The LT® 1170/LT1171/LT1172 are monolithic high power switching regulators. They can be operated in all standard switching configurations including buck, boost, flyback, forward, inverting and “Cuk.” A high current, high efficiency switch is included on the die along with all oscillator, control and protection circuitry. Integration of all functions allows the LT1170/LT1171/LT1172 to be built in a standard 5-pin TO-3 or TO-220 power package as well as the 8-pin packages (LT1172). This makes them extremely easy to use and provides “bust proof” operation similar to that obtained with 3-pin linear regulators.

The LT1170/LT1171/LT1172 operate with supply voltages from 3V to 60V, and draw only 6mA quiescent current. They can deliver load power up to 100W with no external power devices. By utilizing current-mode switching techniques, they provide excellent AC and DC load and line regulation.

The LT1170/LT1171/LT1172 have many unique features not found even on the vastly more difficult to use low power control chips presently available. They use adaptive antisat switch drive to allow very wide ranging load currents with no loss in efficiency. An externally activated shutdown mode reduces total supply current to 50µA typically for standby operation.
Absolute Maximum Ratings

Supply Voltage
- LT1170/71/72HV ... 60V
- LT1170/71/72 (See Note 1) 40V

Switch Output Voltage
- LT1170/71/72HV .. 75V
- LT1170/71/72 .. 65V
- LT1172S8 .. 60V

Feedback Pin Voltage (Transient, 1ms) ±15V

Storage Temperature Range −65°C to 150°C

Lead Temperature (Soldering, 10 sec) 300°C

Operating Junction Temperature Range
- LT1170/71/72M ... −55°C to 150°C
- LT1170/71/72HVC,
 - LT1170/71/72C (Oper.) 0°C to 100°C
 - LT1170/71/72C (Sh. Ckt.) 0°C to 125°C
- LT1170/71/72I (Oper.) −40°C to 100°C
- LT1170/71/72I (Sh. Ckt.) −40°C to 125°C

Note 1: Minimum effective switch “on” time for the LT1170/71/72 (in current limit only) is 0.6μs. This limits the maximum safe input voltage during an output shorted condition. Buck mode and inverting mode input voltage during an output shorted condition is limited to:

\[
V_{IN} = V(f) + \left[\frac{R}{R(t)} \right] V(t)
\]

where:
- \(V_{IN} \) is the maximum input voltage.
- \(R \) is the inductor DC resistance.
- \(I_L \) is the maximum output current.
- \(t \) is the switching period.
- \(f \) is the switching frequency.

Maximum input voltage can be increased by increasing \(R \) or \(V(t) \).

External current limiting such as that shown in AN19, Figure 39, will provide protection up to the full supply voltage rating. C1 in Figure 39 should be reduced to 200pF.

Transformer designs will tolerate much higher input voltages because leakage inductance limits rate of rise of current in the switch. These designs must be evaluated individually to assure that current limit is well controlled up to maximum input voltage.

Boost mode designs are never protected against output shorts because the external catch diode and inductor connect input to output.

Package/Order Information

<table>
<thead>
<tr>
<th>ORDER PART NUMBER</th>
<th>LT1170MK</th>
<th>LT1170CK</th>
<th>LT1171MK</th>
<th>LT1171CK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8 PART MARKING</td>
<td>1172</td>
<td>1172I</td>
<td>1172</td>
<td>1172C</td>
</tr>
</tbody>
</table>

Order Part Number

<table>
<thead>
<tr>
<th>ORDER PART NUMBER</th>
<th>LT1170CQ</th>
<th>LT1171CQ</th>
<th>LT1172CQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8 PART MARKING</td>
<td>11172</td>
<td>11172</td>
<td>11172</td>
</tr>
</tbody>
</table>

Order Part Number

<table>
<thead>
<tr>
<th>ORDER PART NUMBER</th>
<th>LT1172CSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8 PART MARKING</td>
<td>11172</td>
</tr>
</tbody>
</table>

Note: Do not connect Pin 4 of the LT1172 DIP or SO to external circuitry. This pin may be active in future revisions.

T\(\text{JMAX} \) = 125°C for intermittent fault conditions
ELECTRICAL CHARACTERISTICS \(V_{\text{IN}} = 15\text{V}, V_C = 0.5\text{V}, V_{\text{FB}} = V_{\text{REF}}, \) output pin open, unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{REF}})</td>
<td>Reference Voltage</td>
<td>Measured at Feedback Pin</td>
<td>(V_{\text{C}} = 0.8\text{V})</td>
<td>1.224</td>
<td>1.244</td>
<td>1.264</td>
</tr>
<tr>
<td>(I_B)</td>
<td>Feedback Input Current</td>
<td>(V_{\text{FB}} = V_{\text{REF}})</td>
<td></td>
<td></td>
<td>350</td>
<td>750</td>
</tr>
<tr>
<td>(g_m)</td>
<td>Error Amplifier Transconductance</td>
<td>(\Delta I_C = \pm 25\mu\text{A})</td>
<td></td>
<td></td>
<td>3000</td>
<td>4400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{C}} = 1.5\text{V})</td>
<td></td>
<td></td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Error Amplifier Clamp Voltage</td>
<td>Hi Clamp, (V_{\text{FB}} = 1\text{V})</td>
<td></td>
<td>1.80</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lo Clamp, (V_{\text{FB}} = 1.5\text{V})</td>
<td></td>
<td>0.25</td>
<td>0.38</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Reference Voltage Line Regulation</td>
<td>(3\text{V} \leq V_{\text{IN}} \leq V_{\text{MAX}})</td>
<td>(V_{\text{C}} = 0.8\text{V})</td>
<td></td>
<td>0.03</td>
<td>%/V</td>
</tr>
<tr>
<td>(A_V)</td>
<td>Error Amplifier Voltage Gain</td>
<td>(0.9\text{V} \leq V_{\text{C}} \leq 1.4\text{V})</td>
<td></td>
<td>500</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum Input Voltage (Note 3)</td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td>(I_Q)</td>
<td>Supply Current</td>
<td>(3\text{V} \leq V_{\text{IN}} \leq V_{\text{MAX}}, V_{\text{C}} = 0.6\text{V})</td>
<td></td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Pin Threshold</td>
<td>Duty Cycle = 0</td>
<td></td>
<td>0.8</td>
<td>0.9</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal/Flyback Threshold on Feedback Pin</td>
<td></td>
<td></td>
<td>0.4</td>
<td>0.45</td>
<td>0.54</td>
</tr>
<tr>
<td>(V_{\text{FB}})</td>
<td>Flyback Reference Voltage (Note 3)</td>
<td>(I_{\text{FB}} = 50\mu\text{A})</td>
<td></td>
<td>15.0</td>
<td>16.3</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.0</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change in Flyback Reference Voltage</td>
<td>(0.05 \leq I_{\text{FB}} \leq 1\text{mA})</td>
<td></td>
<td>4.5</td>
<td>6.8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Flyback Reference Voltage Line Regulation (Note 3)</td>
<td>(I_{\text{FB}} = 50\mu\text{A})</td>
<td>(7\text{V} \leq V_{\text{IN}} \leq V_{\text{MAX}})</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Flyback Amplifier Transconductance ((g_m))</td>
<td>(V_{\text{C}} = 0.6\text{V})</td>
<td>Source</td>
<td></td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sink</td>
<td>(I_{\text{FB}} = 50\mu\text{A})</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>(B_V)</td>
<td>Output Switch Breakdown Voltage</td>
<td>(3\text{V} \leq V_{\text{IN}} \leq V_{\text{MAX}}, I_{\text{SW}} = 1.5\text{mA})</td>
<td>LT170/LT171/LT172</td>
<td>65</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LT170HV/LT171HV/LT172HV</td>
<td>75</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LT172S8</td>
<td>60</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{SAT}})</td>
<td>Output Switch “On” Resistance (Note 1)</td>
<td>LT1170</td>
<td></td>
<td>0.15</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LT1171</td>
<td></td>
<td>0.30</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LT1172</td>
<td></td>
<td>0.60</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Voltage to Switch Current Transconductance</td>
<td>LT1170</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LT1171</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LT1172</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{LIM}})</td>
<td>Switch Current Limit</td>
<td>(LT1170)</td>
<td>Duty Cycle = 50%</td>
<td>(T_J \geq 25^\circ\text{C})</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duty Cycle = 50%</td>
<td>(T_J < 25^\circ\text{C})</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duty Cycle = 80% (Note 2)</td>
<td></td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(LT1171)</td>
<td>Duty Cycle = 50%</td>
<td>(T_J \geq 25^\circ\text{C})</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duty Cycle = 50%</td>
<td>(T_J < 25^\circ\text{C})</td>
<td>2.5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duty Cycle = 80% (Note 2)</td>
<td></td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(LT1172)</td>
<td>Duty Cycle = 50%</td>
<td>(T_J \geq 25^\circ\text{C})</td>
<td>1.25</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duty Cycle = 50%</td>
<td>(T_J < 25^\circ\text{C})</td>
<td>1.25</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duty Cycle = 80% (Note 2)</td>
<td></td>
<td>1.00</td>
<td>2.5</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS $V_{IN} = 15\text{V},\ V_C = 0.5\text{V},\ V_{FB} = V_{REF}$, output pin open, unless otherwise noted.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔI_{IN}</td>
<td>Supply Current Increase During Switch On-Time</td>
<td></td>
<td>25</td>
<td>35</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>ΔI_{SW}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Switching Frequency</td>
<td></td>
<td>88</td>
<td>100</td>
<td>112</td>
<td>kHz</td>
</tr>
<tr>
<td>DC_{MAX}</td>
<td>Maximum Switch Duty Cycle</td>
<td></td>
<td>85</td>
<td>92</td>
<td>97</td>
<td>%</td>
</tr>
<tr>
<td>Shutdown Mode</td>
<td>Supply Current</td>
<td>$3V \leq V_{IN} \leq V_{MAX}$</td>
<td>100</td>
<td></td>
<td>250</td>
<td>µA</td>
</tr>
<tr>
<td>Shutdown Mode</td>
<td>Threshold Voltage</td>
<td>$3V \leq V_{IN} \leq V_{MAX}$</td>
<td>50</td>
<td>150</td>
<td>250</td>
<td>mV</td>
</tr>
</tbody>
</table>

The ● denotes the specifications which apply over the full operating temperature range.

$V_{MAX} = 40\text{V}$ for LT1170/71/72 and 60V for LT1170/71/72HV.

Note 1: Measured with V_C in hi clamp, $V_{FB} = 0.8\text{V}$. $I_{SW} = 4\text{A}$ for LT1170, 2A for LT1171, and 1A for LT1172.

Note 2: For duty cycles (DC) between 50% and 80%, minimum guaranteed switch current is given by $I_{LIM} = 3.33(2 – DC)$ for the LT1170, $I_{LIM} = 1.67(2 – DC)$ for the LT1171, and $I_{LIM} = 0.833(2 – DC)$ for the LT1172.

Note 3: Minimum input voltage for isolated flyback mode is 7V. $V_{MAX} = 55\text{V}$ for HV grade in fully isolated mode to avoid switch breakdown.

TYPICAL PERFORMANCE CHARACTERISTICS

- **Switch Current Limit vs Duty Cycle**
- **Minimum Input Voltage**
- **Switch Saturation Voltage**
- **Line Regulation**
- **Reference Voltage vs Temperature**
- **Feedback Bias Current vs Temperature**
TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs Supply Voltage (Shutdown Mode)

- **TJ = 25°C**
- **Vc = 50mV**
- **Vc = 0V**

Driver Current vs Switch Current

- **TJ = 25°C**
- **TJ = −55°C**
- **TJ ≥ 25°C**

Supply Current vs Input Voltage

- **TJ = 25°C**
- **90% DUTY CYCLE**
- **50% DUTY CYCLE**
- **10% DUTY CYCLE**
- **0% DUTY CYCLE**

* UNDER VERY LOW OUTPUT CURRENT CONDITIONS, DUTY CYCLE FOR MOST CIRCUITS WILL APPROACH 10% OR LESS.

Shutdown Mode Supply Current

- **TJ = 150°C**
- **Vc Pin Voltage (mV)**

Error Amplifier Transconductance

- **gm = ΔI (Vc Pin) / ΔV (FB Pin)**
- **Vfb = 1.5V (Current into Vc Pin)**
- **Vfb = 0.8V (Current out of Vc Pin)**

Vc Pin Characteristics

- **TJ = 25°C**
- **Vfb = 1.5V (Current into Vc Pin)**
- **Vfb = 0.8V (Current out of Vc Pin)**

Idle Supply Current vs Temperature

- **Vc = 0.6V**
- **Vsupply = 60V**
- **Vsupply = 3V**

Feedback Pin Clamp Voltage

Switch “Off” Characteristics

- **Vsupply = 3V**
- **Vsupply = 40V**
- **Vsupply = 15V**

* AVERAGE LT1170 POWER SUPPLY CURRENT IS FOUND BY MULTIPLYING DRIVER CURRENT BY DUTY CYCLE, THEN ADDING QUIESCENT CURRENT.
TYPICAL PERFORMANCE CHARACTERISTICS

Shutdown Thresholds

V_C voltage is reduced until regulator current drops below 300µA.

Flyback Blanking Time

Isolated Mode Flyback Reference Voltage

Isolated Mode Flyback Reference Voltage

Transconductance of Error Amplifier

Normal/Flyback Mode Threshold on Feedback Pin
The LT1170/LT1171/LT1172 are current mode switchers. This means that switch duty cycle is directly controlled by switch current rather than by output voltage. Referring to the block diagram, the switch is turned “on” at the start of each oscillator cycle. It is turned “off” when switch current reaches a predetermined level. Control of output voltage is obtained by using the output of a voltage sensing error amplifier to set current trip level. This technique has several advantages. First, it has immediate response to input voltage variations, unlike ordinary switchers which have notoriously poor line transient response. Second, it reduces the 90° phase shift at midfrequencies in the energy storage inductor. This greatly simplifies closed-loop frequency compensation under widely varying input voltage or output load conditions. Finally, it allows simple pulse-by-pulse current limiting to provide maximum switch protection under output overload or short conditions. A low dropout internal regulator provides a 2.3V supply for all internal circuitry on the LT1170/LT1171/LT1172. This low dropout design allows input voltage to vary from 3V to 60V with virtually no change in device performance. A 100kHz oscillator is the basic clock for all internal timing. It turns “on” the output switch via the logic and driver circuitry. Special adaptive anti-sat circuitry detects onset of saturation in the power switch and adjusts driver current instantaneously to limit switch saturation. This minimizes driver dissipation and provides very rapid turn-off of the switch.

A 1.2V bandgap reference biases the positive input of the error amplifier. The negative input is brought out for output voltage sensing. This feedback pin has a second
function; when pulled low with an external resistor, it programs the LT1170/LT1171/LT1172 to disconnect the main error amplifier output and connects the output of the flyback amplifier to the comparator input. The LT1170/LT1171/LT1172 will then regulate the value of the flyback pulse with respect to the supply voltage.* This flyback pulse is directly proportional to output voltage in the traditional transformer coupled flyback topology regulator. By regulating the amplitude of the flyback pulse, the output voltage can be regulated with no direct connection between input and output. The output is fully floating up to the breakdown voltage of the transformer windings. Multiple floating outputs are easily obtained with additional windings. A special delay network inside the LT1170/LT1171/LT1172 ignores the leakage inductance spike at the leading edge of the flyback pulse to improve output regulation.

The error signal developed at the comparator input is brought out externally. This pin (V_C) has four different functions. It is used for frequency compensation, current limit adjustment, soft starting, and total regulator shutdown. During normal regulator operation this pin sits at a voltage between 0.9V (low output current) and 2.0V (high output current). The error amplifiers are current output (g_m) types, so this voltage can be externally clamped for adjusting current limit. Likewise, a capacitor coupled external clamp will provide soft start. Switch duty cycle goes to zero if the V_C pin is pulled to ground through a diode, placing the LT1170/LT1171/LT1172 in an idle mode. Pulling the V_C pin below 0.15V causes total regulator shutdown, with only 50µA supply current for shutdown circuitry biasing. See AN19 for full application details.

Extra Pins on the MiniDIP and Surface Mount Packages

The 8- and 16-pin versions of the LT1172 have the emitters of the power transistor brought out separately from the ground pin. This eliminates errors due to ground pin voltage drops and allows the user to reduce switch current limit 2:1 by leaving the second emitter (E2) disconnected. The first emitter (E1) should always be connected to the ground pin. Note that switch “on” resistance doubles when E2 is left open, so efficiency will suffer somewhat when switch currents exceed 300mA. Also, note that chip dissipation will actually increase with E2 open during normal load operation, even though dissipation in current limit mode will decrease. See “Thermal Considerations” next.

Thermal Considerations When Using the MiniDIP and SW Packages

The low supply current and high switch efficiency of the LT1172 allow it to be used without a heat sink in most applications when the TO-220 or TO-3 package is selected. These packages are rated at 50°C/W and 35°C/W respectively. The miniDIPs, however, are rated at 100°C/W in ceramic (J) and 130°C/W in plastic (N).

Care should be taken for miniDIP applications to ensure that the worst case input voltage and load current conditions do not cause excessive die temperatures. The following formulas can be used as a rough guide to calculate LT1172 power dissipation. For more details, the reader is referred to Application Note 19 (AN19), “Efficiency Calculations” section.

Average supply current (including driver current) is:

\[I_{IN} = 6mA + I_{SW}(0.004 + DC/40) \]

\[I_{SW} = \text{switch current} \]

\[DC = \text{switch duty cycle} \]

Switch power dissipation is given by:

\[P_{SW} = (I_{SW})^2 \cdot (R_{SW})(DC) \]

\[R_{SW} = \text{LT1172 switch “on” resistance (1Ω maximum)} \]

Total power dissipation is the sum of supply current times input voltage plus switch power:

\[P_{D(TOT)} = (I_{IN})(V_{IN}) + P_{SW} \]

In a typical example, using a boost converter to generate 12V at 0.12A from a 5V input, duty cycle is approximately 60%, and switch current is about 0.65A, yielding:

\[I_{IN} = 6mA + 0.65(0.004 + DC/40) = 18mA \]

\[P_{SW} = (0.65)^2 \cdot (1Ω)(0.6) = 0.25W \]

\[P_{D(TOT)} = (5V)(0.018A) + 0.25 = 0.34W \]

*See note under block diagram.
OPERATION

Temperature rise in a plastic miniDIP would be 130°C/W times 0.34W, or approximately 44°C. The maximum ambient temperature would be limited to 100°C (commercial temperature limit) minus 44°C, or 56°C.

In most applications, full load current is used to calculate die temperature. However, if overload conditions must also be accounted for, four approaches are possible. First, if loss of regulated output is acceptable under overload conditions, the internal thermal limit of the LT1172 will protect the die in most applications by shutting off switch current. Thermal limit is not a tested parameter, however, and should be considered only for noncritical applications with temporary overloads. A second approach is to use the larger TO-220 (T) or TO-3 (K) package which, even without a heat sink, may limit die temperatures to safe levels under overload conditions. In critical situations, heat sinking of these packages is required; especially if overload conditions must be tolerated for extended periods of time.

The third approach for lower current applications is to leave the second switch emitter (miniDIP only) open. This increases switch “on” resistance by 2:1, but reduces switch current limit by 2:1 also, resulting in a net 2:1 reduction in I^2R switch dissipation under current limit conditions.

The fourth approach is to clamp the V_C pin to a voltage less than its internal clamp level of 2V. The LT1172 switch current limit is zero at approximately 1V on the V_C pin and 2A at 2V on the V_C pin. Peak switch current can be externally clamped between these two levels with a diode. See AN19 for details.

Synchronizing with Bipolar Transistor

Synchronizing with MOS Transistor

LT1170/LT1171/LT1172 Synchronizing

The LT1170/LT1171/LT1172 can be externally synchronized in the frequency range of 120kHz to 160kHz. This is accomplished as shown in the accompanying figures. Synchronizing occurs when the V_C pin is pulled to ground with an external transistor. To avoid disturbing the DC characteristics of the internal error amplifier, the width of the synchronizing pulse should be under 0.3μs. C_2 sets the pulse width at ≈ 0.2μs. The effect of a synchronizing pulse on the LT1170/LT1171/LT1172 amplifier offset can be calculated from:

$$\Delta V_{OS} = \frac{KT}{q} \frac{t_s}{f_s} \left(I_C + \frac{V_C}{R_3} \right)$$

$$\frac{KT}{q} = 26mV \text{ at } 25°C$$

$t_s =$ pulse width

$f_s =$ pulse frequency

$I_C =$ V_C source current (≈200μA)

$V_C =$ operating V_C voltage (1V to 2V)

$R_3 =$ resistor used to set mid-frequency “zero” in frequency compensation network.

With $t_s = 0.2μs$, $f_s = 150kHz$, $V_C = 1.5V$, and $R_3 = 2k$, offset voltage shift is ≈3.8mV. This is not particularly bothersome, but note that high offsets could result if R_3 were reduced to a much lower value. Also, the synchronizing transistor must sink higher currents with low values of R_3, so larger drives may have to be used. The transistor must be capable of pulling the V_C pin to within 200mV of ground to ensure synchronizing.
TYPICAL APPLICATIONS

Flyback Converter

```
VIN 20V TO 30V

LT1170

VOUT 5V 6A

VSW

GND

C4 - 100µF

L2 5µH

N* 1/3

D1

0V

C1 2000µF

R1 3.74k

R2 1.24k

VOUT + Vf

VSNUB

N* = 1/3

D3 25V 1W

D2 MUR110

0V

C4 100µF

D2

MUR110

*N* = 1/3

D3

25V 1W

**REQUIRED IF INPUT LEADS ≥ 2**

```

LCD Contrast Supply

```
VIN

LT1170

VSW

GND

C4 - 100µF

L1** 50µH

E2

5V*

VOUT 5V TO 20V

E1

GND

C3 - 0.0047µF

D3

2µF TANTALUM

C2 - 2µF TANTALUM

D2, D3 = ER82.004 600mA SCHOTTKY. OTHER FAST SWITCHING TYPES MAY BE USED.

* VIN AND BATTERY MAY BE TIED TOGETHER. MAXIMUM VALUE FOR VBAT IS EQUAL TO THE |NEGATIVE OUTPUT| + 1V. WITH HIGHER BATTERY VOLTAGES, HIGHEST EFFICIENCY IS OBTAINED BY RUNNING THE LT1172 VIN PIN FROM 5V. SHUTTING OFF THE 5V SUPPLY WILL AUTOMATICALLY TURN OFF THE LT1172. EFFICIENCY IS ABOUT 80% AT IOUT = 25mA.

R1, R2, R3 ARE MADE LARGE TO MINIMIZE BATTERY DRAIN IN SHUTDOWN, WHICH IS APPROXIMATELY VBAT/(R1 + R2 + R3).

** FOR HIGH EFFICIENCY, L1 SHOULD BE MADE ON A FERRITE OR MOLYPERMALLOY CORE. PEAK INDUCTOR CURRENTS ARE ABOUT 600mA AT POUT = 0.7Ω. INDUCTOR SERIES RESISTANCE SHOULD BE LESS THAN 0.4Ω FOR HIGH EFFICIENCY.

*** OUTPUT RIPPLE IS ABOUT 200mVp-p TO 400mVp-p WITH C2 = 2µF TANTALUM. IF LOWER RIPPLE IS DESIRED, INCREASE C2, OR ADD A 10Ω , 1µF TANTALUM OUTPUT FILTER.**

```

Primary Flyback Voltage

```
VOUT + Vf

VSNUB

N* = 1/3

D3

MUR110

0V

C4

100µF

D2

MUR110

0V

C4

100µF

**SECONDARY VOLTAGE AREA “c” = AREA “d” TO MAINTAIN ZERO DC VOLTS ACROSS SECONDARY**

**PRIMARY CURRENT**

```
Iprimary

SECONDARY CURRENT

```
Iprimary

**SNUBBER DIODE CURRENT**

```
(VOUT + Vf) / VSNUB

```

11701/3 TA03

**10**
TYPICAL APPLICATIONS

(Note that maximum output currents are divided by 2 for LT1171, by 4 for LT1172.)

Driving High Voltage FET
(for Off-Line Applications, See AN25)

External Current Limit

Negative-to-Positive Buck-Boost Converter†

External Current Limit

NOTE THAT THE LT1170 GND PIN IS NO LONGER COMMON TO VIN–.

Negative Buck Converter

* REQUIRED IF INPUT LEADS ≥ 2”
** PULSE ENGINEERING 92114, COILTRONICS 50-2-52
† THIS CIRCUIT IS OFTEN USED TO CONVERT –48V TO 5V. TO GUARANTEE
FULL SHORT-CIRCUIT PROTECTION, THE CURRENT LIMIT CIRCUIT SHOWN
IN AN19, FIGURE 39, SHOULD BE ADDED WITH C1 REDUCED TO 200pF.
Positive-to-Negative Buck-Boost Converter

High Efficiency Constant Current Charger

Backlight CCFL Supply (see AN45 for details)
Typical Applications

Positive Buck Converter

Negative Boost Regulator

Driving High Voltage NPN

Forward Converter
High Efficiency 5V Buck Converter

Positive Current Boosted Buck Converter

* R2 is made from PC board copper traces.
* Maximum current is determined by the choice of LT1070 family. See application section.
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

J8 Package
8-Lead CERDIP (Narrow 0.300, Hermetic)
(LTC DWG # 05-08-1110)

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.
PACKAGE DESCRIPTION  Dimensions in inches (millimeters) unless otherwise noted.

K Package
4-Lead TO-3 Metal Can
(LTC DWG # 05-08-1311)
PACKAGE DESCRIPTION

Dimensions in inches (millimeters) unless otherwise noted.

N8 Package
8-Lead PDIP (Narrow 0.300)
(LTC DWG # 05-08-1510)

*These dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.254mm)
PACKAGE DESCRIPTION  Dimensions in inches (millimeters) unless otherwise noted.

Q Package  
5-Lead Plastic DD Pak  
(LTC DWG # 05-08-1461)

S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH, INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
PACKAGE DESCRIPTION
Dimensions in inches (millimeters) unless otherwise noted.

SW Package
16-Lead Plastic Small Outline (Wide 0.300)
(LTC DWG # 05-08-1620)

NOTE 1
0.398 – 0.413
(10.109 – 10.490)

NOTE 1
0.394 – 0.419
(10.007 – 10.643)

NOTE:
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
**PACKAGE DESCRIPTION**  Dimensions in inches (millimeters) unless otherwise noted.

**T Package**
3-Lead Plastic TO-220
(LTC DWG # 05-08-1420)

---

**PART NUMBER** | **DESCRIPTION** | **COMMENTS**
--- | --- | ---
LT1070/LT1071/LT1072 | 5A/2.5A/1.25A High Efficiency Switching Regulators | 40kHz, V\(_{\text{IN}}\) to 60V, V\(_{\text{SW}}\) to 75V
LT1074/LT1076 | 5.5A/2A Step-Down Switching Regulators | 100kHz, Also for Positive-to-Negative Conversion
LT1082 | 1A, High Voltage, High Efficiency Switching Regulator | V\(_{\text{IN}}\) to 75V, V\(_{\text{SW}}\) to 100V, Telecom
LT1268/LT1268B | 7.5A, 150kHz Switching Regulators | V\(_{\text{IN}}\) to 30V, V\(_{\text{SW}}\) to 60V
LT1269/LT1271 | 4A High Efficiency Switching Regulators | 100kHz/60kHz, V\(_{\text{IN}}\) to 30V, V\(_{\text{SW}}\) to 60V
LT1270/LT1270A | 8A and 10A High Efficiency Switching Regulators | 60kHz, V\(_{\text{IN}}\) to 30V, V\(_{\text{SW}}\) to 60V
LT1370 | 500kHz High Efficiency 6A Switching Regulator | High Power Boost, Flyback, SEPIC
LT1371 | 500kHz High Efficiency 3A Switching Regulator | Good for Boost, Flyback, Inverting, SEPIC
LT1372/LT1377 | 500kHz and 1MHz High Efficiency 1.5A Switching Regulators | Directly Regulates ±V\(_{\text{OUT}}\)
LT1373 | 250kHz Low Supply Current High Efficiency 1.5A Switching Regulator | Low 1mA Quiescent Current
LT1374 | 4A, 500kHz Step-Down Switching Regulator | Synchronizable, V\(_{\text{IN}}\) to 25V
LT1375/LT1376 | 1.5A, 500kHz Step-Down Switching Regulators | Up to 1.25A Out from an SO-8
LT1425 | Isolated Flyback Switching Regulator | 6W Output, ±5% Regulation, No Optocoupler Needed
LT1507 | 500kHz Monolithic Buck Mode Switching Regulator | 1.5A Switch, Good for 5V to 3.3V
LT1533 | Ultralow Noise 1A Switching Regulator | Push-Pull, <100µV\(_{\text{P-P}}\) Output Noise