Modeling Note

MN-PSM-1

SIGBT / EMCON-Fast DuoPacks

Author: Peter Türkes

Published by Infineon Technologies AG
www.infineon.com/simulate

Support: simulate@infineon.com
Devices covered by this Modeling Note:

1200 V S-IGBT/EMCON-fast Duopacks:

- SKP02N120
- SKW07N120
- SKW15N120
- SKW25N120

600V S-IGBT/EMCON-fast DuoPacks:

- SKP02N60 = SKB02N60
- SKP04N60 = SKB04N60
- SKP06N60 = SKB06N60
- SKP10N60 = SKB10N60 = SKW10N60
- SKP15N60 = SKB15N60
- SKW15N60
- SKW20N60
- SKW30N60

Model Description:

Overview:

DuoPacks feature a fast S-IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode. This system can be easily used in motor drive, inverter, and switch-mode power supply applications.

The base model of the DuoPack includes the base models of the NPT IGBT and the EMCON-fast diode. The PSPICE compact models of the NPT-IGBT and the EMCON-fast devices are based on the device-physics-based models described in detail in [3].

The special features of the 600V and 1200V S-IGBT/EMCON-diode combinations are the fast switching times and the low reverse charge at turn-off. The PSPICE parameters related to these features are developed from the known device geometry and doping levels.

Implementation of Temperature Influence:

The electrical characteristics of the S-IGBT and EMCON diodes are dependent on the device temperature. Of particular importance for the PSPICE implementation of the temperature-dependent equations are the bipolar device regions. The approach chosen for the implementation of the temperature dependencies is determined by the capabilities of PSPICE.
Based on the temperature dependencies of the pn-junction currents (diode and IGBT) and MOSFET currents (IGBT), the temperature-dependent excess currents are modeled by auxiliary current sources in parallel to the MOS-channel and the pn-junctions, respectively. In case of level-2 models, the device temperature is represented by a local parameter. For level-3 models, it is modeled by an auxiliary network feeding the device’s dissipated power into a thermal network.

Figure 1 shows the models that can be generally used in order to model the thermal path of semiconductor devices. The physical-correct T-type network has the advantage that it can be easily extended with additional heat-sink models [1,2].

![T-type network](image)

It should be noted that the use of the level-3 transient-temperature models requires more simulation time than the use of lower-level models.

Typical Model Tests:

Static Characteristics

The performance and quality of the compact models are tested in standard-device characterization circuits. Of particular importance is the temperature-dependent behavior of the devices.

The PSPICE schematic for the dc-simulation of an IGBT is shown in Figure 2. It can be used in order to determine the device’s transfer and output characteristics. Latter requires a shorted IGBT gate emitter. The device temperature parameter T_J is local to the device and can be used as a ‘vary’ variable.

The simulation results for temperature-dependent 600V-IGBT transfer and output characteristics are shown in Figure 3. The respective diode output curves are depicted in Figure 4.
Figure 2: PSPICE schematic for determination of IGBT DC characteristics

Figure 3: Temperature-dependent 15A/600V DuoPack output characteristics (Vge = 7V/9V/15V) (simulation / measurements). Left graph: at 150°C; Right graph: at room temperature.

Figure 4: Temperature-dependent 15A/1200 EMCON-fast output characteristics (simulation / measurement)
Dynamic Characteristics

The switching behavior of the devices is mainly influenced by the intrinsic capacitances that result from the MOS cell structure, by the internal gate resistance, and the inherent pn-junctions. It is further affected by the diode charge and the commutation speed during switching. These multi-dimensional effects are tested and compared to measurements (see Figure 5).

Figure 5: Comparison 1200V-DuoPack half-bridge turn-off commutations (at 125°C; with two different external gate resistors) (simulated / measured; measured and simulated curves shifted in time)

Summary

Simulation and measurement results show an excellent agreement for the static and dynamic case. The simulation of the device’s dynamic behavior impressively demonstrates the reliability of the models when used for the simulation of application circuits.

PSPICE Settings for Power Electronic Simulations:

The standard version of PSPICE is optimized for the simulation of small-signal applications. For the simulation of power electronic devices and applications the PSPICE settings need to be modified.

Power device models utilize auxiliary circuits in order to calculate internal system parameters such as the internal free-carrier concentration. This requires a larger number of iterations for convergence. Furthermore, currents and voltages in power electronic applications are far higher than those in small-signal applications. As a consequence, it is necessary to modify the PSPICE settings for the absolute accuracy limits of currents and voltages, and for the relative error-limit. In some cases, the absolute accuracy limit for charges needs to be adjusted as well.
The PSPICE settings can be changed in the schematic-editor menu “Analysis/Setup/Options”. They can be also modified directly by changing the values in the .OPTIONS section of the “.cir” PSPICE file. The settings depend on the particular case to be simulated. However, as a rough estimate, the following numbers can be used as a first guess:

<table>
<thead>
<tr>
<th>OPTION name</th>
<th>Description</th>
<th>default</th>
<th>Change to: In power electronic simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTOL</td>
<td>best accuracy of currents amp</td>
<td>1.0 pA</td>
<td>1uA</td>
</tr>
<tr>
<td>VNTOL</td>
<td>best accuracy of voltages volt</td>
<td>1.0 uV</td>
<td>10uV</td>
</tr>
<tr>
<td>CHGTOL</td>
<td>best accuracy of charges coulomb</td>
<td>0.01 pC</td>
<td></td>
</tr>
<tr>
<td>ITL1</td>
<td>DC and bias point blind repeating limit</td>
<td>150.0</td>
<td>300</td>
</tr>
<tr>
<td>ITL2</td>
<td>DC and bias point educated guess repeating limit</td>
<td>20.0</td>
<td>250</td>
</tr>
<tr>
<td>ITL4</td>
<td>the limit at any repeating point in transient analysis</td>
<td>10.0</td>
<td>100 (higher when large number of stray inductances)</td>
</tr>
<tr>
<td>RELTOL</td>
<td>relative accuracy of V and I</td>
<td>0.001</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Infineon Simulation Support:

For further information please contact us through our local sales offices, email to simulate@infineon.com, or check out our simulation web site: http://www.infineon.com/simulate.
Bibliography:

Attention please!
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Simulation models provided by INFINEON are not warranted by INFINEON as fully representing all of the specifications and operating characteristics of the semiconductor product to which the model relates. The model describe the characteristics of a typical device. In all cases, the current data sheet information for a given device is the final design guideline and the only actual performance specification. Although models can be a useful tool in evaluating device performance, they cannot model exact device performance under all conditions, nor are they intended to replace bread-boarding for final verification. INFINEON therefore does not assume any liability arising from their use. INFINEON reserves the right to change models without prior notice.

Information
For information on simulation-related issues, please check out the INFINEON simulation web page: www.infineon.com/simulate or email to simulate@infineon.com. For information on technology, delivery terms and conditions and prices of INFINEON devices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Infineon Technologies AG sales offices worldwide – partly represented by Siemens AG

Siemens AG Österreich
Endberger Lände 26
A-1031 Wien
T (+43)1-07 5 56 11
Fax (+43)-1-17 05 59 73
Austria

Siemens Ltd.
885 Mountain Highway
Bayswater,Victoria 3153
T (+61)3-97 21 11
Fax (+61)3-97 21 72 75
Australia

Siemens Electronic Components Benelux
Chaamsesteenweg 116/
Chaussée de Charleroi 116
B-1060 Brussels/Bruxelles
T (+32)2-38 36 09 00
Fax (+32)2-36 28 57
Email: components@siemens.nl
Belgium

Siemens Ltda.
Semic conductors
Avenida Mutunga,3800-Pintuba
05110-801 São Paulo-SP
T (+55)11-08 25 64 64
Fax (+55)11-08 25 64 64
Brazil

Infineon Technologies France
93497, Bd. Ormano
F-93527 Saint-Denis CEDEX2
T (+33)1-49 22 31 00
Fax (+33)-1-49 22 31 01
France

Siemens Components Scandinavia
P.O. Box 6 0
FIN-02601 Espoo (Helsinki)
T (+358)-515 11 51 51
Fax (+358)510-11 24 96
Email: scs@components.siemens.se
Finland

Siemens Components House
Oldbury
GB-3126 Birmingham
T (+44)11-47 16 92
Fax (+44)11-47 16 92
UK

Infineon Technologies Hong Kong Ltd.
300 Level 3, Festival Walk,
80 Tat Chee Avenue,
Yam Yat Tsuen,
Kowloon Tong
T (+852)32 27 98 00
Fax (+852)27 98 00

Infineon Technologies
310 1026 Budapest Lajos u.103
T (+36)1-457 16 92
Fax (+36)1-457 16 92

Siemens Components
310-3041 Essen
T (+49)11-8 70 91 50
Fax (+49)11-8 70 91 50

Siemens Components
P.O. Box 32 26 30
T (+91)11-9 81 51
Fax (+91)11-9 81 51
India

Infineon Technologies
310-036 Zurich Irlam Strasse 10
T (+41)1-75 61 00
Fax (+41)1-75 61 00
Switzerland

Infineon Technologies
310-356 New York City 10010
T (+1)212-66 33 00
Fax (+1)212-66 33 00
USA

Infineon Technologies
310-2159 Tokyo Shinagawa-ku
T (+81)3-32 95 11 70
Fax (+81)3-32 95 11 70
Japan

Infineon Technologies
310-4219 Düsseldorf
T (+49)11-9 81 51
Fax (+49)11-9 81 51
Germany

Infineon Technologies
310-036 New York City 10010
T (+1)212-66 33 00
Fax (+1)212-66 33 00
USA

Infineon Technologies
310-2159 Tokyo Shinagawa-ku
T (+81)3-32 95 11 70
Fax (+81)3-32 95 11 70
Japan