LM2524D/LM3524D Regulating Pulse Width Modulator

Check for Samples: LM2524D, LM3524D

FEATURES

- Fully Interchangeable With Standard LM3524 Family
- ±1% Precision 5V Reference With Thermal Shut-Down
- Output Current to 200 mA DC
- 60V Output Capability
- Wide Common Mode Input Range for Error-Amp
- One Pulse per Period (Noise Suppression)
- Improved Max. Duty Cycle at High Frequencies
- Double Pulse Suppression
- Synchronize Through Pin 3

DESCRIPTION

The LM3524D family is an improved version of the industry standard LM3524. It has improved specifications and additional features yet is pin for pin compatible with existing 3524 families. New features reduce the need for additional external circuitry often required in the original version.

The LM3524D has a ±1% precision 5V reference. The current carrying capability of the output drive transistors has been raised to 200 mA while reducing $V_{CE\text{sat}}$ and increasing V_{CE} breakdown to 60V. The common mode voltage range of the error-amp has been raised to 5.5V to eliminate the need for a resistive divider from the 5V reference.

In the LM3524D the circuit bias line has been isolated from the shut-down pin. This prevents the oscillator pulse amplitude and frequency from being disturbed by shut-down. Also at high frequencies (≈ 300 kHz) the max. duty cycle per output has been improved to 44% compared to 35% max. duty cycle in other 3524s.

In addition, the LM3524D can now be synchronized externally, through pin 3. Also a latch has been added to insure one pulse per period even in noisy environments. The LM3524D includes double pulse suppression logic that insures when a shut-down condition is removed the state of the T-flip-flop will change only after the first clock pulse has arrived. This feature prevents the same output from being pulsed twice in a row, thus reducing the possibility of core saturation in push-pull designs.

Connection Diagram

![Connection Diagram](image)

Figure 1. Top View

See Package Number NFG

See Package Number D
Block Diagram
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LM2524D</th>
<th>LM3524D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>40V</td>
<td></td>
</tr>
<tr>
<td>Collector Supply Voltage</td>
<td></td>
<td>55V</td>
</tr>
<tr>
<td>LM2524D</td>
<td>200 mA</td>
<td></td>
</tr>
<tr>
<td>LM3524D</td>
<td></td>
<td>40V</td>
</tr>
<tr>
<td>Output Current DC (each)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillator Charging Current (Pin 7)</td>
<td>5 mA</td>
<td></td>
</tr>
<tr>
<td>Internal Power Dissipation</td>
<td>1W</td>
<td></td>
</tr>
<tr>
<td>Operating Junction Temperature Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2524D</td>
<td>−40°C to +125°C</td>
<td></td>
</tr>
<tr>
<td>LM3524D</td>
<td>0°C to +125°C</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>150°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (Soldering 4 sec.)</td>
<td>NFG, D Pkg.</td>
<td>260°C</td>
</tr>
</tbody>
</table>

(1) Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

(3) For operation at elevated temperatures, devices in the NFG package must be derated based on a thermal resistance of 86 °C/W, junction to ambient. Devices in the D package must be derated at 125 °C/W, junction to ambient.

Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2524D</th>
<th>LM3524D</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>REF</sub></td>
<td>Output Voltage</td>
<td></td>
<td>5</td>
<td>4.85</td>
<td>4.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.15</td>
<td>5.20</td>
</tr>
<tr>
<td>V<sub>RLline</sub></td>
<td>Line Regulation</td>
<td>V<sub>IN</sub> = 8V to 40V</td>
<td>10</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>V<sub>Rload</sub></td>
<td>Load Regulation</td>
<td>I<sub>L</sub> = 0 mA to 20 mA</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>ΔV<sub>IN</sub>/ΔV<sub>REF</sub></td>
<td>Ripple Rejection</td>
<td>f = 120 Hz</td>
<td>66</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>I<sub>OS</sub></td>
<td>Short Circuit Current</td>
<td>V<sub>REF</sub> = 0</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>N<sub>O</sub></td>
<td>Output Noise</td>
<td>10 Hz ≤ f ≤ 10 kHz</td>
<td>40</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long Term Stability</td>
<td>T<sub>A</sub> = 125°C</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>f<sub>Osc</sub></td>
<td>Max. Freq.</td>
<td></td>
<td>550</td>
<td>500</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Initial Accuracy</td>
<td>R<sub>T</sub> = 1k, C<sub>T</sub> = 0.001 µF<sup>(4)</sup></td>
<td>17.5</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R<sub>T</sub> = 5.6k, C<sub>T</sub> = 0.01 µF<sup>(4)</sup></td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R<sub>T</sub> = 2.7k, C<sub>T</sub> = 0.01 µF<sup>(4)</sup></td>
<td>34</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>

(1) Unless otherwise stated, these specifications apply for T_A = T_J = 25°C. Boldface numbers apply over the rated temperature range: LM2524D is −40°C to 85°C and LM3524D is 0°C to 70°C. V_{IN} = 20V and f_{Osc} = 20 kHz.

(2) Tested limits are ensured and 100% tested in production.

(3) Design limits are ensured (but not 100% production tested) over the indicated temperature and supply voltage range. These limits are not used to calculate outgoing quality level.

(4) The value of a C_T capacitor can vary with frequency. Careful selection of this capacitor must be made for high frequency operation. Polystyrene was used in this test. NPO ceramic or polypropylene can also be used.
Electrical Characteristics \(^{(1)}\) (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LM2524D</td>
<td>LM3524D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typ</td>
<td>Test Limit (^{(2)})</td>
</tr>
<tr>
<td>Δ(f_{OSC})</td>
<td>Freq. Change with (V_{IN})</td>
<td>(V_{IN} = 8 \text{ to } 40\text{V})</td>
<td>0.5</td>
</tr>
<tr>
<td>Δ(f_{OSC})</td>
<td>Freq. Change with Temp.</td>
<td>(T_{A} = -55^\circ\text{C to } +125^\circ\text{C})</td>
<td>5</td>
</tr>
<tr>
<td>(V_{OSC})</td>
<td>Output Amplitude (Pin 3) (^{(5)})</td>
<td>(R_T = 5.6k, C_T = 0.01\mu\text{F})</td>
<td>3</td>
</tr>
<tr>
<td>(I_{PW})</td>
<td>Output Pulse Width (Pin 3)</td>
<td>(R_T = 5.6k, C_T = 0.01\mu\text{F})</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Sawtooth Peak Voltage</td>
<td>(R_T = 5.6k, C_T = 0.01\mu\text{F})</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>Sawtooth Valley Voltage</td>
<td>(R_T = 5.6k, C_T = 0.01\mu\text{F})</td>
<td>1.1</td>
</tr>
</tbody>
</table>

ERROR-AMP SECTION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IO})</td>
<td>Input Offset Voltage</td>
<td>(V_{CM} = 2.5\text{V})</td>
<td>2</td>
</tr>
<tr>
<td>(I_{IB})</td>
<td>Input Bias Current</td>
<td>(V_{CM} = 2.5\text{V})</td>
<td>0.5</td>
</tr>
<tr>
<td>(I_{O})</td>
<td>Input Offset Current</td>
<td>(V_{CM} = 2.5\text{V})</td>
<td>0.5</td>
</tr>
<tr>
<td>(I_{COSI})</td>
<td>Compensation Current (Sink)</td>
<td>(V_{I(I)} - V_{I(IN)} = 150\text{mV})</td>
<td>65</td>
</tr>
<tr>
<td>(I_{COSO})</td>
<td>Compensation Current (Source)</td>
<td>(V_{I(IN)} - V_{I(IN)} = 150\text{mV})</td>
<td>-125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_T = 5.6k, C_T = 0.01\mu\text{F})</td>
<td>-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_T = 1k, C_T = 0.001\mu\text{F})</td>
<td>-65</td>
</tr>
<tr>
<td>(A_{VOL})</td>
<td>Open Loop Gain</td>
<td>(R_L = \infty, V_{CM} = 2.5\text{V})</td>
<td>80</td>
</tr>
<tr>
<td>(V_{CMR})</td>
<td>Common Mode Input Voltage Range</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>(CMRR)</td>
<td>Common Mode Rejection Ratio</td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>(G_{BW})</td>
<td>Unity Gain Bandwidth</td>
<td>(A_{VOL} = 0\text{dB, } V_{CM} = 2.5\text{V})</td>
<td>3</td>
</tr>
<tr>
<td>(V_{O})</td>
<td>Output Voltage Swing</td>
<td>(R_L = \infty)</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>(PSRR)</td>
<td>Power Supply Rejection Ratio</td>
<td>(V_{IN} = 8 \text{ to } 40\text{V})</td>
<td>80</td>
</tr>
</tbody>
</table>

COMPARATOR SECTION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{ONV_{OSC}})</td>
<td>Minimum Duty Cycle</td>
<td>(\text{Pin 9} = 0.8\text{V, } [R_T = 5.6k, C_T = 0.01\mu\text{F}])</td>
<td>0</td>
</tr>
<tr>
<td>(I_{ONV_{OSC}})</td>
<td>Maximum Duty Cycle</td>
<td>(\text{Pin 9} = 3.9\text{V, } [R_T = 5.6k, C_T = 0.01\mu\text{F}])</td>
<td>49</td>
</tr>
<tr>
<td>(I_{ONV_{OSC}})</td>
<td>Maximum Duty Cycle</td>
<td>(\text{Pin 9} = 3.9\text{V, } [R_T = 1k, C_T = 0.001\mu\text{F}])</td>
<td>44</td>
</tr>
<tr>
<td>(V_{COMPZ})</td>
<td>Input Threshold</td>
<td>Zero Duty Cycle</td>
<td>1</td>
</tr>
<tr>
<td>(V_{COMP})</td>
<td>Input Threshold (Pin 9)</td>
<td>Maximum Duty Cycle</td>
<td>3.5</td>
</tr>
<tr>
<td>(I_{IB})</td>
<td>Input Bias Current</td>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>

CURRENT LIMIT SECTION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{SEN})</td>
<td>Sense Voltage</td>
<td>(V_{(\text{Pin 2})} - V_{(\text{Pin 1})} \geq 150\text{mV})</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(200)</td>
<td>(200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(220)</td>
<td>(220)</td>
</tr>
<tr>
<td>(TC-V_{sense})</td>
<td>Sense Voltage T.C.</td>
<td>(V_5 - V_4 = 300\text{mV})</td>
<td>-0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

\(^{(5)}\) OSC amplitude is measured open circuit. Available current is limited to 1 mA so care must be exercised to limit capacitive loading of fast pulses.

Submit Documentation Feedback

4

Copyright © 2009–2013, Texas Instruments Incorporated

Product Folder Links: **LM2524D** **LM3524D**
Electrical Characteristics (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2524D</th>
<th>LM3524D</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typ</td>
<td>Tested Limit</td>
<td>Design Limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Limit (2)</td>
<td>Limit (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHUT DOWN SECTION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2524D</th>
<th>LM3524D</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typ</td>
<td>Tested Limit</td>
<td>Design Limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Limit (2)</td>
<td>Limit (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **V_{SD}** High Input Voltage
 - $V_{(Pin \ 2)} - V_{(Pin \ 1)} \geq 150 \text{ mV}$
 - LM2524D: Typ = 1, Limit (2) = 0.5, Limit (3) = 1.5
 - LM3524D: Typ = 1, Limit (2) = 1.5
 - Units: V_{Min}

- **I_{SD}** High Input Current
 - $I_{(pin \ 10)}$
 - LM2524D: Typ = 1
 - LM3524D: Typ = 1
 - Units: mA

OUTPUT SECTION (EACH OUTPUT)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2524D</th>
<th>LM3524D</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typ</td>
<td>Tested Limit</td>
<td>Design Limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Limit (2)</td>
<td>Limit (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **V_{DES}** Collector Emitter Voltage Breakdown
 - $I_C \leq 100 \mu A$
 - LM2524D: Typ = 55, Limit (2) = 40
 - Units: V_{Min}

- **I_{CES}** Collector Leakage Current
 - $V_{CE} = 60 \text{ V}$
 - $V_{CE} = 55 \text{ V}$
 - $V_{CE} = 40 \text{ V}$
 - LM2524D: Typ = 0.1, Limit (2) = 50
 - Limit (3) = 0.1
 - LM3524D: Typ = 50
 - Units: μA_{Max}

- **V_{DESAT}** Saturation Voltage
 - $I_E = 20 \text{ mA}$
 - $I_E = 200 \text{ mA}$
 - LM2524D: Typ = 0.2, Limit (2) = 0.5
 - Limit (3) = 0.2
 - LM3524D: Typ = 0.7
 - LM2524D: Typ = 1.5
 - LM3524D: Typ = 2.5
 - Units: V_{Max}

- **V_{EO}** Emitter Output Voltage
 - $I_E = 50 \text{ mA}$
 - LM2524D: Typ = 18
 - LM3524D: Typ = 17
 - Units: V_{Min}

- **t_R** Rise Time
 - $V_{IN} = 20 \text{ V}$,
 - $I_E = -250 \mu A$
 - $R_C = 2k$
 - LM2524D: Typ = 200
 - Unit: ns

- **t_F** Fall Time
 - $R_C = 2k$
 - LM2524D: Typ = 100
 - Unit: ns

SUPPLY CHARACTERISTICS SECTION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2524D</th>
<th>LM3524D</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typ</td>
<td>Tested Limit</td>
<td>Design Limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Limit (2)</td>
<td>Limit (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **V_{IN}** Input Voltage Range
 - After Turn-on
 - LM2524D: Typ = 8
 - LM3524D: Typ = 8
 - Units: V_{Min}

- **T** Thermal Shutdown Temp.
 - (6)
 - LM2524D: Typ = 160
 - LM3524D: Typ = 160
 - Units: °C

- **I_{IN}** Stand By Current
 - $V_{IN} = 40 \text{ V}$ (7)
 - LM2524D: Typ = 5
 - LM3524D: Typ = 5
 - Units: mA

(6) For operation at elevated temperatures, devices in the NFG package must be derated based on a thermal resistance of 86°C/W, junction to ambient. Devices in the D package must be derated at 125°C/W, junction to ambient.

(7) Pins 1, 4, 7, 8, 11, and 14 are grounded; Pin 2 = 2V. All other inputs and outputs open.
Typical Performance Characteristics

Switching Transistor Peak Output Current vs Temperature

Maximum Average Power Dissipation (NFG, D Packages)

Maximum & Minimum Duty Cycle Threshold Voltage

Output Transistor Saturation Voltage

Output Transistor Emitter Voltage

Reference Transistor Peak Output Current
Typical Performance Characteristics (continued)

Standby Current vs Voltage

![Figure 8](image)

Standby Current vs Temperature

![Figure 9](image)

Current Limit Sense Voltage

![Figure 10](image)
Functional Description

Internal Voltage Regulator

The LM3524D has an on-chip 5V, 50 mA, short circuit protected voltage regulator. This voltage regulator provides a supply for all internal circuitry of the device and can be used as an external reference.

For input voltages of less than 8V the 5V output should be shorted to pin 15, V_{IN}, which disables the 5V regulator. With these pins shorted the input voltage must be limited to a maximum of 6V. If input voltages of 6V–8V are to be used, a pre-regulator, as shown in Figure 11, must be added.

*Minimum C_O of 10 μF required for stability.

Oscillator

The LM3524D provides a stable on-board oscillator. Its frequency is set by an external resistor, R_T and capacitor, C_T. A graph of R_T, C_T vs oscillator frequency is shown in Figure 12. The oscillator's output provides the signals for triggering an internal flip-flop, which directs the PWM information to the outputs, and a blanking pulse to turn off both outputs during transitions to ensure that cross conduction does not occur. The width of the blanking pulse, or dead time, is controlled by the value of C_T, as shown in Figure 13. The recommended values of R_T are 1.8 kΩ to 100 kΩ, and for C_T, 0.001 μF to 0.1 μF.

If two or more LM3524D's must be synchronized together, the easiest method is to interconnect all pin 3 terminals, tie all pin 7's (together) to a single C_T, and leave all pin 6's open except one which is connected to a single R_T. This method works well unless the LM3524D's are more than 6″ apart.

A second synchronization method is appropriate for any circuit layout. One LM3524D, designated as master, must have its $R_T C_T$ set for the correct period. The other slave LM3524D(s) should each have an $R_T C_T$ set for a 10% longer period. All pin 3's must then be interconnected to allow the master to properly reset the slave units.

The oscillator may be synchronized to an external clock source by setting the internal free-running oscillator frequency 10% slower than the external clock and driving pin 3 with a pulse train (approx. 3V) from the clock. Pulse width should be greater than 50 ns to insure full synchronization.

![Figure 11](image1)

![Figure 12](image2)
Error Amplifier

The error amplifier is a differential input, transconductance amplifier. Its gain, nominally 86 dB, is set by either feedback or output loading. This output loading can be done with either purely resistive or a combination of resistive and reactive components. A graph of the amplifier's gain vs output load resistance is shown in Figure 14.

The output of the amplifier, or input to the pulse width modulator, can be overridden easily as its output impedance is very high ($Z_o \approx 5 \text{ M}\Omega$). For this reason a DC voltage can be applied to pin 9 which will override the error amplifier and force a particular duty cycle to the outputs. An example of this could be a non-regulating motor speed control where a variable voltage was applied to pin 9 to control motor speed. A graph of the output duty cycle vs the voltage on pin 9 is shown in Figure 15.

The duty cycle is calculated as the percentage ratio of each output's ON-time to the oscillator period. Paralleling the outputs doubles the observed duty cycle.
The amplifier's inputs have a common-mode input range of 1.5V–5.5V. The on board regulator is useful for biasing the inputs to within this range.

Current Limiting

The function of the current limit amplifier is to override the error amplifier's output and take control of the pulse width. The output duty cycle drops to about 25% when a current limit sense voltage of 200 mV is applied between the $+C_L$ and $-C_L$ sense terminals. Increasing the sense voltage approximately 5% results in a 0% output duty cycle. Care should be taken to ensure the $-0.7V$ to $+1.0V$ input common-mode range is not exceeded.

In most applications, the current limit sense voltage is produced by a current through a sense resistor. The accuracy of this measurement is limited by the accuracy of the sense resistor, and by a small offset current, typically 100 μA, flowing from $+CL$ to $-CL$.

Output Stages

The outputs of the LM3524D are NPN transistors, capable of a maximum current of 200 mA. These transistors are driven 180° out of phase and have non-committed open collectors and emitters as shown in Figure 16.
Typical Applications

Figure 17. Positive Regulator, Step-Up Basic Configuration ($I_{\text{IN(MAX)}} = 80 \text{ mA}$)

Design Equations

$$R_F = 5k \left(\frac{V_O}{2.5} - 1 \right)$$

$$f_{\text{OSC}} = \frac{1}{R_T C_T}$$

$$L_1 = \frac{2.5 V_{IN}^2 (V_O - V_{IN})}{f_{\text{OSC}} V_O V_O}$$

$$C_O = \frac{I_O (V_O - V_{IN})}{f_{\text{OSC}} \Delta V_O V_O}$$

$$I_{O(\text{MAX})} = \frac{V_{IN}}{V_O}$$

Figure 18. Positive Regulator, Step-Up Boosted Current Configuration

Submit Documentation Feedback

Product Folder Links: LM2524D LM3524D
Figure 19. Positive Regulator, Step-Down Basic Configuration \((I_{IN(MAX)} = 80 \text{ mA}) \)

Design Equations

\[
R_F = 5 \text{ k} \Omega \left(\frac{V_O}{2.5} - 1 \right)
\]

Current Limit Sense Volt

\[
R_{CL} = \frac{1}{I_{O(MAX)}}
\]

\[
I_{OSC} = \frac{1}{R_T C_T}
\]

\[
L_1 = \frac{2.5 V_O(V_{IN} - V_O)}{I_0 V_{IN} I_{OSC}}
\]

\[
C_0 = \frac{(V_{IN} - V_O) V_O T^2}{8 A V_O V_{IN} L_1}
\]

\[
I_{O(MAX)} = I_{IN} V_{O}
\]

Figure 20. Positive Regulator, Step-Down Boosted Current Configuration
Basic Switching Regulator Theory and Applications

The basic switching regulator circuit is shown in Figure 22, along with a practical circuit design using the LM3524D in Figure 25.

The circuit works as follows: Q1 is used as a switch, which has ON and OFF times controlled by the pulse width modulator. When Q1 is ON, power is drawn from \(V_{IN} \) and supplied to the load through L1; \(V_A \) is at approximately \(V_{IN} \), D1 is reverse biased, and \(C_o \) is charging. When Q1 turns OFF the inductor L1 will force \(V_A \) negative to keep the current flowing in it, D1 will start conducting and the load current will flow through D1 and L1. The voltage at \(V_A \) is smoothed by the L1, \(C_o \) filter giving a clean DC output. The current flowing through L1 is equal to the nominal DC load current plus some \(\Delta I_L \) which is due to the changing voltage across it. A good rule of thumb is to set \(\Delta I_{L,P-P} \approx 40\% \times I_0 \).
Figure 23. Relation of Switch Timing to Inductor Current in Step-Down Regulator

From the relation $V_L = L \frac{dI}{dt}$, $\Delta I_L = \frac{V_L T}{L_1}$
\[
\Delta I_L^+ = \frac{(V_{IN} - V_o) t_{ON}}{L_1}, \quad \Delta I_L^- = \frac{V_o t_{OFF}}{L_1}
\]

Neglecting V_{SAT}, V_D, and settling $\Delta I_L^+ = \Delta I_L^-$;
\[
V_o \approx V_{IN} \left(\frac{t_{ON}}{t_{OFF} + t_{ON}} \right) = V_{IN} \left(\frac{t_{ON}}{T} \right);
\]
where $T =$ Total Period

The above shows the relation between V_{IN}, V_o and duty cycle.

\[
l_{IN(DC)} = I_{OUT(DC)} \left(\frac{t_{ON}}{t_{ON} + t_{OFF}} \right),
\]
as Q1 only conducts during t_{ON}.

\[
P_{IN} = l_{IN(DC)} V_{IN} = (I_{0(DC)}) \left(\frac{t_{ON}}{t_{ON} + t_{OFF}} \right) V_{IN}
\]
\[
P_o = I_o V_o
\]
The efficiency, η, of the circuit is:

\[
\eta_{MAX} = \frac{P_o}{P_{IN}} = \frac{I_o V_o}{I_0 \left(\frac{t_{ON}}{t_{ON} + t_{OFF}} \right) V_{IN} + \left(\frac{V_{SAT} t_{ON} + V_D t_{OFF}}{T} \right) I_o}
\]
\[
= \frac{V_o}{V_o + 1}
\]
for $V_{SAT} = V_D = 1V$.

η_{MAX} will be further decreased due to switching losses in Q1. For this reason Q1 should be selected to have the maximum possible f_T, which implies very fast rise and fall times.

Calculating Inductor L1

\[
t_{ON} \approx \frac{(\Delta I_L^+ \times L_1)}{(V_{IN} - V_o)}, \quad t_{OFF} \approx \frac{(\Delta I_L^- \times L_1)}{V_o}
\]
\[
\frac{t_{ON} + t_{OFF}}{T} = \frac{((\Delta I_L^+ \times L_1) + (\Delta I_L^- \times L_1))}{V_o} \left(\frac{0.4 I_o L_1}{V_{IN} - V_o} \right) \left(\frac{0.4 I_o L_1}{V_o} \right)
\]
Since $\Delta I_L^+ = \Delta I_L^- = 0.4 I_o$

Solving the above for L_1
\[L_1 = \frac{2.5 V_o (V_{IN} - V_o)}{I_o V_{IN} f} \]

(10)

where: \(L_1 \) is in Henrys
\(f \) is switching frequency in Hz

Also, see LM1578 data sheet for graphical methods of inductor selection.

Calculating Output Filter Capacitor \(C_o \)

Figure 23 shows \(L_1 \)'s current with respect to \(Q1 \)'s \(t_{ON} \) and \(t_{OFF} \) times (\(V_A \) is at the collector of \(Q1 \)). This current must flow to the load and \(C_o \). \(C_o \)'s current will then be the difference between \(I_L \), and \(I_o \).

\[I_{C_o} = I_L - I_o \]

(11)

From Figure 23 it can be seen that current will be flowing into \(C_o \) for the second half of \(t_{ON} \) through the first half of \(t_{OFF} \), or a time, \(t_{ON}/2 + t_{OFF}/2 \). The current flowing for this time is \(\Delta I_L/4 \). The resulting \(\Delta V_{op} \) or \(\Delta V_o \) is described by:

\[\Delta V_{op} = \frac{1}{2} \times \frac{\Delta I_L}{4} \times \left(\frac{t_{ON} + t_{OFF}}{2} \right) \]

\[= \frac{\Delta I_L}{2} \times \frac{t_{ON} + t_{OFF}}{2} \]

Since \(\Delta I_L = \frac{V_o (T - t_{ON})}{L_1} \) and \(t_{ON} = \frac{V_o T}{V_{IN}} \)

\[\Delta V_{op} = \frac{V_o}{4C L_1} \left(T - \frac{V_o T}{V_{IN}} \right) \left(\frac{I}{2} \right) = \frac{V_o}{8V_{IN}C_o L_1} \]

or

\[C_o = \frac{(V_{IN} - V_o) V_o T^2}{8 \Delta V_o V_{IN} L_1} \]

(12)

where: \(C \) is in farads, \(T \) is switching frequency
\(\Delta V_o \) is p-p output ripple

For best regulation, the inductor's current cannot be allowed to fall to zero. Some minimum load current \(I_o \), and thus inductor current, is required as shown below:

\[I_{o(MIN)} = \frac{(V_{IN} - V_o) t_{ON}}{2L_1} = \frac{(V_{IN} - V_o) V_o}{2fV_{IN}L_1} \]

(13)

\[\Delta I_L = \frac{(V_{IN} - V_o)t_{ON}}{L_1} \]

\[I_o \text{(MIN)} \]

Figure 24. Inductor Current Slope in Step-Down Regulator

A complete step-down switching regulator schematic, using the LM3524D, is illustrated in Figure 25. Transistors \(Q1 \) and \(Q2 \) have been added to boost the output to 1A. The 5V regulator of the LM3524D has been divided in half to bias the error amplifier's non-inverting input to within its common-mode range. Since each output transistor is on for half the period, actually 45%, they have been paralleled to allow longer possible duty cycle, up to 90%. This makes a lower possible input voltage. The output voltage is set by:

\[V_o = V_{NI} \left(1 + \frac{R_1}{R_2} \right) \]

(14)

where \(V_{NI} \) is the voltage at the error amplifier's non-inverting input.
Resistor R3 sets the current limit to:

$$\frac{200 \text{ mV}}{R3} = \frac{200 \text{ mV}}{0.15} = 1.3 \text{A.}$$ \hspace{1cm} (15)

Figure 26 and Figure 27 show a PC board layout and stuffing diagram for the 5V, 1A regulator of Figure 25. The regulator’s performance is listed in Table 1.

Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Typical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>$V_{IN} = 10\text{V}, I_o = 1\text{A}$</td>
<td>5V</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>$V_{IN} = 10\text{V}, I_o = 1\text{A}$</td>
<td>20 kHz</td>
</tr>
<tr>
<td>Short Circuit Current Limit</td>
<td>$V_{IN} = 10\text{V}$</td>
<td>1.3A</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>$V_{IN} = 10\text{V}$</td>
<td>3 mV</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>$\Delta V_{IN} = 10 - 20\text{V}$, $I_o = 1\text{A}$</td>
<td>6 mV</td>
</tr>
<tr>
<td>Efficiency</td>
<td>$V_{IN} = 10\text{V}, I_o = 1\text{A}$</td>
<td>80%</td>
</tr>
<tr>
<td>Output Ripple</td>
<td>$V_{IN} = 10\text{V}, I_o = 1\text{A}$</td>
<td>10 mVp-p</td>
</tr>
</tbody>
</table>

*Mounted to Staver Heatsink No. V5-1.
Q1 = BD344
Q2 = 2N5023
L1 = >40 turns No. 22 wire on Ferroxcube No. K300502 Torroid core.

Figure 25. 5V, 1 Amp Step-Down Switching Regulator
The Step-Up Switching Regulator

Figure 28 shows the basic circuit for a step-up switching regulator. In this circuit Q1 is used as a switch to alternately apply V_{IN} across inductor L1. During the time, t_{ON}, Q1 is ON and energy is drawn from V_{IN} and stored in L1; D1 is reverse biased and I_o is supplied from the charge stored in C_o. When Q1 opens, t_{OFF}, voltage V1 will rise positively to the point where D1 turns ON. The output current is now supplied through L1, D1 to the load and any charge lost from C_o during t_{ON} is replenished. Here also, as in the step-down regulator, the current through L1 has a DC component plus some ΔI_L. ΔI_L is again selected to be approximately 40% of I_L. Figure 29 shows the inductor's current in relation to Q1's ON and OFF times.
Since \(\Delta I_L^+ = \Delta I_L^- \), \(V_{IN} t_{ON} = V_o t_{OFF} - V_{IN} t_{OFF} \), and neglecting \(V_{SAT} \) and \(V_{D1} \),

\[
V_o = V_{IN} \left(1 + \frac{t_{ON}}{t_{OFF}} \right)
\]

(17)

The above equation shows the relationship between \(V_{IN} \), \(V_o \) and duty cycle.

In calculating input current \(I_{IN(DC)} \), which equals the inductor's DC current, assume first 100% efficiency:

\[
P_{IN} = I_{IN(DC)} V_{IN}
\]

\[
P_{OUT} = I_o V_o = I_o V_{IN} \left(1 + \frac{t_{ON}}{t_{OFF}} \right)
\]

(18)

for \(\eta = 100\% \), \(P_{OUT} = P_{IN} \)

\[
I_o V_{IN} \left(1 + \frac{t_{ON}}{t_{OFF}} \right) = I_{IN(DC)} V_{IN}
\]

\[
I_{IN(DC)} = I_o \left(1 + \frac{t_{ON}}{t_{OFF}} \right)
\]

(19)

This equation shows that the input, or inductor, current is larger than the output current by the factor \(1 + \frac{t_{ON}}{t_{OFF}} \). Since this factor is the same as the relation between \(V_o \) and \(V_{IN} \), \(I_{IN(DC)} \) can also be expressed as:

\[
I_{IN(DC)} = I_o \left(\frac{V_o}{V_{IN}} \right)
\]

(20)
So far it is assumed \(\eta = 100\% \), where the actual efficiency or \(\eta_{\text{MAX}} \) will be somewhat less due to the saturation voltage of Q1 and forward on voltage of D1. The internal power loss due to these voltages is the average \(I_L \) current flowing, or \(I_{\text{IN}} \), through either \(V_{\text{SAT}} \) or \(V_{\text{D1}} \). For \(V_{\text{SAT}} = V_{\text{D1}} = 1V \) this power loss becomes \(I_{\text{IN(DC)}} (1V) \). \(\eta_{\text{MAX}} \) is then:

\[
\eta_{\text{MAX}} = \frac{P_o}{P_{\text{IN}}} = \frac{V_{o10}^2}{V_{o10}^2 + I_{\text{IN}} V_{\text{SAT}} (1V)} = \frac{V_{o10}^2}{V_{o10}^2 + I_{\text{IN}} (1 + \frac{t_{\text{ON}}}{t_{\text{OFF}}})}
\]

(21)

From \(V_o = V_{\text{IN}} (1 + \frac{t_{\text{ON}}}{t_{\text{OFF}}}) \)

\[
\eta_{\text{MAX}} = \frac{V_{\text{IN}}}{V_{\text{IN}} + 1}
\]

(22)

This equation assumes only DC losses, however \(\eta_{\text{MAX}} \) is further decreased because of the switching time of Q1 and D1.

In calculating the output capacitor \(C_o \) it can be seen that \(C_o \) supplies \(I_o \) during \(t_{\text{ON}} \). The voltage change on \(C_o \) during this time will be some \(\Delta V_c = \Delta V_o \) or the output ripple of the regulator. Calculation of \(C_o \) is:

\[
\Delta V_o = \frac{I_{\text{ON}}}{C_o} \text{ or } C_o = \frac{I_{\text{ON}}}{\Delta V_o}
\]

From \(V_o = V_{\text{IN}} \left(\frac{T}{t_{\text{OFF}}} \right); t_{\text{OFF}} = \frac{V_{\text{IN}} T}{V_o} \)

where \(T = t_{\text{ON}} + t_{\text{OFF}} = \frac{1}{f} \)

\[t_{\text{ON}} = T - \frac{V_{\text{IN}} T}{V_o} = T \left(\frac{V_o - V_{\text{IN}}}{V_o} \right) \]

therefore:

\[
C_o = \frac{I_o T \left(\frac{V_o - V_{\text{IN}}}{V_o} \right)}{\Delta V_o} = \frac{I_o (V_o - V_{\text{IN}})}{f \Delta V_o V_o}
\]

(23)

where: \(C_o \) is in farads, \(f \) is the switching frequency, \(\Delta V_o \) is the p-p output ripple

Calculation of inductor \(L_1 \) is as follows:

\[
L_1 = \frac{V_{\text{IN}} I_{\text{ON}}}{\Delta L_{\text{p-p}}} \text{, since during } t_{\text{ON}}.
\]

(24)

\(V_{\text{IN}} \) is applied across \(L_1 \)

\[
\Delta L_{\text{p-p}} = 0.4 I_L = 0.41 I_{\text{IN}} = 0.4 I_o \left(\frac{V_o}{V_{\text{IN}}} \right) \text{, therefore:}
\]

\[
L_1 = \frac{V_{\text{IN}} I_{\text{ON}}}{0.4 I_o \left(\frac{V_o}{V_{\text{IN}}} \right)} \text{ and since } t_{\text{ON}} = \frac{T (V_o - V_{\text{IN}})}{V_o}
\]

\[
L_1 = \frac{2.5 V_{\text{IN}}^2 (V_o - V_{\text{IN}})}{f I_o V_o^2}
\]

(25)

where: \(L_1 \) is in henrys, \(f \) is the switching frequency in Hz

To apply the above theory, a complete step-up switching regulator is shown in Figure 30. Since \(V_{\text{IN}} \) is 5V, \(V_{\text{REF}} \) is tied to \(V_{\text{IN}} \). The input voltage is divided by 2 to bias the error amplifier’s inverting input. The output voltage is:

\[
V_{\text{OUT}} = \left(1 + \frac{R_2}{R_1} \right) \times V_{\text{INV}} = 2.5 \times \left(1 + \frac{R_2}{R_1} \right)
\]

(26)

The network D1, C1 forms a slow start circuit.
This holds the output of the error amplifier initially low thus reducing the duty-cycle to a minimum. Without the slow start circuit the inductor may saturate at turn-on because it has to supply high peak currents to charge the output capacitor from 0V. It should also be noted that this circuit has no supply rejection. By adding a reference voltage at the non-inverting input to the error amplifier, see Figure 31, the input voltage variations are rejected.

The LM3524D can also be used in inductorless switching regulators. Figure 32 shows a polarity inverter which if connected to Figure 30 provides a −15V unregulated output.

![Figure 30. 15V, 0.5A Step-Up Switching Regulator](image)

L1 = > 25 turns No. 24 wire on Ferroxcube No. K300502 Toroid core.

![Figure 31. Replacing R3/R4 Divider in Figure 30 with Reference Circuit Improves Line Regulation](image)

![Figure 32. Polarity Inverter Provides Auxiliary −15V Unregulated Output from Circuit of Figure 30](image)
REVISION HISTORY

Changes from Revision D (May 2013) to Revision E

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed layout of National Data Sheet to TI format</td>
<td>21</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2524DN/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>NFG</td>
<td>16</td>
<td>25</td>
<td>Pb-Free</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>-40 to 125</td>
<td>LM2524DN</td>
<td>Samples</td>
</tr>
<tr>
<td>LM3524DM</td>
<td>LIFEBUY</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>48</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 80</td>
<td>LM3524DM</td>
<td>Samples</td>
</tr>
<tr>
<td>LM3524DM/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>48</td>
<td>Green</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 80</td>
<td>LM3524DM</td>
<td>Samples</td>
</tr>
<tr>
<td>LM3524DMX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>Green</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 80</td>
<td>LM3524DM</td>
<td>Samples</td>
</tr>
<tr>
<td>LM3524DN</td>
<td>LIFEBUY</td>
<td>PDIP</td>
<td>NFG</td>
<td>16</td>
<td>25</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 80</td>
<td>LM3524DN</td>
<td>Samples</td>
</tr>
<tr>
<td>LM3524DN/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>NFG</td>
<td>16</td>
<td>25</td>
<td>Green</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 80</td>
<td>LM3524DN</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **K0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **A0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Pocket Quadrants**: Q1, Q2, Q3, Q4
- **Sprocket Holes**: User Direction of Feed

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM3524DMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>10.3</td>
<td>2.3</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM3524DMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.

⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AC.

4040047-6/M 06/11
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated