- '150 Selects One-of-Sixteen Data Sources
- Others Select One-of-Eight Data Sources
- All Perform Parallel-to-Serial Conversion
- All Permit Multiplexing from N Lines to One Line
- Also For Use as Boolean Function Generator
- Input-Clamping Diodes Simplify System Design
- Fully Compatible with Most TTL Circuits

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PROPAGATION DELAY TIME</th>
<th>DATA INPUT TO W OUTPUT</th>
<th>TYPICAL POWER</th>
<th>DISSIPATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>'150</td>
<td>13 ns</td>
<td>200 mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'151A</td>
<td>8 ns</td>
<td>145 mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'LS151</td>
<td>13 ns</td>
<td>30 mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'S151</td>
<td>4.5 ns</td>
<td>225 mW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

description

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select the desired data source. The '150 selects one-of-sixteen data sources; the '151A, 'LS151, and 'S151 select one-of-eight data sources. The '150, '151A, 'LS151, and 'S151 have a strobe input which must be at a low logic level to enable those devices. A high level at the strobe forces the W output high, and the Y output (as applicable) low.

The '150 has only an inverted W output: the '151A, 'LS151, and 'S151 feature complementary W and Y outputs.

The '151A and '152A incorporate address buffers that have symmetrical propagation delay times through the complementary paths. This reduces the possibility of transients occurring at the output(s) due to changes made at the select inputs, even when the '151A outputs are enabled (i.e., strobes low).
logic symbols

These symbols are in accordance with ANSI/IEEE Std. 91-1994 and IEC Publication 617-12.
Pin numbers shown are D, J, N, and W packages.

150

151A, 'L5151, 'S151

FUNCTION TABLE

<table>
<thead>
<tr>
<th>SELECT</th>
<th>STROBE</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

H = high level, L = low level, X = irrelevant

E0, E1, ..., E15 = the complement of the level of the respective E input
D0, D1, ..., D7 = the level of the D respective input
Schematics of inputs and outputs

Equivalent of each input of '150

- **Input**
- **Vcc**
- **4 kΩ nom**

Equivalent of each input of '151A

- **Input**
- **Vcc**
- **4 kΩ nom**

Equivalent of each input of 'LS151

- **Input**
- **Vcc**
- **R_{eq} = 20 kΩ nom**
- Data select and strobe **R<sub:eq</sub> = 17 kΩ nom**

Typical of all outputs of '150, '151A

- **Vcc**
- **130 Ω nom**
- **Output**

Typical of all outputs of 'LS151

- **Vcc**
- **120 Ω nom**
- **Output**

Typical of all outputs of 'S151

- **Vcc**
- **50 Ω nom**
- **Output**
Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SN54*</th>
<th>SN74*</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_{CC})</td>
<td>MIN</td>
<td>NOM</td>
<td>MAX</td>
</tr>
<tr>
<td>High-level output current, (I_{OH})</td>
<td>-800</td>
<td>-800</td>
<td>mA</td>
</tr>
<tr>
<td>Low-level output current, (I_{OL})</td>
<td>16</td>
<td>16</td>
<td>mA</td>
</tr>
<tr>
<td>Operating free-air temperature, (T_A)</td>
<td>-55</td>
<td>125</td>
<td>0</td>
</tr>
</tbody>
</table>

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEST CONDITIONS</th>
<th>'150</th>
<th>'151A</th>
<th>'150</th>
<th>'151A</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH}) High-level input voltage</td>
<td>2</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IL}) Low-level input voltage</td>
<td>0.8</td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{I}) Input voltage</td>
<td>(V_{CC} - \text{MIN}), (I_{I} = -8 \text{ mA})</td>
<td>1.5</td>
<td>1.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OH}) High-level output voltage</td>
<td>2.4</td>
<td>2.4</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL}) Low-level output voltage</td>
<td>0.2</td>
<td>0.2</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{I}) Input current at maximum input voltage</td>
<td>1</td>
<td>1</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{II}) Low-level input current</td>
<td>(V_{CC} = \text{MAX}), (V_{I} = 2.4 \text{ V})</td>
<td>40</td>
<td>40</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{IS}) Short-circuit output current > VCC = MAX</td>
<td>(V_{CC} = \text{MAX})</td>
<td>-1.6</td>
<td>-1.6</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{CC}) Supply current</td>
<td>(V_{CC} = \text{MAX})</td>
<td>40</td>
<td>48</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2 All typical values at \(V_{CC} = 5 \text{ V}, T_A = 25^\circ \text{C} \).
3 Not more than one output of the '151A should be shorted at a time.

NOTE 3: \(I_{CC} \) is measured with the strobe and data select inputs at 4.5 V, all other inputs and outputs open.

Switching Characteristics, \(V_{CC} = 5 \text{ V}, T_A = 25^\circ \text{C} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>TEST CONDITIONS</th>
<th>'150</th>
<th>'151A</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{PLH})</td>
<td>A, B, or C</td>
<td>Y</td>
<td>(V_{CC} = \text{MIN}), (V_{L} = 0.8 \text{ V}), (C_L = 15 \text{ pF})</td>
<td>25</td>
<td>28</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td>(4 levels)</td>
<td>W</td>
<td>(V_{CC} = \text{MIN}), (V_{L} = 0.8 \text{ V}), (C_L = 400 \text{ pF})</td>
<td>33</td>
<td>33</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td>A, B, C, or D</td>
<td>Y</td>
<td>(V_{CC} = \text{MIN}), (V_{L} = 0.8 \text{ V}), (C_L = 400 \text{ pF})</td>
<td>33</td>
<td>33</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td>(2 levels)</td>
<td>W</td>
<td>(V_{CC} = \text{MIN}), (V_{L} = 0.8 \text{ V}), (C_L = 400 \text{ pF})</td>
<td>28</td>
<td>28</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td>Strobe</td>
<td>Y</td>
<td>(V_{CC} = \text{MIN}), (V_{L} = 0.8 \text{ V}), (C_L = 400 \text{ pF})</td>
<td>28</td>
<td>28</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td>Strobe</td>
<td>W</td>
<td>(V_{CC} = \text{MIN}), (V_{L} = 0.8 \text{ V}), (C_L = 400 \text{ pF})</td>
<td>33</td>
<td>33</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td>D0 thru D7</td>
<td>Y</td>
<td>(V_{CC} = \text{MIN}), (V_{L} = 0.8 \text{ V}), (C_L = 400 \text{ pF})</td>
<td>33</td>
<td>33</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td>E0 thru E16</td>
<td>W</td>
<td>(V_{CC} = \text{MIN}), (V_{L} = 0.8 \text{ V}), (C_L = 400 \text{ pF})</td>
<td>33</td>
<td>33</td>
<td>ns</td>
</tr>
</tbody>
</table>

4 \(t_{PHL} \) = propagation delay time, low-to-high-level output
5 \(t_{PHL} \) = propagation delay time, high-to-low level output

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.
recommended operating conditions

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SN54LS151</th>
<th>SN74LS151</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, V_{CC}</td>
<td>MIN 4.5</td>
<td>NOM 5.5</td>
<td>MAX 4.75</td>
</tr>
<tr>
<td>High-level output current, I_{OH}</td>
<td>-400</td>
<td>-400</td>
<td>µA</td>
</tr>
<tr>
<td>Low-level output current, I_{OL}</td>
<td>4</td>
<td>8</td>
<td>mA</td>
</tr>
<tr>
<td>Operating free-air temperature, T_A</td>
<td>-65</td>
<td>125</td>
<td>0</td>
</tr>
</tbody>
</table>

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS‖</th>
<th>SN54LS151</th>
<th>SN74LS151</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>NOM</td>
<td>MAX</td>
</tr>
<tr>
<td>V_{IH} High-level input voltage</td>
<td>2</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>V_{IL} Low-level input voltage</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>V_{IH} High-level output voltage</td>
<td>$V_{CC} = MIN$, $V_{IH} = 2$ V.</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>V_{OL} Low-level output voltage</td>
<td>$V_{CC} = MIN$, $V_{IL} = 2$ V.</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>I_{I} Input current at maximum input voltage</td>
<td>$V_{CC} = MAX$, $V_{I} = 7$ V.</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>I_{IH} High-level input current</td>
<td>$V_{CC} = MAX$, $V_{I} = 2.7$ V.</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>I_{IL} Low-level input current</td>
<td>$V_{CC} = MAX$, $V_{I} = 0.4$ V.</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>I_{OS} Short-circuit output current‖*</td>
<td>$V_{CC} = MAX$</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>I_{CC} Supply current</td>
<td>$V_{CC} = MAX$, Outputs open, All inputs at 4.5 V.</td>
<td>0.60</td>
<td>0.60</td>
</tr>
</tbody>
</table>

‖For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

‖All typical values are at $V_{CC} = 5$ V, $T_A = 25^\circ$C.

*Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5$ V, $T_A = 25^\circ$C

<table>
<thead>
<tr>
<th>PARAMETER‖</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH}</td>
<td>A, B, or C</td>
<td>Y</td>
<td>$C_L = 15$ µF, $R_L = 2$ kΩ, See Note 4</td>
<td>27</td>
<td>14</td>
<td>64</td>
<td>ns</td>
</tr>
<tr>
<td>t_{PHL}</td>
<td>14 levels</td>
<td></td>
<td></td>
<td>18</td>
<td>15</td>
<td>43</td>
<td>ns</td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>A, B, or C</td>
<td>W</td>
<td></td>
<td>13</td>
<td>14</td>
<td>23</td>
<td>ns</td>
</tr>
<tr>
<td>t_{PHL}</td>
<td>13 levels</td>
<td></td>
<td></td>
<td>20</td>
<td>15</td>
<td>32</td>
<td>ns</td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>Strobe C</td>
<td>Y</td>
<td></td>
<td>26</td>
<td>20</td>
<td>42</td>
<td>ns</td>
</tr>
<tr>
<td>t_{PHL}</td>
<td>Strobe C</td>
<td>W</td>
<td></td>
<td>30</td>
<td>20</td>
<td>42</td>
<td>ns</td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>Any D</td>
<td>Y</td>
<td></td>
<td>15</td>
<td>15</td>
<td>24</td>
<td>ns</td>
</tr>
<tr>
<td>t_{PHL}</td>
<td>Any D</td>
<td>W</td>
<td></td>
<td>18</td>
<td>18</td>
<td>30</td>
<td>ns</td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>Any D</td>
<td></td>
<td></td>
<td>20</td>
<td>16</td>
<td>26</td>
<td>ns</td>
</tr>
<tr>
<td>t_{PHL}</td>
<td>Any D</td>
<td></td>
<td></td>
<td>13</td>
<td>13</td>
<td>21</td>
<td>ns</td>
</tr>
</tbody>
</table>

‖t_{PLH} = propagation delay time, low-to-high-level output

‖t_{PHL} = propagation delay time, high-to-low-level output

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.
recommended operating conditions

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SN54S151</th>
<th>SN74S151</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, Vcc</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>High-level output current, Ioh</td>
<td>−1</td>
<td>−1</td>
<td></td>
</tr>
<tr>
<td>Low-level output current, Iol</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Operating free-air temperature, TA</td>
<td>−55</td>
<td>125</td>
<td>0</td>
</tr>
</tbody>
</table>

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vih</td>
<td></td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIL</td>
<td></td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vih</td>
<td></td>
<td>Vcc≤MIN, Ii = −18 mA</td>
<td>2.5</td>
<td>3.4</td>
<td>V</td>
</tr>
<tr>
<td>VIL</td>
<td></td>
<td>Vcc≤MIN, Ii = 0.8 mA</td>
<td>2.7</td>
<td>3.4</td>
<td>V</td>
</tr>
<tr>
<td>Voh</td>
<td></td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voh</td>
<td></td>
<td>Vcc≤MIN, Vih = −2 V, Ioh = −1 mA</td>
<td>SN54S151</td>
<td>2.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Voh</td>
<td></td>
<td>Vcc≤MIN, Vih = 0.8 V, Ioh = −1 mA</td>
<td>SN74S151</td>
<td>2.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Voh</td>
<td></td>
<td>0.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ii</td>
<td></td>
<td>1</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ii</td>
<td></td>
<td>5.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iih</td>
<td></td>
<td>30</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Il</td>
<td></td>
<td>2</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOs</td>
<td></td>
<td>40</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOs</td>
<td></td>
<td>100</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td></td>
<td>45</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td></td>
<td>70</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

2 All typical values are at Vcc = 5 V, TA = 25°C.

3 Not more than one output should be shorts at a time, and duration of the short-circuit should not exceed one second.

switching characteristics. Vcc = 5 V, Ta = 25°C

<table>
<thead>
<tr>
<th>PARAMETER1</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPLH</td>
<td>A, B, or C</td>
<td>Y</td>
<td></td>
<td>12</td>
<td>16</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tPHL</td>
<td>A, B, or C</td>
<td>W</td>
<td></td>
<td>12</td>
<td>18</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tPHL</td>
<td>A, B, or C</td>
<td>W</td>
<td></td>
<td>10</td>
<td>15</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tPHL</td>
<td>Any D</td>
<td>Y</td>
<td></td>
<td>9</td>
<td>13.5</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tPHL</td>
<td>Any D</td>
<td>W</td>
<td></td>
<td>8</td>
<td>12</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tPLH</td>
<td>Strb ⃑</td>
<td>Y</td>
<td></td>
<td>4.5</td>
<td>7</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tPHL</td>
<td>Strobe ⃑</td>
<td>W</td>
<td></td>
<td>9</td>
<td>13</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tPHL</td>
<td>Strobe ⃑</td>
<td>W</td>
<td></td>
<td>9.5</td>
<td>12</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

1 tPLH = propagation delay time, low-to-high-level output

1 tPHL = propagation delay time, high-to-low-level output

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.
IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated