The PIC16C745/765 (Rev. A1) parts you have received conform functionally to the PIC16C745/765 Data Sheet (DS41124C), except for the anomalies described below.

1. Module: USB Transceiver

The first bit in the sync pattern during Microcontroller-to-host transactions is elongated by approximately 100 ns (see Figure 1). According to Section 7.1.11 of the USB Specification, Version 1.1, the bit period for a low speed device can vary 1.5% from 667 ns. This means the average bit length can vary from 657 ns to 676 ns. Section 7.1.13.1 states, “For low speed transmissions, the jitter time for any consecutive differential data transitions must be within ±25 ns and within ±10 ns for any set of paired differential data transitions.”

The initial bit from the PIC16C745/765, at approximately 772 ns in length, violates the consecutive transition jitter specification by 71 ns to 90 ns, depending on the actual data rate. It violates the paired data transition jitter specification by 82 ns to 120 ns, depending on the actual data rate. Devices based on the PIC16C745/765 are likely to fail the USB Implementer’s Forum Compliance Test due to the jitter violation. However, the elongated bit does not affect the reliability of USB transactions between current USB host controllers and the PIC16C745/765. All packets are communicated successfully between microcontroller and host.

Work Around

No work around available.

FIGURE 1: USB TRANSCEIVER TIMING

![USB Transceiver Timing Diagram](image)
2. Module: USTAT Register

The TOK_DNE bit (UIR Bit 3) is not set correctly for pending USB transactions in the USTAT register (see Figure 2). If additional transactions arrive prior to clearing the TOK_DNE bit, they will be lost.

Work around

The interrupt driver Microchip firmware does not lose any transactions with current operating systems.

FIGURE 2: UIR / USTAT REGISTER
Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet, the following clarifications and corrections should be noted.

1. Module: Timer1

In Section 7.0, Timer1 module, there is an error in Figure 7-1. The label FINT should read FINT/4.

Note 1: When the T1OSCEN bit is cleared, the inverter is turned off. This eliminates power drain.
APPENDIX A: REVISION HISTORY

Rev A Document (9/01)
Original Errata document.
Issue 1 (USTAT Register) was added (page 1).
USB Transceiver Timing was added to page 1.

Rev B Document (6/02)
Under the Clarifications/Corrections to the Data Sheet,
Issue 1 (Timer1) was added (page 2).

Rev C Document (9/02)
All reference to PIC16C745 in this Errata document is changed to PIC16C745/765.
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Keeloq, MPLAB, PIC, PICmicro, PICSTART and PROMATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXMLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.