MPSA06 / MMBTA06 / PZTA06
NPN General Purpose Amplifier

Features
- This device is designed for general purpose amplifier applications at collector currents to 300mA.
- Sourced from Process 33.

Absolute Maximum Ratings * $T_a = 25°C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CEO}</td>
<td>Collector-Emitter Voltage</td>
<td>80</td>
<td>V</td>
</tr>
<tr>
<td>V_{CBO}</td>
<td>Collector-Base Voltage</td>
<td>80</td>
<td>V</td>
</tr>
<tr>
<td>V_{CEO}</td>
<td>Emitter-Base Voltage</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current - Continuous</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>T_J, T_{stg}</td>
<td>Operating and Storage Junction Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:
1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $T_a = 25°C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_D</td>
<td>Total Device Dissipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Derate above 25°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPSA06</td>
<td>625</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>MMBTA06</td>
<td>350</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>PZTA06</td>
<td>1,000</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>Derate above 25°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPSA06</td>
<td>5.0</td>
<td>mW/°C</td>
</tr>
<tr>
<td></td>
<td>MMBTA06</td>
<td>2.8</td>
<td>mW/°C</td>
</tr>
<tr>
<td></td>
<td>PZTA06</td>
<td>8.0</td>
<td>mW/°C</td>
</tr>
</tbody>
</table>

R_{JUC}	Thermal Resistance, Junction to Case	83.3	°C/W	
R_{JUA}	Thermal Resistance, Junction to Ambient	200	°C/W	
	MPSA06	357	125	
Electrical Characteristics

Tₐ = 25°C unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(BR)CEO</td>
<td>Collector-Emitter Breakdown Voltage*</td>
<td>I_C = 1.0mA, I_B = 0</td>
<td>80</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(BR)EBO</td>
<td>Emitter-Base Breakdown Voltage</td>
<td>I_E = 100μA, I_C = 0</td>
<td>4.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_CEO</td>
<td>Collector-Cutoff Current</td>
<td>V_CE = 60V, I_B = 0</td>
<td>0.1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_CBO</td>
<td>Collector-Cutoff Current</td>
<td>V_CB = 80V, I_E = 0</td>
<td>0.1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>On Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h FE</td>
<td>DC Current Gain</td>
<td>I_C = 10mA, V_CE = 1.0V</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_CE(sat)</td>
<td>Collector-Emitter Saturation Voltage</td>
<td>I_C = 100mA, I_B = 10mA</td>
<td>0.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_BE(on)</td>
<td>Base-Emitter On Voltage</td>
<td>I_C = 100mA, V_CE = 1.0V</td>
<td>1.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Small Signal Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f T</td>
<td>Current Gain - Bandwidth Product</td>
<td>I_C = 10mA, V_CE = 2.0V, f = 100MHz</td>
<td>100</td>
<td>MHz</td>
<td></td>
</tr>
</tbody>
</table>

* Pulse Test: Pulse Width ≤ 300μs, Duty Cycle ≤ 2.0%
Typical Performance Characteristics (continued)

Collector-Emitter Breakdown Voltage with Resistance Between Emitter-Base

![Figure 7. Collector-Emitter Breakdown Voltage with Resistance Between Emitter-Base](image)

Input and Output Capacitance vs Reverse Voltage

![Figure 8. Input and Output Capacitance vs Reverse Voltage](image)

Gain Bandwidth Product vs Collector Current

![Figure 9. Gain Bandwidth Product vs Collector Current](image)

Power Dissipation vs Ambient Temperature

![Figure 10. Power Dissipation vs Ambient Temperature](image)
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Auto-SAP™
AX-CAP™
Build It Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSpark™
EfficientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FAST™
FastCore™
FETBench™
FlashWriter™
FPS™
F-FPS™
FRFET®
Global Power Resource℠
Green FPS™
mWSaver™
MegaBuck™
MICROCOUPLER™
MicroFET®
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
Motion-SPM™
PDP SPM™
Power-SPM™
Power-SM™
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/kW at a time™
SignalWise™
SmartMax™
SMART START™
SPM™
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-5
SuperSOT™-8
SuperMOS™
SyncFET™
Sync-Lock™
SYSTEM™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS APPLY ONLY IF MARKED “REV. I” OR LATER. EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION IS REQUIRED BEFORE USING ANY HIGHER LEVEL “REV.”

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Forthcoming / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

© Fairchild Semiconductor Corporation www.fairchildsemi.com