1 Introduction

These devices are designed to be used as encoder/decoder pairs in remote control applications.

The MC145026 encodes nine lines of information and serially sends this information upon receipt of a transmit enable (TE) signal. The nine lines may be encoded with trinary data (low, high, or open) or binary data (low or high). The words are transmitted twice per encoding sequence to increase security.

The MC145027 decoder receives the serial stream and interprets five of the trinary digits as an address code. Thus, 243 addresses are possible. If binary data is used at the encoder, 32 addresses are possible. The remaining serial information is interpreted as four bits of binary data. The valid transmission (VT) output goes high on the MC145027 when two conditions are met. First, two addresses must be consecutively received (in one encoding sequence) which both match the local address. Second, the 4 bits of data must match the last valid data received. The active VT indicates that the information at the Data output pins has been updated.

Contents

1 Introduction 1
2 Electrical Specifications 4
3 Operating Characteristics 8
4 Pin Descriptions 9
5 MC145027 and MC145028 Timing 16
6 Package Dimensions 18

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

© Freescale Semiconductor, Inc., 2005. All rights reserved.
Introduction

The MC145028 decoder treats all nine trinary digits as an address which allows 19,683 codes. If binary data is encoded, 512 codes are possible. The VT output goes high on the MC145028 when two addresses are consecutively received (in one encoding sequence) which both match the local address.

- Operating Temperature Range: -40 to +85°C
- Very-Low Standby Current for the Encoder: 300 nA Maximum @ 25°C
- Interfaces with RF, Ultrasonic, or Infrared Modulators and Demodulators
- RC Oscillator, No Crystal Required
- High External Component Tolerance; Can Use ±5% Components
- Internal Power-On Reset Forces All Decoder Outputs Low
- Operating Voltage Range:
 - MC145026 = 2.5 to 18 V
 - MC145027, MC145028 = 4.5 to 18 V

![Figure 1. Pin Assignments](image-url)
Figure 2. MC145026 Encoder Block Diagram

Figure 3. MC145027 Decoder Block Diagram
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{\text{SS}} \leq (V_{\text{in}}$ or $V_{\text{out}}) \leq V_{\text{DD}}$.
Table 2. Electrical Characteristics - MC145026\(^1\), MC145027, and MC145028

(Voltage Referenced to \(V_{SS}\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>(V_{DD})</th>
<th>(V_{OL}) ((V_{in} = V_{DD} , or , 0))</th>
<th>(V_{OH}) ((V_{in} = 0 , or , V_{DD}))</th>
<th>(V_{IL}) ((V_{out} = 4.5 , or , 0 , V))</th>
<th>(V_{IH}) ((V_{out} = 0.5 , or , 4.5 , V))</th>
<th>(I_{OH}) ((V_{out} = 2.5 , V))</th>
<th>(I_{OL}) ((V_{out} = 0.4 , V))</th>
<th>(I_{in}) - TE</th>
<th>(I_{in}) - RS</th>
<th>(C_{in})</th>
<th>(I_{DD}) Quiescent Current - MC145026</th>
<th>(I_{DD}) Quiescent Current - MC145027, MC145028</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\text{Min} , \text{Max})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{Unit})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-40^\circ\text{C})</td>
<td>(25^\circ\text{C})</td>
<td>(85^\circ\text{C})</td>
<td>(-40^\circ\text{C})</td>
<td>(25^\circ\text{C})</td>
<td>(85^\circ\text{C})</td>
<td>(-40^\circ\text{C})</td>
<td>(25^\circ\text{C})</td>
<td>(85^\circ\text{C})</td>
<td>(-40^\circ\text{C})</td>
<td>(25^\circ\text{C})</td>
<td>(85^\circ\text{C})</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low-Level Output Voltage</td>
<td>(5.0)</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>High-Level Output Voltage</td>
<td>(5.0)</td>
<td>4.95</td>
<td>-</td>
<td>4.95</td>
<td>-</td>
<td>4.95</td>
<td>-</td>
<td>4.95</td>
<td>-</td>
<td>4.95</td>
<td>-</td>
<td>4.95</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Low-Level Input Voltage</td>
<td>(5.0)</td>
<td>1.5</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>High-Level Input Voltage</td>
<td>(5.0)</td>
<td>3.5</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>High-Level Output Current</td>
<td>(5.0)</td>
<td>2.5</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Low-Level Output Current</td>
<td>(5.0)</td>
<td>0.52</td>
<td>-</td>
<td>0.52</td>
<td>-</td>
<td>0.52</td>
<td>-</td>
<td>0.52</td>
<td>-</td>
<td>0.52</td>
<td>-</td>
<td>0.52</td>
</tr>
<tr>
<td>(I_{in}) - RS</td>
<td>Input Current RS (MC145026), (D_{in}) (MC145027, MC145028)</td>
<td>(15)</td>
<td>±0.3</td>
<td>-</td>
<td>±0.3</td>
<td>-</td>
<td>±0.3</td>
<td>-</td>
<td>±0.3</td>
<td>-</td>
<td>±0.3</td>
<td>-</td>
<td>±0.3</td>
</tr>
<tr>
<td>(I_{in})</td>
<td>Input Current</td>
<td>(A1 - A5, A6/D6 - A9/D9) (MC145026), (A1 - A5) (MC145027), (A1 - A9) (MC145028)</td>
<td>(5.0)</td>
<td>-</td>
<td>-</td>
<td>±110</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±110</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(C_{in})</td>
<td>Input Capacitance ((V_{in} = 0))</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(I_{DD}) Quiescent Current - MC145026</td>
<td>(5.0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>(I_{DD}) Quiescent Current - MC145027, MC145028</td>
<td>(5.0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
</tbody>
</table>

\(^1\) Also see next Electrical Characteristics table for 2.5 V specifications.
Table 2. Electrical Characteristics - MC1450261, MC145027, and MC145028 (continued)
(Voltage Referenced to V\textsubscript{SS})

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>V_{DD}</th>
<th>Guaranteed Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{dd}</td>
<td>Dynamic Supply Current - MC145026 \ ($f_{c} = 20$ kHz)</td>
<td>5.0</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>400</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>600</td>
<td>-</td>
</tr>
<tr>
<td>I_{dd}</td>
<td>Dynamic Supply Current - MC145027, \ MC145028 \ ($f_{c} = 20$ kHz)</td>
<td>5.0</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>800</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1200</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Also see next Electrical Characteristics table for 2.5 V specifications.

Table 3. Electrical Characteristics - MC145026
(Voltage Referenced to V\textsubscript{SS})

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>V_{DD}</th>
<th>Guaranteed Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OL}</td>
<td>Low-Level Output Voltage \ ($V_{in} = 0$ V or V_{DD})</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>High-Level Output Voltage \ ($V_{in} = 0$ V or V_{DD})</td>
<td>2.5</td>
<td>2.45</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low-Level Input Voltage \ ($V_{out} = 0.5$ V or 2.0 V)</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>High-Level Input Voltage \ ($V_{out} = 0.5$ V or 2.0 V)</td>
<td>2.5</td>
<td>2.2</td>
</tr>
<tr>
<td>I_{OH}</td>
<td>High-Level Output Current \ ($V_{out} = 1.25$ V)</td>
<td>2.5</td>
<td>0.28</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Low-Level Output Current \ ($V_{out} = 0.4$ V)</td>
<td>2.5</td>
<td>0.22</td>
</tr>
<tr>
<td>I_{in}</td>
<td>Input Current (TE - Pull-Up Device)</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>I_{in}</td>
<td>Input Current (A1-A5, A6/D6-A9/D9)</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Quiescent Current</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>I_{dd}</td>
<td>Dynamic Supply Current \ ($f_{c} = 20$ kHz)</td>
<td>2.5</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4. Switching Characteristics - MC145026\(^1\), MC145027, and MC145028 (\(C_L = 50\) pF, \(T_A = 25^\circ\)C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>Figure No.</th>
<th>(V_{DD})</th>
<th>Guaranteed Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{THL}, t_{TLH})</td>
<td>Output Transition Time</td>
<td>5, 9</td>
<td>5.0</td>
<td>-</td>
<td>200 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>5.0</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>-</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>(t_f)</td>
<td>(D_{in}) Rise Time - Decoders</td>
<td>6</td>
<td>5.0</td>
<td>-</td>
<td>15 (\mu s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(t_f)</td>
<td>(D_{in}) Fall Time - Decoders</td>
<td>6</td>
<td>5.0</td>
<td>-</td>
<td>5.0 (\mu s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>-</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>-</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>(f_{osc})</td>
<td>Encoder Clock Frequency</td>
<td>7</td>
<td>5.0</td>
<td>0.001</td>
<td>2.0 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.001</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.001</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>Decoder Frequency - Referenced to Encoder Clock</td>
<td>13</td>
<td>5.0</td>
<td>1.0</td>
<td>240 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1.0</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.0</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>(t_w)</td>
<td>(TE) Pulse Width - Encoders</td>
<td>8</td>
<td>5.0</td>
<td>65</td>
<td>- ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>30</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>20</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Also see next Electrical Characteristics table for 2.5 V specifications.

Table 5. Switching Characteristics - MC145026 (\(C_L = 50\) pF, \(T_A = 25^\circ\)C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>Figure No.</th>
<th>(V_{DD})</th>
<th>Guaranteed Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{THL}, t_{TLH})</td>
<td>Output Transition Time</td>
<td>5, 9</td>
<td>2.5</td>
<td>-</td>
<td>450 ns</td>
</tr>
<tr>
<td>(f_{osc})</td>
<td>Encoder Clock Frequency</td>
<td>7</td>
<td>2.5</td>
<td>1.0</td>
<td>250 kHz</td>
</tr>
<tr>
<td>(t_w)</td>
<td>(TE) Pulse Width</td>
<td>8</td>
<td>2.5</td>
<td>1.5</td>
<td>- (\mu s)</td>
</tr>
</tbody>
</table>
3 Operating Characteristics

3.1 MC145026

The encoder serially transmits trinary data as defined by the state of the A1 - A5 and A6/D6 - A9/D9 input pins. These pins may be in either of three states (low, high, or open) allowing 19,683 possible codes. The transmit sequence is initiated by a low level on the \(\overline{TE} \) input pin. Upon power-up, the MC145026 can continuously transmit as long as \(\overline{TE} \) remains low (also, the device can transmit two-word sequences by pulsing \(\overline{TE} \) low). However, no MC145026 application should be designed to rely upon the first data word transmitted immediately after power-up because this word may be invalid. Between the two data words, no signal is sent for three data periods (see Figure 11).

Each transmitted trinary digit is encoded into pulses (see Figure 12). A logic 0 (low) is encoded as two consecutive short pulses, a logic 1 (high) as two consecutive long pulses, and an open (high impedance) as a long pulse followed by a short pulse. The input state is determined by using a weak “output” device to try to force each input high then low. If only a high state results from the two tests, the input is assumed to be hardwired to \(V_{DD} \). If only a low state is obtained, the input is assumed to be hardwired to \(V_{SS} \). If both a high and a low can be forced at an input, an open is assumed and is encoded as such. The “high” and
“low” levels are 70% and 30% of the supply voltage as shown in the Electrical Characteristics table. The weak “output” device sinks/sources up to 110 µA at a 5 V supply level, 500 µA at 10 V, and 1 mA at 15 V.

The \overline{TE} input has an internal pull-up device so that a simple switch may be used to force the input low. While \overline{TE} is high, the encoder is completely disabled, the oscillator is inhibited, and the current drain is reduced to quiescent current. When \overline{TE} is brought low, the oscillator is started and the transmit sequence begins. The inputs are then sequentially selected, and determinations are made as to the input logic states. This information is serially transmitted via the D_{out} pin.

3.2 MC145027

This decoder receives the serial data from the encoder and outputs the data, if it is valid. The transmitted data, consisting of two identical words, is examined bit by bit during reception. The first five trinary digits are assumed to be the address. If the received address matches the local address, the next four (data) bits are internally stored, but are not transferred to the output data latch. As the second encoded word is received, the address must again match. If a match occurs, the new data bits are checked against the previously stored data bits. If the two nibbles of data (four bits each) match, the data is transferred to the output data latch by VT and remains until new data replaces it. At the same time, the VT output pin is brought high and remains high until an error is received or until no input signal is received for four data periods (see Figure 11).

Although the address information may be encoded in trinary, the data information must be either a 1 or 0. A trinary (open) data line is decoded as a logic 1.

3.3 MC145028

This decoder operates in the same manner as the MC145027 except that nine address lines are used and no data output is available. The VT output is used to indicate that a valid address has been received. For transmission security, two identical transmitted words must be consecutively received before a VT output signal is issued.

The MC145028 allows 19,683 addresses when trinary levels are used. 512 addresses are possible when binary levels are used.

4 Pin Descriptions

4.1 MC145026 Encoder

Address, Address/Data Inputs (Pins 1 - 7, 9, and 10)

These address/data inputs are encoded and the data is sent serially from the encoder via the D_{out} pin.

R_S, C_{TC}, R_{TC}
(Pins 11, 12, and 13)

These pins are part of the oscillator section of the encoder (see Figure 10).
Pin Descriptions

If an external signal source is used instead of the internal oscillator, it should be connected to the R_S input and the R_{TC} and C_{TC} pins should be left open.

\overline{TE}

Transmit Enable (Pin 14)

This active-low transmit enable input initiates transmission when forced low. An internal pull-up device keeps this input normally high. The pull-up current is specified in the Electrical Characteristics table.

D_{out}

Data Out (Pin 15)

This is the output of the encoder that serially presents the encoded data word.

V_{SS}

Negative Power Supply (Pin 8)

The most-negative supply potential. This pin is usually ground.

V_{DD}

Positive Power Supply (Pin 16)

The most-positive power supply pin.

4.2 MC145027 and MC145028 Decoders

A1 - A5, A1 - A9

Address Inputs (Pins 1 - 5)-MC145027,

Address Inputs (Pins 1 - 5, 15, 14, 13, 12)-MC145028

These are the local address inputs. The states of these pins must match the appropriate encoder inputs for the VT pin to go high. The local address may be encoded with trinary or binary data.

D6 - D9

Data Outputs (Pins 15, 14, 13, 12)-MC145027 Only

These outputs present the binary information that is on encoder inputs A6/D6 through A9/D9. Only binary data is acknowledged; a trinary open at the MC145026 encoder is decoded as a high level (logic 1).

D_{in}

Data In (Pin 9)

This pin is the serial data input to the decoder. The input voltage must be at CMOS logic levels. The signal source driving this pin must be dc coupled.
R₁, C₁

Resistor 1, Capacitor 1 (Pins 6, 7)

As shown in Figure 3 and Figure 4, these pins accept a resistor and capacitor that are used to determine whether a narrow pulse or wide pulse has been received. The time constant R₁ × C₁ should be set to 1.72 encoder clock periods:

\[R_1 C_1 = 3.95 R_{TC} C_{TC} \]

R₂/C₂

Resistor 2/Capacitor 2 (Pin 10)

As shown in Figure 3 and Figure 4, this pin accepts a resistor and capacitor that are used to detect both the end of a received word and the end of a transmission. The time constant R₂ × C₂ should be 33.5 encoder clock periods (four data periods per Figure 12):

\[R_2 C_2 = 77 R_{TC} C_{TC} \]

This time constant is used to determine whether the Dᵢₙ pin has remained low for four data periods (end of transmission). A separate on-chip comparator looks at the voltage-equivalent two data periods (0.4 R₂ C₂) to detect the dead time between received words within a transmission.

VT

Valid Transmission Output (Pin 11)

This valid transmission output goes high after the second word of an encoding sequence when the following conditions are satisfied:

1. the received addresses of both words match the local decoder address, and
2. the received data bits of both words match.

VT remains high until either a mismatch is received or no input signal is received for four data periods.

VSS

Negative Power Supply (Pin 8)

The most-negative supply potential. This pin is usually ground.

VDD

Positive Power Supply (Pin 16)

The most-positive power supply pin.
This oscillator operates at a frequency determined by the external RC network; i.e.,

\[f = \frac{1}{2.3 R_{TC} C_{TC}} \text{ (Hz)} \]

for \(1 \text{ kHz} \leq f \leq 400 \text{ kHz}\)

where: \(C_{TC}' = C_{TC} + C_{layout} + 12 \text{ pF}\)

\[R_S = 2 R_{TC} \]
\[R_S \geq 20 \text{ k} \]
\[R_{TC} \geq 10 \text{ k} \]
\[400 \text{ pF} < C_{TC} < 15 \mu\text{F} \]

The value for \(R_S\) should be chosen to be \(\geq 2\) times \(R_{TC}\). This range ensures that current through \(R_S\) is insignificant compared to current through \(R_{TC}\). The upper limit for \(R_S\) must ensure that \(R_S \times 5 \text{ pF}\) (input capacitance) is small compared to \(R_{TC} \times C_{TC}\).

For frequencies outside the indicated range, the formula is less accurate. The minimum recommended oscillation frequency of this circuit is 1 kHz. Susceptibility to externally induced noise signals may occur for frequencies below 1 kHz and/or when resistors utilized are greater than 1 MΩ.

Figure 10. Encoder Oscillator Information

Figure 11. Timing Diagram

MC145026, MC145027, MC145028 Technical Data, Rev. 4
Figure 12. Encoder Data Waveforms

Figure 13. f_{max} vs C_{layout} - Decoders Only
Figure 14. MC145027 Flowchart

MC145026, MC145027, MC145028 Technical Data, Rev. 4
Figure 15. MC145028 Flowchart
5 MC145027 and MC145028 Timing

To verify the MC145027 or MC145028 timing, check the waveforms on C1 (Pin 7) and R2/C2 (Pin 10) as compared to the incoming data waveform on D_in (Pin 9).

The R-C decay seen on C1 discharges down to 1/3 \(V_{DD} \) before being reset to \(V_{DD} \). This point of reset (labelled “DOS” in Figure 16) is the point in time where the decision is made whether the data seen on D_in is a 1 or 0. DOS should not be too close to the D_in data edges or intermittent operation may occur.

The other timing to be checked on the MC145027 and MC145028 is on R2/C2 (see Figure 17). The R-C decay is continually reset to \(V_{DD} \) as data is being transmitted. Only between words and after the end-of-transmission (EOT) does R2/C2 decay significantly from \(V_{DD} \). R2/C2 can be used to identify the internal end-of-word (EOW) timing edge which is generated when R2/C2 decays to 2/3 \(V_{DD} \). The internal EOT timing edge occurs when R2/C2 decays to 1/3 \(V_{DD} \). When the waveform is being observed, the R-C decay should go down between the 2/3 and 1/3 \(V_{DD} \) levels, but not too close to either level before data transmission on D_in resumes.

Verification of the timing described above should ensure a good match between the MC145026 transmitter and the MC145027 and MC145028 receivers.

Figure 16. R-C Decay on Pin 7 (C1)

Figure 17. R-C Decay on Pin 10 (R2/C2)
$f_{osc} = \frac{1}{2.3 \cdot R_{TC} \cdot C_{TC}}$

$R_1 \cdot C_1 = 3.95 \cdot R_{TC} \cdot C_{TC}$

$R_2 \cdot C_2 = 77 \cdot R_{TC} \cdot C_{TC}$

$C_{TC} = C_{TC} + C_{layout} + 12 \, \text{pF}$

$100 \, \text{pF} \leq C_{TC} \leq 15 \, \text{μF}$

$R_{TC} \geq 10 \, \text{kΩ}$

$R_S \approx 2 \cdot R_{TC}$

$R_1 \geq 10 \, \text{kΩ}$

$C_1 \geq 400 \, \text{pF}$

$R_2 \geq 100 \, \text{kΩ}$

$C_2 \geq 700 \, \text{pF}$

Example R/C Values (All Resistors and Capacitors are ± 5%)

<table>
<thead>
<tr>
<th>f_{osc} (kHz)</th>
<th>R_{TC} (kΩ)</th>
<th>C_{TC} (pF)</th>
<th>R_S (kΩ)</th>
<th>R_1 (kΩ)</th>
<th>C_1 (pF)</th>
<th>R_2 (kΩ)</th>
<th>C_2 (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>362</td>
<td>10</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>470</td>
<td>100</td>
<td>910</td>
</tr>
<tr>
<td>181</td>
<td>10</td>
<td>240</td>
<td>20</td>
<td>10</td>
<td>910</td>
<td>100</td>
<td>1800</td>
</tr>
<tr>
<td>88.7</td>
<td>10</td>
<td>490</td>
<td>20</td>
<td>10</td>
<td>2000</td>
<td>100</td>
<td>3900</td>
</tr>
<tr>
<td>42.6</td>
<td>10</td>
<td>1020</td>
<td>20</td>
<td>10</td>
<td>3900</td>
<td>100</td>
<td>7500</td>
</tr>
<tr>
<td>21.5</td>
<td>10</td>
<td>2020</td>
<td>20</td>
<td>10</td>
<td>8200</td>
<td>100</td>
<td>0.015 µF</td>
</tr>
<tr>
<td>8.53</td>
<td>10</td>
<td>5100</td>
<td>20</td>
<td>10</td>
<td>0.02 µF</td>
<td>200</td>
<td>0.02 µF</td>
</tr>
<tr>
<td>1.71</td>
<td>50</td>
<td>5100</td>
<td>100</td>
<td>50</td>
<td>0.02 µF</td>
<td>200</td>
<td>0.1 µF</td>
</tr>
</tbody>
</table>

Figure 18. Typical Application
6 Package Dimensions

NOTES:
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.

<table>
<thead>
<tr>
<th>INCHES</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.150 - 0.170</td>
</tr>
<tr>
<td>B</td>
<td>0.250 - 0.270</td>
</tr>
<tr>
<td>C</td>
<td>0.145 - 0.175</td>
</tr>
<tr>
<td>D</td>
<td>0.015 - 0.021</td>
</tr>
<tr>
<td>E</td>
<td>0.040 - 0.070</td>
</tr>
<tr>
<td>F</td>
<td>0.100 BSC</td>
</tr>
<tr>
<td>G</td>
<td>0.050 BSC</td>
</tr>
<tr>
<td>H</td>
<td>0.008 - 0.015</td>
</tr>
<tr>
<td>I</td>
<td>0.110 - 0.130</td>
</tr>
<tr>
<td>J</td>
<td>0.295 - 0.305</td>
</tr>
<tr>
<td>K</td>
<td>0.110 - 0.130</td>
</tr>
<tr>
<td>L</td>
<td>0.008 - 0.015</td>
</tr>
<tr>
<td>S</td>
<td>0.020 - 0.040</td>
</tr>
</tbody>
</table>

Figure 19. Outline Dimensions for P SUFFIX
Plastic Dip (Dual In-line Package)
(Case Outline 648-08, Issue R)

Figure 20. Outline Dimensions for D SUFFIX
SOG (Small Outline Gull-Wing) Package
(Case Outline 751B-05, Issue K)
Figure 21. Outline Dimensions for DW SUFFIX SOG (SMALL OUTLINE GULL-WING) PACKAGE
(Case Outline 751G-04, Issue D)
How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCFroFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved.