Based on IEC 60401, the data specified here are typical data for the material in question, which have been determined principally on the basis of ring cores.

The purpose of such characteristic material data is to provide the user with improved means for comparing different materials.

There is no direct relationship between characteristic material data and the data measured using other core shapes and/or core sizes made of the same material. In the absence of further agreements with the manufacturer, only those specifications given for the core shape and/or core size in question are binding.

1 Material application survey

Usage	Frequency range	Mate- rial	Specific application	Туре	
High Q inductors	up to 0,1 MHz	N 48	Filters in telephony,	Gapped P and RM cores,	
in resonant circuits	0,2 – 1,6 MHz	M 33	MW IF filters		
and filters	1,5 – 12 MHz	K 1	-	adjusting cores,	
	6 – 30 MHz	K 12	VHF filters	II/PK	
	up to 100 MHz	U 17			
Line attenuation	up to 2 MHz	M 13	Balun transformers	Ring cores,	
		K 10		double- aperture cores	
Broadband transformers	up to 3 MHz	T 46	ISDN transformers	Ring cores	
(e.g. antenna		T 42	Impedance and matching	RM, P, ER, EP,	
transformers for MW, SW, VHF, TV) ISDN transformers, digital data		Т 38	transformers	ring cores	
		T 37	Current-compensated chokes	Ring cores, DE cores	
current-compensated		T 35		RM, P, ring, DE	
interference suppression chokes		T 65		P, ring cores, TT/PR, EP	
	up to 5 MHz	N 30	Current-compensated chokes	Ring cores,	
		N 26	Radio-frequency transform-	double-	
	up to 10 MHz	M 33	ers	aperture cores	
	up to 250 MHz	K 1			
		K 12			
	up to 400 MHz	U 17			
Sensors, ID systems	up to 1 MHz	N 22	Inductive proximity switches	P core halves	
	up to 2 MHz	M 33			
	up to 100 MHz	FPC			

Usage	Frequency range	Mate- rial	Specific application	Туре
Power transformers, chokes	1 to 100 kHz	N 27	Transformers for flyback converters	E, EC, ETD, U, RM, PM
		N 41	Chokes	Pot cores, RM
	up to 200 kHz	N 53	Diode splitting transformers	E, U, UR
		N 62		E, U, UR, ETD,
		N 67	High-voltage transformers	ER
		N 72	Electronic lamp ballast devices	E, ETD
	up to 300 kHz	N 82	Diode splitting transformers	U, UR
	up to 500 kHz	N 87	Transformers for forward and push-pull converters	ETD, EFD, RM, TT/PR, ER, ELP
	0,3 – 1 MHz 0,5 – 1 MHz	N 49 N 59	Transformers for DC/DC converters, particularly resonance converters	EFD, ER, ELP, RM (low profile)

2 Material properties

Preferred application	referred application			Resonant circuit inductors				
Material			U 17 ¹⁾	K 12 ¹⁾	K 1	M 33 ²⁾	N 48	
Base material			NiZn	NiZn	NiZn	MnZn	MnZn	
Color code (adjuster)			gray	yellow	violet	white	_	
	Symbol	Unit						
Initial permeability $(T = 25 \degree C)$	μ		10 ± 30 %	26 ± 25 %	80 ± 25 %	750 ± 25 %	2300 ± 25 %	
Meas. field strength Flux density (near saturation) ($f = 10 \text{ kHz}$)	H B _S (25 °C) B _S (100 °C)	A/m mT mT	10000 180 170	2000 230 210	5000 310 280	2000 400 310	1200 420 310	
Coercive field strength $(f = 10 \text{ kHz})$	H _c (25 °C) H _c (100 °C)	A/m A/m	1900 1800	450 410	380 350	80 65	26 19	
Optimum frequency range		MHz	10 220	3 40	1,5 12	0,2 1,0	0,001 0,1	
Relativeat f_{min} loss factorat f_{max}	tan δ/μ _i	10 ^{–6} 10 ^{–6}	< 100 < 1700	< 150 < 600	< 40 < 120	< 12 < 20	2,7 4,2	
Hysteresis material constant	η_{B}	10-6/mT	< 27	< 45	< 36	< 1,8	< 0,4	
Curie temperature	T _C	°C	> 550	> 450	> 400	> 200	> 170	
Relative temperature coefficient at 25 55 °C at 5 20 °C	α _F	10 ⁻⁶ /K	25 50 45 20	3 14 12 0	2 8 7 1	0,5 2,6 —	0,4 0,5 0,7 0,5	
Mean value of α _F at 25 55 °C		10 ⁻⁶ /K	37	9	4	1,6	0,50	
Density (typical values)		kg/m ³	4400	4600	4650	4500	4700	
Disaccommodation factor at 25 °C	DF	10-6	_	-	20	8	2	
Resistivity	ρ	Ωm	10 ⁵	10 ⁵	10 ⁵	5	3	
Core shapes	·		P, Double aperture	P, Ring	RM, P, Ring, P core half	RM, P, Ring, Double aperture, P core half	RM, P	
Other material properties	s (graphs) se	e page	49	51	53	55	57	

¹⁾ Perminvar ferrite: irreversible variations in quality and permeability may occur in case of strong fields in the core (> 1500 A/m). In the case of shape-related dimensions, these dimensions may be exceeded by up to 5%. 2) For threaded cores $\mu i = 600 \pm 20\%$

Preferred application			Inductors for lin	Special type	
Material			K 10	M 13	N 22
Base material			NiZn	NiZn	MnZn
Color code (adjuster)			—	—	red
	Symbol	Unit			
Initial permeability $(T = 25 \degree C)$	μ		800 ± 25 %	2300 ± 25 %	2300 ± 25 %
Meas. field strength Flux density (near saturation) ($f = 10 \text{ kHz}$)	H B _S (25 °C) B _S (100 °C)	A/m mT mT	5000 320 240	1200 280 135	1200 370 260
Coercive field strength $(f = 10 \text{ kHz})$	H _c (25 °C) H _c (100 °C)	A/m A/m	40 25	12 8	18 14
Optimum frequency range		MHz	0,1 1	0,001 0,1	0,001 0,2
Relativeat f_{min} loss factorat f_{max}	tan δ/μ _i	10 ^{–6} 10 ^{–6}	< 15 < 60	< 5 < 20	< 2 < 20
Hysteresis material constant	η _B	10-6/mT	< 5	< 4	< 1,4
Curie temperature	T _C	°C	> 150	> 105	> 145
Relative temperature coefficient at 25 55 °C at 5 20 °C	α _F	10 ^{–6} /K		3,0 5,0 5,0 7,5	
Mean value of α _F at 25 55 °C		10 ^{_6} /K	10,0	3,7	0,9
Density (typical values)		kg/m ³	5000	5200	4700
Disaccommodation factor at 25 °C	DF	10-6	—	—	4
Resistivity	ρ	Ωm	10 ⁵	10 ⁵	1
Core shapes			Ring, Double aperture	Ring, Double aperture	Ring, P core half, Double aperture
Other material properties (graphs) see page		page	59	60	61

Preferred application			Broadband transformers				
Material			N 26	N 30	T 65	T 35	T 37
Base material			MnZn	MnZn	MnZn	MnZn	MnZn
	Symbol	Unit					
Initial permeability $(T = 25 \degree C)$	μ		2300 ± 25 %	4300 ± 25 %	5200 ± 30 %	6000 ± 25 %	6500 ± 25 %
Meas. field strength Flux density (near saturation) ($f = 10$ kHz)	H B _S (25 °C) B _S (100 °C)	A/m mT mT	1200 380 260	1200 380 240	1200 460 320	1200 390 270	1200 380 240
(f = 10 kHz)	$H_{c}(25 \text{ C})$ $H_{c}(100 \text{ °C})$	A/m A/m	23 17	12 8	12 11	12 9	9 8
Optimum frequency range		MHz	0,001 0,1	_	_	_	_
Relativeat f_{min} loss factorat f_{max}	tan δ/μ _i	10 ^{–6} 10 ^{–6}	< 2,8 < 3,8	_	_	_	_
Hysteresis material constant	η _B	10 ^{_6} /mT	< 0,3	< 1,1	< 1,1	< 1,1	< 1,1
Curie temperature	T _C	°C	> 150	> 130	> 160	> 130	> 130
Relative temperature coefficient at 25 55 °C at 5 25 °C	α_{F}	10 ^{–6} /K	0 1,5 0 1,8				
Mean value of α _F at 25 55 °C		10 ⁻⁶ /K	1,0	0,6	- 0,5	0,8	- 0,3
Density (typical values)		kg/m ³	4700	4800	4930	4900	4900
Disaccommodation factor at 25 °C	DF	10 ⁻⁶	—	—	—	—	—
Resistivity	ρ	Ωm	2	0,5	0,30	0,2	0,2
Core shapes			RM, P, EP	RM, P, EP, E, Ring, Double aperture	RM, P, ER, Ring	RM, P, EP, Ring	Ring, DE
Other material properties	Other material properties (graphs) see page			64	66	68	70

Preferred application			Broadband transformers			
Material			Т 38	T 42 ³⁾	T 46 ³⁾	
Base material			MnZn	MnZn	MnZn	
	Symbol	Unit				
Initial permeability $(T = 25 \degree C)$	μ		10000 ± 30 %	12000 ± 30 %	15000 ± 30 %	
Meas. field strength Flux density (near saturation) ($f = 10 \text{ kHz}$)	H B _S (25 °C) B _S (100 °C)	A/m mT mT	1200 380 240	1200 400 250	1200 400 240	
Coercive field strength $(f = 10 \text{ kHz})$	H _c (25 °C) H _c (100 °C)	A/m A/m	9 6	7 6	7 6	
Optimum frequency range		MHz	_	_	_	
Relativeat f_{min} loss factorat f_{max}	tan δ/μ _i	10 ⁻⁶ 10 ⁻⁶			_	
Hysteresis material constant	η_{B}	10-6/mT	< 1,4	< 1,4	< 2,0	
Curie temperature	T _C	°C	> 130	> 130	> 130	
Relative temperature coefficient at 25 55 °C at 5 20 °C	α_{F}	10 ^{–6} /K				
Mean value of α _F at 25 55 °C		10 ⁻⁶ /K	- 0,4	- 0,3	- 0,6	
Density (typical values)		kg/m ³	4900	4950	5000	
Disaccommodation factor at 25 °C	DF	10 ⁻⁶	—	—	—	
Resistivity	ρ	Ωm	0,1	0,1	0,01	
Core shapes		RM, P, EP, ER, E, Ring	RM, EP	Ring		
Other material properties	s (graphs) se	e page	72	74	76	

³⁾ Material values defined on the basis of small ring cores (\leq R10)

Preferred application			Power transformers				
Material			N 59	N 49	N 53	N 824)	N 62
Base material			MnZn	MnZn	MnZn	MnZn	MnZn
	Symbol	Unit					
Initial permeability $(T = 25 \degree C)$	μ		850 ± 25 %	1300 ± 25 %	1700 ± 25 %	1900 ± 25 %	1900 ± 25 %
Flux density $(H = 1200 \text{ A/m}, f = 10 \text{ kHz})$	B _S (25 °C) B _S (100 °C)	mT mT	460 370	460 370	490 420	490 415	500 410
Coercive field strength $(f = 10 \text{ kHz})$	H _c (25 °C) H _c (100 °C)	A/m A/m	60 50	55 45	26 16	17 11	18 11
Typical frequency range		kHz	500 1500	300 1000	16 200	16 300	16 200
Hysteresis material constant	η_B	10-6/mT	—	-	—	_	—
Curie temperature	T _C	°C	> 240	> 240	> 240	> 240	> 240
Mean value of α_F at 20 55 °C		10 ^{–6} /K	—	-	-	_	-
Density (typical values)		kg/m ³	4750	4750	4800	4800	4800
Relative core losses (typical values)	P _V						
25 kHz, 200 mT, 100 °C		mW/g mW/cm ³			20 100	14 69	16 80
100 kHz, 200 mT, 100 °C		mW/g mW/cm ³			125 625	84 421	105 525
300 kHz, 100 mT, 100 °C		mW/g mW/cm ³		120 600	135 670	88 440	
500 kHz, 50 mT, 100 °C		mW/g mW/cm ³	39 180	24 120			
1 MHz, 50 mT, 100 °C		mW/g mW/cm ³	110 510	115 560			
Resistivity	ρ	Ωm	26	11	6	11	4
Core shapes	·	·	EFD	RM, Ring, EFD, ER ELP	E, U	U, UR	ETD, E, U
Other material properties (g	graphs) see	page	78	81	84	87	90

⁴⁾ Preliminary data

Preferred application			Power transformers				
Material			N 27 N 67 ⁵⁾ N 87 N 72 N			N 41	
Base material			MnZn	MnZn	MnZn	MnZn	MnZn
	Symbol	Unit					
Initial permeability $(T = 25 \degree C)$	μ _i		2000 ± 25 %	2100 ± 25 %	2200 ± 25 %	2500 ± 25 %	2800 ± 25 %
Flux density ($H = 1200 \text{ A/m}, f = 10 \text{ kHz}$)	B _S (25 °C) B _S (100 °C)	mT mT	500 410	480 380	480 380	480 370	490 390
Coercive field strength $(f = 10 \text{ kHz})$	H _c (25 °C) H _c (100 °C)	A/m	23 19	20 14	16 9	15 11	22 20
Typical frequency range		kHz	25 150	25 300	25 500	25 300	25 150
Hysteresis material constant	η_B	10-6/mT	< 1,5	< 1,4	< 1,4	_	< 1,4
Curie temperature	T _C	°C	> 220	> 220	> 210	> 210	> 220
Mean value of α_F at 20 55 °C		10 ^{–6} /K	3	4	4	—	4
Density (typical values)		kg/m ³	4750	4800	4800	4800	4800
Relative core losses (typical values)	P _V						
25 kHz, 200 mT, 100 °C		mW/g mW/cm ³	32 155	17 80		16 80	35 180
100 kHz, 200 mT, 100 °C		mW/g mW/cm ³	190 920	105 525	80 385	110 540	280 1400
300 kHz, 100 mT, 100 °C		mW/g mW/cm ³		115 560	85 410		
500 kHz, 50 mT, 100 °C		mW/g mW/cm ³					
1 MHz, 50 mT, 100 °C		mW/g mW/cm ³					
Resistivity	ρ	Ωm	3	6	8	12	2
Core shapes			P, PM, ETD, EC, ER, E, U, Ring	RM, P, EP, ETD, ER, EFD, E, U, Ring	RM, TT, P, PM, ETD, EFD, E, ER, ELP	E, EFD	RM, P
Other material properties (g	graphs) see	page	93	96	99	102	105

⁵⁾ Not for new design

Preferred application	Injection- molded parts	Film					
Material			Ferrite Polym	Ferrite Polymer Composite (FPC)			
Base material			C302	C350	C351		
	Symbol	Unit					
Initial permeability $f = 1 \text{ MHz}$	μ		17 ± 20 %	9 ± 20 %	9 ± 20 %		
Flux density (near saturation) H = 25 kA/m f = 10 kHz	B _S (25 °C)	mT	330	255	255		
Remanent induction H = 25 kA/m f = 10 kHz	<i>B</i> _r (25 °C)	mT	15	9	9		
Coercive field strength H = 25 kA/m f = 10 kHz	H _C (25 °C)	A/m	770	600	600		
Relative loss factor f = 1 MHz f = 100 MHz f = 1 GHz	tanδ/μ _i		< 0,0004 < 0,03	< 0,005 < 0,400	< 0,005 < 0,400		
Hysteresis material constant	η _B	10 −3 /mT	< 0,25	< 2	< 2		
Temperature coefficient	$\alpha = \Delta \mu / \mu \Delta T$	1/K	< 0,0002	< 5 · 10 ⁻⁵	< 5 · 10 ⁻⁵		
Density		kg/m ³	3500	2930	2930		
Resistivity f = 1 kHz f = 10 kHz f = 10 MHz	ρ	Ωm	21 13	500	500		
Relative permittivity f = 1 kHz f = 10 kHz f = 10 MHz	ε _r		280 100	700 21	700 21		
Maximum operating temperature	T _{max}	°C	180	120	200		
Dielectric strength		kV/mm	_	1	0,8		
Tensile strength ⁶⁾	σΖ	N/mm ²	—	1,5	2,5		
Tearing resistance 6)		%	—	25	25		
Compressibility ⁶⁾	κ	N/mm ²	—	70	70		
Other material properties (graphs) see page		108	—	_		

 $[\]overline{6)}$ T = 23 °C and 50 % relative humidity

3 Measuring conditions

The following measuring conditions, which correspond largely to IEC 60401, apply for the material properties given in the table:

Properties (valid only			Measuring co	nditions		
for ring cores of sizes R 10 to R 36)			Frequency	Field strength (material- dependent)	Max. flux density	Temper- ature
			kHz	kA/m	mT	°C
Initial permeability	μ _i		≤ 10		≤ 0,25	25
Flux density near to saturation	В	mT	≤ 10	≥1,2		25; 100
Coercive field strength	H _{cB}	A/m kA/m	≤ 10	≥1,2	near saturation	25; 100
Relative loss factor	tan δ/μ _i		-		≤ 0,25	25
Hysteresis material constant	η _B	T-1	10 (μ _i ≥ 500) 100 (μ _i < 500)		$\begin{array}{ccc} B_1 & B_2 \\ 1,5 & 3,0 \\ 0,3 & 1,2 \end{array}$	25
Curie temperature	T _c	°C	≤ 10		≤ 0,25	
Relative temperature coefficient	α_{F}	10-6/K	≤ 10		≤ 0,25	5 20 25 55
Density		kg/m ³				25
Disaccommodation factor	DF	10 ⁻⁶	≤ 10		≤ 0,25	25; 60 ¹⁾
Resistivity	ρ	Ωm			_	25

The following properties are given only for materials for power applications:

Power loss	$P_{\rm V}$	mW/cm ³	25	200	100
		mW/g	100	200	
			300	100	
			500	50	
			1000	50	

¹⁾ Higher temperature than specified by IEC (40°C)

4 Specific material data

DC magnetic bias

 $H_{-} = DC \text{ field strength [A/m]}$ $H_{-} = \frac{I_{-} \cdot N}{I_{e}}$ $I_{-} = \text{Direct current [A]}$ N = Number of turns $I_{e} = \text{Effective magnetic path length [m]}$

The curves of $\mu_{rev} = f(H_{-})$ allow an approximate calculation of the variation in reversible permeability (μ_{rev}) and A_L value caused by magnetic bias. These curves are of particular interest for cores for transformers and chokes, since magnetic bias should be avoided if possible with inductors requiring high stability (filter inductors etc.). In the case of geometrically similar cores (i.e. in particular the same A_{min}/A_e ratio) the effective permeability of the core in question in conjunction with the given curves suffices to determine the reversible permeability to a close approximation.

Relative loss factor versus frequency (measured with ring cores, measuring flux density $\hat{B} \le 0.25$ mT)

Relative inductance component versus frequency (measured with ring cores, measuring flux density $\hat{B} \le 0.25$ mT)

Performance factor versus frequency (measured with ring cores R29, T = 100 $^{\circ}$ C, P_V = 300 kW/m³)

For definition of performance factor see page 120.

SIFERRIT Materials Broadband and Filter Applications

Standardized hysteresis material constant versus temperature

Permeability factor versus temperature (measured with P and RM cores, $\hat{B} \le 0.25$ mT), $\mu_i \approx 10$

Initial permeability μ_i versus temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Permeability factor versus temperature (measured with P and RM cores, $\hat{B} \le 0.25$ mT), $\mu_i \approx 26$

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Permeability factor versus temperature (measured with P and RM cores, $\hat{B} \le 0.25$ mT), $\mu_i \approx 80$

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Dynamic magnetization curves (typical values)

Permeability factor versus temperature (measured with P and RM cores, $\hat{B} \le 0.25$ mT), $\mu_i \approx 750$

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

DC magnetic bias of P and RM cores (typical values) $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 \text{ °C})$

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Dynamic magnetization curves

Permeability factor versus temperature (measured with P and RM cores, $\hat{B} \le 0.25$ mT), $\mu_i \approx 2300$

1) With P cores \ge P22 \times 13 and RM cores \ge RM 8 the α_F value may deviate by up to 1,2 \cdot 10⁻⁶/K.

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Relative loss factor tan δ/μ_i versus frequency (measured with R29 ring cores)

Siemens Matsushita Components

Dynamic magnetization curves (typical values) $(f = 10 \text{ kHz}, T = 25 \degree \text{C})$

DC magnetic bias of P and RM cores (typical values) $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

$(f = 10 \text{ kHz}, T = 100 \degree \text{C})$

Dynamic magnetization curves (typical values) (f = 10 kHz, $T = 25 \degree$ C)

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

Initial permeability μ_i and relative loss factor tan δ/μ_i versus temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Complex permeability versus frequency (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Permeability factor versus temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Initial permeability μ_i and relative los factor tan δ/μ_i versus temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured with R14 ring cores, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

DC magnetic bias of P and RM cores (typical values)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Variation of initial permeability with temperature

Initial permeability μ_i versus temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured with R20 ring cores, $\hat{B} \le 0.25$ mT)

Siemens Matsushita Components

DC magnetic bias of RM cores (typical values) ($\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C}$)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Complex permeability versus frequency (measured with R29 ring cores, $\hat{B} \leq 0.25$ mT)

Variation of initial permeability with temperature

Relative loss factor versus frequency (measured with R29 ring cores, $\hat{B} \leq 0.25$ mT)

Dynamic magnetization curves

DC magnetic bias of RM cores (typical values)

Complex permeability versus frequency (measured with R10 ring cores, $\hat{B} \leq 0.25$ mT)

Variation of initial permeability with temperature

Initial permeability µ versus temperature (measured with R16 ring cores, $\hat{B} \leq 0.25$ mT)

Relative loss factor versus frequency (measured with R16 ring cores, $\hat{B} \leq 0,25$ mT)

Siemens Matsushita Components
Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

DC magnetic bias of RM cores (typical values) $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Variation of initial permeability with temperature (measured with R22 ring cores, $\hat{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured with R16 ring cores, $\hat{B} \le 0.25$ mT)

Siemens Matsushita Components

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

DC magnetic bias of RM cores (typical values) $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Complex permeability versus frequency (measured with R14 ring cores, $\hat{B} \leq 0.25$ mT)

Variation of initial permeability with temperature

Initial permeability µ versus temperature (measured with R16 ring cores, $\hat{B} \leq 0.25$ mT)

Relative loss factor versus frequency (measured with R14 ring cores, $\hat{B} \le 0.25$ mT)

DC magnetic bias of RM cores (typical values) $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Complex permeability versus frequency

Variation of initial permeability with temperature (measured with R9,5 ring cores, $\hat{B} \le 0,25$ mT)

5

10-1

10⁰

MHz 10¹ - f

5

10¹

10⁻²

FAL0295-M 40 % $\mu_{i}-\mu_{i1}$ μ_{i1} 10 *T*1 0 -10 -20 -30 -40 -50 µ_{i1}≈ 12000 -60 -70 -40 -20 0 20 40 °C 70 Τ

Relative loss factor versus frequency (measured with R9,5 ring cores, $\hat{B} \le 0,25$ mT)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

DC magnetic bias of RM cores (typical values) $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Variation of initial permeability with temperature (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Relative loss factor versus frequency (measured with R10 ring cores, $\hat{B} \le 0.25$ mT)

Complex permeability versus frequency

Amplitude permeability versus AC field flux density (measured with ungapped E cores)

Initial permeability μ_i versus temperature (measured with R29 ring cores, $\hat{B} \leq 0.25$ mT)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

DC magnetic bias of P, RM, PM and E cores $(\hat{D} < 0.25 \text{ mT} \text{ f} = 10 \text{ kHz}^{-1}$

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

DC magnetic bias of P, RM, PM and E cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$

Relative core losses versus AC field flux density (measured with R29 ring cores)

Relative core losses versus frequency (measured with R29 ring cores)

Relative core losses versus temperature (measured with R29 ring cores)

Amplitude permeability versus AC field flux density (measured with ungapped E cores)

= 50

10⁰

10¹

10²

104

A/m

- H_

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

DC magnetic bias of P, RM, PM and E cores $(\hat{B} \le 0.25 \text{ mT}, \text{ f} = 10 \text{ kHz}, \text{ T} = 100 ^{\circ}\text{C})$

5

10¹

5

10⁰

10⁻¹

Relative core losses versus frequency (measured with R17 ring cores)

Relative core losses versus temperature (measured with R17 ring cores)

Amplitude permeability versus AC field flux density (measured with ungapped E and U cores)

Initial permeability μ_i

- T

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

DC magnetic bias of P, RM, PM, E and U cores

DC magnetic bias of P, RM, PM, E and U cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$

Relative core losses versus frequency (measured with R17 ring cores)

Amplitude permeability versus AC field flux density (measured with R29 ring cores)

Initial permeability μ_i versus temperature (measured with R29 ring cores)

Dynamic magnetization curves (typical values) ($f = 10 \text{ kHz}, T = 25 \degree \text{C}$)

DC magnetic bias of E, ETD and U cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 \degree\text{C})$

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

DC magnetic bias of E, ETD and U cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$

Siemens Matsushita Components

Relative core losses versus AC field flux density (measured with R29 ring cores)

Relative core losses versus frequency (measured with R29 ring cores)

Relative core losses versus temperature (measured with R29 ring cores)

Complex permeability

Initial permeability μ_i versus temperature (measured with R29 ring cores, $\hat{B} \leq 0.25$ mT)

Amplitude permeability versus AC field flux density (measured with ungapped U cores)

DC magnetic bias of E, ETD and U cores

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

DC magnetic bias of E, ETD and U cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$

Relative core losses versus AC field flux density (measured with R29 ring cores)

Relative core losses versus frequency (measured with R29 ring cores)

Amplitude permeability versus AC field flux density (measured with ungapped E cores)

Dynamic magnetization curves (typical values)

DC magnetic bias of P, PM and E cores

 $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

Relative core losses versus AC field flux density (measured with R16 ring cores)

Relative core losses versus frequency (measured with R16 ring cores)

Relative core losses versus temperature (measured with R16 ring cores)

Amplitude permeability versus AC field flux density

Dynamic magnetization curves (typical values) (f = 10 kHz, $T = 25 \degree$ C)

DC magnetic bias of P, RM, PM and E cores

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Relative core losses versus AC field flux density

(measured with R16 ring cores)

Relative core losses versus frequency (measured with R16 ring cores)

Relative core losses versus temperature (measured with R16 ring cores)

Amplitude permeability versus AC field flux density (measured with ungapped E cores)

Dynamic magnetization curves (typical values) (f = 10 kHz, $T = 25 \degree \text{C}$)

DC magnetic bias of P, RM, PM and E cores

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

DC magnetic bias of P, RM, PM and E cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$

Relative core losses versus AC field flux density (measured with R29 ring cores)

Relative core losses versus frequency (measured with R29 ring cores)

Relative core losses versus temperature (measured with R29 ring cores)

Amplitude permeability versus AC field flux density (measured with ungapped U cores)

Initial permeability μ_i versus temperature (measured with R29 ring cores, $\hat{B} \le 0.25$ mT)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

DC magnetic bias of E cores ($\hat{B} \le 0.25$ mT, f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

DC magnetic bias of E cores ($\hat{B} \le 0.25$ mT, f = 10 kHz, T = 100 °C)

Relative core losses versus AC field flux density

(measured with R29 ring cores)

Relative core losses versus frequency (measured with R29 ring cores)

Amplitude permeability versus AC field flux density (measured with ungapped E cores)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

DC magnetic bias of P and RM cores

 $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

versus AC field flux density (measured with R16 ring cores) P_{V} P_{V} 10^{2} 5 10^{1} f = 25 kHz $20 ^{\circ}\text{C};$ 100°C

10²

5

10³

m⊺ ╼ ₿

Relative core losses

Relative core losses versus frequency (measured with R16 ring cores)

10⁰

10¹

Relative core losses versus temperature (measured with R16 ring cores)

FAL0581-1 10² TIH $\mu_{\rm s}^{\,,\,};\,\mu_{\rm s}^{\,,\,}$ ΠΠ 10¹ μ **-** μ 10 ⁰ 10 ⁻¹ 10⁻¹ 10² MHz 10³ 10⁰ 10 ¹ - f

Complex permeability versus frequency (measured with R20/10 ring cores, $\hat{B} \le 0.25$ mT) Relative loss factor versus frequeny (measured with R20/10 ring cores, $\hat{B} \le 0.25$ mT)

5 Plastic materials, manufacturers and UL numbers

- RM coil formers of thermosetting plastic with molded-in pins: Bakelite UP 3420[®] [E 61040 (M)], blue; Bakelite
- Pinned coil formers P9×5, P11×7, P14×8, P18×11, EP7 special coil former: AMC 2568[®] [E 48036 (M)], blue; Synres Almoco
- EP, EFD coil formers: Vyncolit/X611/green[®] [E167521 (M)]; Vyncolit
- RM, EP and EFD coil formers with post-inserted pins: Vyncolit/X611/green[®] [E167521 (M)]; Vyncolit
- RM coil formers with post-inserted pins: Sumikon PM 9630[®] [E41429 (M)]; Sumitomo Bakelite
- RM power, P, PM, E, EF, EC, ETD, ER coil formers and terminal carriers P7×4, P9×5, P11×7, P36×22: Valox 420-SE0[®] [E 45329 (M)], black; General Electric Plastics Vestodur GF30-FR1[®] [E66645 (M)], black; Creanova Crastin CE 7931[®] [E 69578 (M)], black; DuPont Pocan 4235[®] [E 41613 (M)], black; Bayer Amite TV4264SN[®] [E 47960 (M)], black; DSM
- Terminal carrier P4,6×4,1: Luvocom 1105/GF/20/EM[®] [---], natural; Lehmann u. Voss & Co.
- Terminal carriers P14×8, P18×11, P22×13, P26×16, P30×19: Pocan 4235[®] [E 41613 (M)], gray; Bayer
- SMD coil formers (except of ER11 coil former): Zenite 7130[®] [E 123598 (M)], black; DuPont
- ER11 SMD coil former : Sumika Super E4008[®] [E 54705 (M)], black; Sumitomo Chemical Zenite 7130[®] [E 123598 (M)], black; DuPont

Rights to change material reserved.

Further information is given on the packing label.

The trade names are registered trademarks of the listed manufacturers.

Siemens Matsushita Components

EMI suppression capacitors

Play it safe

Whether video recorder, television, refrigerator or toaster – our EMI suppression capacitors do a grand job in every possible kind of entertainment and consumer electronics appliance. They've also proven their worth in switch-mode power supplies for PCs. No wonder, because the advantages of film technology are there to be seen: low cost, no risk of failure through damp, and optimum self-

healing capability. The result – less destruction of equipment and ensuing fires. Plus the line is safeguarded against surges. In this way our capacitors satisfy the user's need for safety, and the new EMC standards too of course.

