.104

G,(2) = =
@ = Ve = T- 199" + 09992 < Xe

where K, is a gain constant.

By introducing a numerator gain factor, (27) can be rewritten as

6(z) 0269z + 0.269z
V(i) 1 - 1999z + 0.999z2

Gu(2) = X K,

where K,, is a numerator gain factor.

@

(28)

Appendix B

PID Controller

The PID algorithm is given by

d
uO) = Ke() + K, [edt + K, o2 29)
where
K,, K;, K; =PID gain constants
u(t) = control signal
e(t) = error signal
Rectangular Approximation

To convertto discrete form, the integral term edt is approximated by the summation of rectan-
gles Z ¢ X T, where T is the sampling interval and ¢; is the value of the error signal at sample

time i, written as

I edt = e 30

If the sampling interval T is small enough, the differential term d,/d, can be approximated
by

de _em-e(@n-1) (31)
dt T

where e(n) and e(n-1) are values of the error signal e at time intervals n and n—1.

The PID algorithm can now be approximated in discrete form by
wn) = Ke(n) + K; > eT + Kfe(n) - e(n—1)]/T (32)

To reduce (32) into a difference equation, (32) for time interval n-2 is written as

n-2
un-2) = Ken-2) + K; » eT + Kie(n-1) - e(n-2)}/T 33)

i=]
Subtracting (33) from (32) gives
u(n) — u(n-2) = Ke(n)—e(n-2) + Kfe(n) + e(n—1)|T
+ (Ko/T) e(n) — 2e(n—1) + e(n-2)}

(34)

Combining similar terms gives

u(n) = u(n-2) + (K, + K,/T + KT)e(n)

- (KT - 2Ky/De(n—1) + (K,/T - K,)e(n—2) (35)

or
u(n) = u(n-2) + Kie(n) + Kye(n-1) + Kze (n-2)

2N
!

=K, + KT+ KT

K =K T-2KT
K; =KyT-K,

K;, K5, and K3 are obtained from the design of Kp, K;, and K4, which are designed by using
conventional techniques. One way of designing is to use the Ziegler and Nichols ultimative-sensi-
tivity method [6]. With this approach, a proportional controller is first used to control the system.
The gain of the controller, Kmax, and the period time, Tp, when the closed loop is on the stability
boundary, are measured. The parameters Kp, K;, and K; can then obtained as follows:

K, =0.6 Kmax

K; =Tp2

Ky =Tp/8

Another tuning method is to use the phase margin and critical frequencies [7]. Using this
technique, K}, Kj, and K; can be computed as follows.

6=180+¢,- G, (jo)l =0,

Kp = cos(6)
P =16, (jo) o=-o, 36)
Ko, - Ko, = ——2O)

| G(jw) | o = w,

By substituting an arbitrary value of K in the above equation, we can obtain K;. Using this
technique and designing with the following parameters

Oom = 55° (phase margin)
@ . =628.315 radians (critical frequency = 100 hz)

we obtain

| Go(jo | w =, = 0.0001365
37N

G,(w)lw =w, = -179.8982

The PID constants are then found to be

K, =418
Ky = 9.569
K =1

K;, K3, and K3 are then obtained as

K = 13751
K, =-19138
K; = 5387

Both these methods give approximate answers. Further fine tuning of the parameters may
be necessary to get the desired response from the system.

The controller is obtained as
u(n) = u(n-1) + Kie(n) + Ke(n—1) + Kse(n—2) (38)

Trapezoidal Approximation

Another method for converting the analog form of the PID algorithm into a discrete form is
to use a trapezoidal approximation, sometimes referred to as the Tustin approximation.

The PID is again given as
de (39)
ut) = Kye(t) + K, | edt + K,,Z
where
de
) =— (40)
e(®) 7
The Laplace transform of that is expressed as
U(s) = K,E(s) + KE(s)[s + KsE(s) @41
Combining gives
U@s) = (K, + Kss + K,/s)E(s) 42)

Conversion into discrete form requires a transfer from s-domain to z-domain by using the
Tustin approximation,

s=2 1=z 43)
T 1+
where T = sampling period.
Substituting (43) in (42) gives
U(z) _
E(z)
44)

(2K,T + 4K, + T°K,) + (2T°K, - 8K,)" + (4K, - 2TK, + T* K,)z
2T(1-27)

Further computation yields

UQR) - UR)z? = KE@Z) + K.E@2)2" + K:E(2)z? (45)
where
Ky =Kp+2Ky/T + K{T/2
K> = KT - 4Ky/T
K3 = KiT/2 + 2Kd/T - Kp
In (45), z"! represents a delay of one sample time. Taking an inverse z-transform of (45) gives

u(n) — u(n-2) = Ke(n) + Ke(n-1) + Kse(n-2)

or (46)

u(n) = u(n-2) + Kie(n) + Kye(n-1) + Kse(n-2)

This is the final form of the PID controller. However, before implementing the controller,
the constants Ky, K;, and Ky must be located. Alternatively, constants K, K>, and K3 have to be
determined. These constants can be found by locating the poles of the equivalent system transfer
function (i.e., controller + plant).

The transfer function for the controller can be stated as
K, + Kzt + K2t 47)
1-27?

The transfer function of the plant is given by

G2 =

0.2694z + 0.2693z72
G,(2) = x K, (48)
o) = T 199977 + 0,999
The overall system transfer function is expressed as

_ G,(2)G(2) (49)
T 1+ G,(2)G2)

G2

The denominator of the system transfer function provides the poles of the overall system. The
stability and robustness of the system depends upon the location of these poles in the z-domain.
Assuming pole locations of 0.96, 0.95, 0.20 and 0.15, a desired characteristic equation for the de-
nominator is obtained. Program 4 for PC-Matlab, in Appendix D, lists the steps to obtain the charac-
teristics equation from pole locations and obtain values of K1, K3 and K3. To solve for values of
K1, Ko, K3, the coefficients of powers of z for the denominator of the system transfer function are
compared with the desired polynomial.

Solving for K;, K5, and K3 gives

Ky = 1.4795,
K, =-2.845,
Ky = 1.3636

" The controller is

u(n) = u(n—2) + 1.4795e(n) — 2.8405e(n— 1) + 1.3636e(n-2) (50)

Appendix C

Deadbeat Controller

A deadbeat controller has the property of settling to a final state in a finite time. It has the
form,

Do+ pizt + pz?t o pZ” (51)

—n

G + @2 + @27 ... gz

Gu(2) =

To design the deadbeat controller, its coefficients pg, p1, -.- qg, q1, -- have to be found from
the parameters of the motor.

The general form of a plant (i.e., motor) is given by

b() + b]Z_l + bzz—z v e b,,z_“
Gate) = L2 62

~n

+a,z? ... az
If R(z) is the reference input, the coefficients p,, and q,, are

po=1/ 3 bj=1/(bg+by +b)

P1 =21 Po
P2 = a2pp
Pn = apP0
and
qo=T-po bo
q1 =-b1 po
q2 =-by po
dn =-b, po
The transfer function of the dc servo motor is
0269z + 0.269
G.(2) = x K, (K, = 4000 (53)
@) = 27999, + 0999 ()

Since the plant transfer function is a second-order system, the deadbeat controller is also a
second-order system (n = 2).

From the plant transfer function,

a =1, a =-1.999, a=0.999
bp=0, by =0269 by=0269

The numerator and denominator of G, (z) are divided by r. Thus, r disappears from the calcu-
lations of coefficients.

Solving for the coefficients yields

)2 =1/(ky + b; + by) =0.1566
D1 =a; pp =-0.3129
)23 =ay pp =0.1564
Q =1-pypplr=1
q =-b; pp =-0.4218
%) =-by pp =-0.4216
The controller becomes
— ~1 —2
Gy @) = 0.1566 — 0.3129z7! + 0.1564z (54)

1 - 0.4218z! — 0.4216z2
or, in time domain, it can be represented as

u(n) = 0.4218u(n—-1) + 0.4216u(n-2)
(55

+ 0.1566e(n) — 0.3129¢(n—1) + 0.1564¢e(n—2)

Appendix D

PC-Matlab is an interactive program developed by Mathworks for scientific and en gineering
numerical calculations. Included are many routines for design and simulations for signal process-
ing and control systems. The programs in this appendix design the PID and deadbeat controllers
and display step responses for the system. The programs are interactive and allow the user to chan ge
certain parameters. The programs use PC-Matlab and the Control Tool Box. Cor trol Tool Box is
aset of PC-Matlab utilities for control system design and simulation. PC-Matlab runs on MS-DOS
computers. More information on PC-Matlab can be obtained from Mathworks. [22]

pud

LSV ER>]
1PN - sl =)
8404 2324051p 0juT UBTSIP JJ9AU0D T YRSV RO ER) |
(2]
sned
LANGNT J0U SR T J0 0 ‘SIURISUED Je) San(eA pauBisse oN, 35|
fsurapy
(, P andut,)andut
Ssuesry
(, 1 Indut,)3ndut
Ssue=dy
(, 4 3nduy,)3nduy
‘Ome) $19513
asned
» a1 a/(brm/(a0)uisia/)= P
1= 1) dnsse 3 1=1X
6 A Y Gew/(40)s03=dy
1
WRIPRS 0JUT JuBAU0Y % (5/0=%9
0 BRI L 098 - seyd - wg + 0810
utbsvw aseyd 336 3 fsueany

(, sa363p vt utbure aseyd jndet ,)3ndut
Jdojom jo apnyrubew pue aseyd R(AI(E T (10" IN)IPOGa[IsPYd ‘Brw)

ZHOOT=0N Aousnbaysy |®313140 Butenssy 1 1daZeTH=n
Kousmbayy |®o13100 396 1 fsueaty
(, 4 w1 Auandays (13140 Indut,)induy
UTRE0P-S UT UOTIOUN JASSURJY 40 JOJRUTNOUIP T 0 ® 1=10
UTWEOP-S UT UOTIIUN JASSURJ} §O JojeJdeny 3 190 0)=IN
=X 3t
Surzy

(, 140 0 3ndur,)3ndut
Mok Jog 3sayl yend e 03 wesboud Juem nok 41 | Jaju3 ,
JAL1enuve sjurisuod (14 Ja3ud 03 Juem nok 31 0 Jau3 ,

»:3:2322 “

5393 J33U nok $3a(Jo Py pue ‘Ty ‘dy jo san(eA sajend(ed wbisap Y
:.C.!23..5._‘32votoz_.uzeoﬁ:._._:_:.:...st_u:u
_-u:n-_ua.:-:s.:?z_susnut-a_mstci_?aﬂ.a?a:fu

z weabouy

[

UTRE0p-Z UT UOTIIURS JHISURJY JO JOJRUTEeUIP T (20 ¢ [Jevep
UTI0P-Z UT UOTIOUNS JAJSUBN} 4O JojesEny Y 129 19 0)em
e

$819) J0JeuI0UIp I 1(241)-ev

adeqeay

849} Jejrsdeny 3 16epaqealq

uteb Jojesseau 306 3 townaby

(, uteb Jojesamnu ndut,)indur
$((1p2)->-1)m

HIps1-2)=p

fevaip

H(100-)dxamd

UTRE0P-Z 0JUT JA4SURJY 03 SIIRA NRM|R) T H(Zo0) /taqe
(del)/3mq

UTRROP-S UT VOTIIUNS J3jsumy} AT q pue ‘e (fa)/ (ZAN)=2
potsad burdues 396 3 10001 /sut=y

(,5puodasT||Tu ut potsad Surdwes Jndut,)Indut

HuwsTsy 9=y

RIJJNT PRO| PIMNSSE + RIIINT NN % £90000"0="

B D]

Jurisuod anbyoy ££020°0=3%

1

“ZI¥6 130w ‘J0jom URmiITg ® ST a(dwexd ay) Ul pasn 3
JOJ0W Y] "JOJOW 0AJIS OP ® JO UOTIR|NETS sjued|det wesboud STy 1

1 wesbodg

sweabosg qelim-0d

itz u o (]
e] e]
-1 0 Ze-Twgh u
1- 0 Te-lezd 19 =
1
L) u 0 o
- {] [T]
L8] 0 19 Ze-1eeh
I- 0 0 1e-142b] =lg
‘ b
o u 0 0
e (] n 0
T 0 1 u
I- 0 0 "N)=g
1
9911043000 343 o sajed a3 Jo w0 jo 3
UOTIRIOL B ST J Q0GR ‘U PUR £X ‘TN ‘IN 03 ALOS (1M Sé03s My Jxew yy
SUOLITAbY Ut Jney 106 an ‘sudned JUNNIIIP S0 SINOTITHHR00 Suywdy g
1
(T% 201% - Z02)(J - 2T - 2) + (29 + 20T0)(EN + 202X + Zoe2DN) 1
1
Aq uaa1b st vresukiod waysks w1
1
4 1o=ch
o' 1o
(g 1)Degd
el >
T
Aq wan16 auw saamed Juaseyytp 30 SJUIIOTH300 W 1
1
(d)h1odu(S21)d
1
§R puney ST |IBNNA(0d D1ISTIRINND pauTSIp Y T
1
Stvd o 24 1)
1sweayd
(o 17 316d jo wrme| ynde],)yndet
sweagd
(1€ 310d 4o worye0| Jadu],) ndey
swnagd
(o T 3104 jo veryeae Jnda],)3ndut
tsueapd

G 11 910d Jo vepaere] Jadu],)3nder
SO Imek 3o venyeeg gy s,

4} X a3t swenyee|

2104 PSP 21N WIIWIxeIdle |eprezadeyy Buisa waey aaudstp
$38F $30AN0D ST Q1 WL *INT 3q 0} aARY SWOTIRIe| 3(ed PauTSIg
SN TUON J60m0rnid 3(ed Bugse [(043v0d Ald ® sub1sap weaboud s1y)

e e pe e

» ®obey

e

pue

nmd

L]

(,901p% 1 wenysed,) |aqe ik
(,so(dwes ¢ w1 dmyL,)(aquix
(,osvodsay da)s weryisey,)a13ny

(h3od

WLIRIRETS 0p 1 1(n‘uapsed emuse|d)urs|pak

sl

35As deo| Paso[> 3o JejeuTEeNIp T SHpicanush »
wayshs des| pase|d> jo sejeemmy 3 cmesbummuse|d
$(1v)s00un

isvead

(, ey doo v Jnduy,)3nduy

WEHIRINEIS 205 SIS 4o JoquRu RAOE) 117308
iswes)

(, 10035 343 305 0} JVam Nek WITWA J3A0 $395 U1 2E1} o4y A310ds,) nde]
sl

$30300T0000p 104 AdTy (M 1 (899 100p) Mo dugurp
$J0300m y3eq K|y me (W Tne) AV JugEne

1

0308 §0 JOJWTN0NY T patipred

0308 Jo JojReEenu I [~ V]

Jeopuutpdusd

Tensamaudes)

1

H(04380) jo J0jwvieNp I i1- 0 1ejop

103300 Jo Jejseemw T O D1 D=l

S3UR)500) (14 WE15p 0} weubed |0 I «oo.!‘
J030m v(auts o) weubesd o 1 L D]

1

LINEDIde s (A6ERIIN SUTR BI85 JIISTP OINT PAJIMNO T

W) pUR SIRDINGR) (ITSERID GUTSn poubisp SaNq SIY S| (0O QId I
L {0390 G1d * Bursn weyshs dee| pase|d ¥ sayuinmls weuledd STy T

€ Wby

pus
asnd

prb

(,MRIpRY VT UOT3TS0d,) L3qRIA
(,sd|duwes jo § Ul W1y,)|aqeix
(,9svodsay da3s wot31sed,)d(31}

(hy3od

vorjunurs doo| paso(d o 1 H(R‘wapse|d‘wnuso|d)eIs|p=k

0)shs doo| PIse|d Jo JOJRNTRIUIS NR(NI(V) 1guapscunusbutdpse|d
ure dooy pase[d |weTIIpPR 4033 I fcenusbamnuso|>
$(1 u)souo=n

fsunsf

(, turel deo| v Jndut,)jndut

WLIN|NTS 205 0} SI|dURS jo JaquRu RD|Y) 1 11730
tsuwey

(, 140} W) 395 03 JUB ek YOT4R A0 598 Ul 281} 34) A3Tdads,)yndut
$20JT00NPD Y30q A(dTy e Y §(udp ‘ [U9p) AUOI=GUIp
$J030000m8 4309 Ajé1y e 1 . H(wnu‘esu)Auod=gunu
Sudpauapd0sd

fenuaenudosd

t[uap=uapdeed

{jenusenudeod

J3[(043900 40 JejeuTeeuIp 1 $[zb 1> 0dI=tuIp
(1043003 3} 30 Jejesieny 1 £[zd 14 od)=wnu
$4300vnd Jeegpeep ()) SpIagp
IS JHISVRYY Jejow (V) 1 surajon
Sutop dowy Y 12666 31198

1=b66

)

+X (DH29+ T)

e K e b4

» (2H(2)9 1

1

Aq uaa1 st asuodsay doo| paso|d> 33 w3 I

11

/3 = (2H 1

X

AQ waath ST wotydouny Ja([oujued pue %

%

an = (2)9 1

1

ST UOTIIUNy J3jsuRyy us_a b4

WY J1 9 10J3U0D JrIgpRp soo_ paso|d ® sIje|NETIS |14 STY) 1

¢ weubouy

‘red
falid
-Tned
Te-1420

‘e
PA L]
Te-1
-l

Ze-Teagh
Te-142b

pu

(.
P/EP=EN
/TP
P/1P=IN
(40 39p=4P
$(80)39p=E9
$(20)39=2p
H10)399=1p
HOIp=p

0

pud

asned

puib

(,URIpRY UL vorj1sed,) 3qRIA
(,S3(0wes jo § ur 1),)|aqex
(,¥suodsay dayg uoryisog,)a(3ny

(hy3o1d

UOTIR(MEIS 3)3U051P 0p 1 f(n‘udpso|d ‘wnuso|d)ers|p=Xk

YO10UR) Jdjsunyy wa)shs doo) Paso(d jo Teoudp 3 Sudpscunuyb 84
WOTIIUR) JagsUR) Wa)shs deo| PasO|D jo Jojesaeny Y Cunusb=wnuso >
oL IRIeIS 395 03 sa|durs jo Jaqeny % £(1'0)s9u0=n

fsuesb

uIeb doo| [eeotTyIppe Aue wau3 1 (, ureb doo| » jndut,)yndut

VOLIR(NGTS 335 0} s3|dwes Jo JaqEnu AR(AI|Y) L $1/3=v

' 5wy

(. 30035 34} 5 0] JUrA NOK YITYA JIAD $H9S Ut Jury aqy A31d3ds,)3ndur
sojwimoudp Aldraimg 1 $(uap‘Tuap)Auodsguap
sJ0jesomny A|diy iy £(wnu‘ Jenu)Auod=geny

tuapeuaprosd

‘enu=anud04d

Sjuapzuapdeod

{Tenu=Enudeod

JojweTmoudp ajeind(e> 3 H1uh | od=Tuap

431104303 Q14 W3 jo sdjod ¥ ' 11y

11033000 qId J0 Jojessmnu N D TN)atem

SeTel Ja({043000 33R(A210) 0} weubosd (LR § spprd
SOLIUR} JBJSURI) J030m 3R(ND(R 03 wesboud [[v) I [T]
1==666 3(1@n

1=566

1

W+N (KNS + 1T 1

—_—_ 1

» (2)H(2)9 1

X

A wanrh 51 asuedsey doo PISOLD a3 vy 1

1

073 = ()N 1

1

Aq wA16 5T weriowmy sa(eajue p

1

= (2)9 1

b3

ST WL N0y Syswed) Jeeid) §1 1

1

WH1e Juseneid dsd v

wEImIxssdde (vprezedayy Suisa Jo((eu3we (Id * saeiners wubeud s1yy 1

L wabeuyy

)

0daze- 2
Odsle- = ¥
1=0b

0daze = 24
odate = 1d

R+ e/I=od

SPL1043000 JRogpap ¥ WEISID 03 PISN 3q VED 3unpaded SuIAO| (03 g3 Vo)
ARSI Zagw s (R4 Zav e QR

u- € 14 I- J
=2) 9

g TN TEee m1ee 08
- e I-

..5..:....«5'.-&.0 guvooo
.- € T 1- L

=(2) 9

:..5?:«...._..2
- - = I-

W1Iwb butneyie; a3 &g waarh ST Je((003w
W 30 B3 3L 11043900 Jregpeep © jo wisep sjesee|dul (1) STUL

9 wabey

1
1
1
1
1
1
1
1
1
A waath st veroemy ssysing Jeeid gy g1 1
1
1
1
1
3
1
1
1
1

Appendix E

* Frogram 1
#
* FIU Rectangular Controller
w
#*
stitle “PID Controller’
.def FID
*
#* This routine implements a PID controller
%
RV .set 2] 3 reference value
Xbv .set 1 s 1nput from A/D
e0 .set 2z ; Latest error sample
E1l «Set 2 ; Previous error sample
(v .set 4 ;s oldest error sample
K1l .s5et S 3 gain constant
K2 .set o 3 gain constant
K3 .set 7 s gain constant
N .set 3 3 output to controller
Ui .set 9 3 previous output
u2 .s5et 10 3 oldest output
*
* Processor 1nitialization
*
reset B init ;s RS- processing begins here
int B isr
*
sword 5632 ;s coefficient Kl
.word —783% ;3 coefficient K2
cword 22046 s coefficient K3
*
*
1n1t LDPK o} ;s set DF pointer
SOVM
LARK 0,255
*
ZAC
LARP o
toue SACL * 4+ 1nitialize ‘memory
BANZ loop
LACK 4 ; set program memory pointer to 4h
TBLR K1 ; load coeffcients into data memory
LACK S
TBLR Kz
‘ LACK &
TBLR K3
EINT
B self ;s wait for interrupts
*
* Frocess i1nput sample
*
#* e(n) = r = x(n)
*
180 IN RV, PAZ ; read reference command 1nput
IN XN, PAO ; read input position signal on upper 13 bats
LAC XN, 13
SACH XN
LAC RV
SUB XN s subtract from reference to give error
SACL EO
*
* PID routine
*
* win) = u(n-2) + Kl#e(n) + K2#e(n—1) + K3*%e(n-2)
*
FID LAC uz s Transfer u(n-2) to accumulator
[g E2 s load T register with oldest sample «(n-2)
mMPY K3 s Preg = K3#e(n-2)
LTD El s ACC = u(n-2) + K3%e(n-2), Treg = e(n-1)
MPY K2 3 Preg = K2%e(n-1)
L7D EO 3 ACC = u(n=-2) + K3%*e(n—-2) + K2#e(n-1)
MPY K1 3 Preg = Kl¥e(n)
APAC ;s ACC=u(n-2) + K3%e(n-2) + K2#e(n=-1) + Kiwe(n)
SACH UN, 4 s shift out 4 sign bbits
ouT UN, PAL ; write to D/A - two’s complement form
omov [53% 3 transfer u(n-1) ---> u(n=-2)
oMoV UN 3 transfer uln) ===> uln-1)
EINT
self NOP
B self 3 wait for next interrupt

* Freogran O
AIU Trapezzondal Coantraller
*
atitle FID Contraoller”
et P
- Thas vuutine implements a FID controller
*
X aser] ; reference value
eset 1 5 1nput from A/D
eséi z ;5 Latest error sample
.set i ;5 Frevious error sample
BT 4 5 wldest errar sample
P St o 3 021N constant
.5et “ 3 49a1n constant
.St 7 5 Aa1n constant
aset s utput to controller
«set 3 previous output
.set 10 ;3 9wldest cutput
#*
i Frocessor 1nitialization
*
reset B 1n1t ;3 RS- proacessing beains here
ant E 151
#*
awiarg 060 3 coetfficient K1 = 1,.4795
sword ~1 16 3 Coefficient K2 = =2.5450
cwoid BSES 3 fficient K3 = 1.3
*
#*
Lto1t <DFE (5} ; set DF pointer
S0VM
LARK O, 85 5 clear memory
*
ZAL
CARF Q
i SACL #* 5 wratialize memory
BANZ oo
CACH 4 3’ set program memory pointer to 4h
TBLR K1 s lovad veffcirents 1nto data memory
ALK k) s set program memory painter to Sh
TBL R
LACH ;5 set program memory pointer to &h
TBLR
EINT
E el f 3 wait for i1nterrupt
*
-+ Froacess anput sample
*
#* etrn) = r = wu(n)
*
180 iN RV, FAZ ;5 read reference command 1nput
IN XN, PAO 5 read input position siagnal on upper 13 bits
LA XN, 13
SACH XN
RV
XN 5 subtract from reference to Jlve error
EO
*
#* FID routine
Ed
* wind = uin=2) + Klke(n) + K2#e(n—1) + Kike(n—2)
*
FID LAC Uz 5 Transfer u(n~7) to accumulator
LT 3
MFY H
LTD 3 , Treg = e(n-1)
mMPY 3
LTD 3 #e(n—2) + KZ#e(n-1)
MEY s = Klwe(n)
AFAL s (n=2) + K3#e(n-2) + Kz#el(n—=1) + Kl¥e(n)
HACH UN, 3 5 store to memory and shift aut 4 sign bits
QT UN, FAL s wrate to D/ZA - in two’s complement form
LMoy ("} 3 transfer u(n-1) ; uln=2)
oMoV UN s transfer u(n) uln=1)
ZINT

self NOF
B self s wait for next interrupt

* LR

* leadieat Conteuiler
*
PSR Deavbeat Controller
st DBEAT
* This coutine lmeiements a Deadbeat controller
%
Y wn 0 ; reference value
1 s 1nput fram A/D
= s Latest error sample
: Frevious error sample
;s wldest error sample
; gain constant
> ; gain constant
7 ; gain constant
; g9ain constant
s 9a1n constant
s wutput to controller
bs . previous output
iz s wldest output
* Frocessor inatialization
#
reset F 1t 3 - processing begins here
nt =) 1sr
*
; ctwefficient FO =
s coefficient F1
s ceefficarent P2
s coefficient B
s coefficient Q2 =
%
s+
1Lt 0 s set DF pointer
O
%
AL
CARF (%)
SACL ¥ 5 1nitialize memory -
BANZ Tooup
LACK 4 . set program memory pointer to 4n
TBLR PO ; load coeffcilents 1into data memory
LACK k= s set program memory pointer to Sh
TBLR F1
LACK b s set pragram memory pointer to 6h
TBLR Pz
LACK, 7 s set program memory polnter te 7h
TBLR =38
LACK 3 ; set proaram memory pointer to 8h
TBLR [y
EINT ; enable 1nterrupts
E self ;s wait for interrupt

Frocess 1nput sample

*
*
*
*

en) = ¢ — =(n)

+ Ql#u(

L5 IN RV,FAZ
IN XN, PAO
LAC XN, 13
SACH XN
LAC RV
SuB XN
SACL EO
*
* Deadveat Controller rout
*
* uwln) = P2*u(n-2)
*
DBEAT zAC
LT EZ
MPY Pz
LTD El
MFY F1
LTD EQ
MPY PO
LT#H uz
MPY (=4
LTD U1
MPY (233
AFAC
SACH UN, 4
ouT UN, PAL
oMoV N
EINT
self NUOF
B self

read reference command 1nput
read input position signal on upper 132 bits

subtract from reference to give error

1ne

n=1) + PO%e(n) + Fl#e(n—-1) + P2¥e(n-2)

clear accumulator

Ilvad T
Freg =
ACC =
Freg =
ACC =
Freg =
ACC =
Freg =
ACC =
Preg =

register with oldest sample e(n-2)
P2#e(n-2)

P2#e(n-2), Treg = e(n-1)

Fl*e(n-1)

P2%e(n-2) + Pl#e(n-1)

FOx*e(n)

F2%e (n-2)+Pl#e (n~1)+PO%e(n), Treg=u(n=-2)
DZ%u(n-2)

P2%e(n-2)+P1#e(n—1)+FO%e (n)+Q2%*(n-1)
Q1#¥uln-1)

ACCKQ?*u(n—2)+QI*u(n—1)+P0ie(n)*Plle(n—l)*PZie(n-
write to memory and shift out 4 sign bits

write to D/A - in two’s complement form

transfer u(n) -==> uln-1)

wait for next interrupt

-

2

