LMx24-N, LM2902-N Low-Power, Quad-Operational Amplifiers

1 Features

- Internally Frequency Compensated for Unity Gain
- Large DC Voltage Gain 100 dB
- Wide Bandwidth (Unity Gain) 1 MHz (Temperature Compensated)
- Wide Power Supply Range:
 - Single Supply 3 V to 32 V
 - or Dual Supplies ±1.5 V to ±16 V
- Very Low Supply Current Drain (700 μA) — Essentially Independent of Supply Voltage
- Low Input Biasing Current 45 nA (Temperature Compensated)
- Low Input Offset Voltage 2 mV
- Input Common-Mode Voltage Range Includes Ground
- Differential Input Voltage Range Equal to the Power Supply Voltage
- Large Output Voltage Swing 0 V to V+ − 1.5 V

Advantages:
- Eliminates Need for Dual Supplies
- Four Internally Compensated Op Amps in a Single Package
- Allows Direct Sensing Near GND and V_OUT also Goes to GND
- Compatible With All Forms of Logic
- Power Drain Suitable for Battery Operation
- In the Linear Mode the Input Common-Mode, Voltage Range Includes Ground and the Output Voltage
- Can Swing to Ground, Even Though Operated from Only a Single Power Supply Voltage
- Unity Gain Cross Frequency is Temperature Compensated
- Input Bias Current is Also Temperature Compensated

2 Applications

- Transducer Amplifiers
- DC Gain Blocks
- Conventional Op Amp Circuits

3 Description

The LM124-N series consists of four independent, high-gain, internally frequency compensated operational amplifiers designed to operate from a single power supply over a wide range of voltages. Operation from split-power supplies is also possible and the low-power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124-N series can directly operate off of the standard 5-V power supply voltage which is used in digital systems and easily provides the required interface electronics without requiring the additional ±15 V power supplies.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM124-N</td>
<td>CDIP (14)</td>
<td>19.56 mm × 6.67 mm</td>
</tr>
<tr>
<td>LM222-N</td>
<td>CDIP (14)</td>
<td>19.56 mm × 6.67 mm</td>
</tr>
<tr>
<td></td>
<td>PDIP (14)</td>
<td>19.177 mm × 6.35 mm</td>
</tr>
<tr>
<td>LM324-N</td>
<td>SOIC (14)</td>
<td>8.65 mm × 3.91 mm</td>
</tr>
<tr>
<td></td>
<td>TSSOP (14)</td>
<td>5.00 mm × 4.40 mm</td>
</tr>
<tr>
<td>LM2902-N</td>
<td>PDIP (14)</td>
<td>19.177 mm × 6.35 mm</td>
</tr>
<tr>
<td></td>
<td>SOIC (14)</td>
<td>8.65 mm × 3.91 mm</td>
</tr>
<tr>
<td></td>
<td>TSSOP (14)</td>
<td>5.00 mm × 4.40 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Schematic Diagram
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description .. 1
4 Revision History ... 2
5 Pin Configuration and Functions 3
6 Specifications ... 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings .. 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 5
 6.5 Electrical Characteristics: LM124A/224A/324A 5
 6.6 Electrical Characteristics: LM124-N/224-N/324-N/2902-N 6
 6.7 Typical Characteristics ... 8
7 Detailed Description .. 11
 7.1 Overview .. 11
 7.2 Functional Block Diagram 11

7.3 Feature Description ... 11
7.4 Device Functional Modes ... 11
8 Application and Implementation 13
 8.1 Application Information ... 13
 8.2 Typical Applications .. 13
9 Power Supply Recommendations 23
10 Layout ... 23
 10.1 Layout Guidelines ... 23
 10.2 Layout Example .. 23
11 Device and Documentation Support 24
 11.1 Related Links .. 24
 11.2 Trademarks .. 24
 11.3 Electrostatic Discharge Caution 24
 11.4 Glossary .. 24
12 Mechanical, Packaging, and Orderable Information 24

4 Revision History

Changes from Revision C (November 2012) to Revision D Page

- Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT1</td>
<td>O</td>
<td>Output, Channel 1</td>
</tr>
<tr>
<td>INPUT1-</td>
<td>I</td>
<td>Inverting Input, Channel 1</td>
</tr>
<tr>
<td>INPUT1+</td>
<td>I</td>
<td>Noninverting Input, Channel 1</td>
</tr>
<tr>
<td>V+</td>
<td>P</td>
<td>Positive Supply Voltage</td>
</tr>
<tr>
<td>INPUT2+</td>
<td>I</td>
<td>Noninverting Input, Channel 2</td>
</tr>
<tr>
<td>INPUT2-</td>
<td>I</td>
<td>Inverting Input, Channel 2</td>
</tr>
<tr>
<td>OUTPUT2</td>
<td>O</td>
<td>Output, Channel 2</td>
</tr>
<tr>
<td>OUTPUT3</td>
<td>O</td>
<td>Output, Channel 3</td>
</tr>
<tr>
<td>INPUT3-</td>
<td>I</td>
<td>Inverting Input, Channel 3</td>
</tr>
<tr>
<td>INPUT3+</td>
<td>I</td>
<td>Noninverting Input, Channel 3</td>
</tr>
<tr>
<td>GND</td>
<td>P</td>
<td>Ground or Negative Supply Voltage</td>
</tr>
<tr>
<td>INPUT4+</td>
<td>I</td>
<td>Noninverting Input, Channel 4</td>
</tr>
<tr>
<td>INPUT4-</td>
<td>I</td>
<td>Inverting Input, Channel 4</td>
</tr>
<tr>
<td>OUTPUT4</td>
<td>O</td>
<td>Output, Channel 4</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings

See (1)(2).

<table>
<thead>
<tr>
<th></th>
<th>LM124-N/LM224-N/LM324-N</th>
<th>LM2902-N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>Supply Voltage, V⁺</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>−0.3</td>
<td>32</td>
</tr>
<tr>
<td>Input Current (VᵢN < −0.3 V)(3)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Power Dissipation(4)</td>
<td>PDIP</td>
<td>1130</td>
</tr>
<tr>
<td></td>
<td>CDIP</td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>SOIC Package</td>
<td>800</td>
</tr>
<tr>
<td>Output Short-Circuit to GND (One Amplifier)(5)</td>
<td>V⁺ ≤ 15 V and T_A = 25°C</td>
<td>Continuous</td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 seconds)</td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td>Soldering Information</td>
<td>Dual-In-Line Package</td>
<td>Soldering (10 seconds)</td>
</tr>
<tr>
<td></td>
<td>Small Outline Package</td>
<td>Vapor Phase (60 seconds)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infrared (15 seconds)</td>
</tr>
<tr>
<td>Storage temperature, T_stg</td>
<td>−65</td>
<td>150</td>
</tr>
</tbody>
</table>

(1) Refer to RETS124AX for LM124A military specifications and refer to RETS124X for LM124-N military specifications.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V⁺ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than −0.3 V (at 25°C).

(4) For operating at high temperatures, the LM324-N/LM324A/LM2902-N must be derated based on a 125°C maximum junction temperature and a thermal resistance of 88°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM224-N/LM224A and LM124-N/LM124A can be derated based on a 150°C maximum junction temperature. The dissipation is the total of all four amplifiers—use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.

(5) Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V⁺. At values of supply voltage in excess of 15 V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>V(ESD)</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge</td>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(3)</td>
<td>±250</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V⁺ - V⁻): LM2902-N</td>
<td>3</td>
<td>26</td>
<td>V</td>
</tr>
<tr>
<td>Operating Input Voltage on Input pins</td>
<td>0</td>
<td>V⁺</td>
<td>V</td>
</tr>
<tr>
<td>Operating junction temperature, T_J: LM124-N/LM124A</td>
<td>-55</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Operating junction temperature, T_J: L2902-N</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>Operating junction temperature, T_J: LM224-N/LM224A</td>
<td>-25</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>Operating junction temperature, T_J: LM324-N/LM324A</td>
<td>0</td>
<td>70</td>
<td>°C</td>
</tr>
</tbody>
</table>
6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC</th>
<th>LM124-N / LM224-N</th>
<th>LM324-N / LM2902-N</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJA</td>
<td>88</td>
<td>88</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPR953.

6.5 Electrical Characteristics: LM124A/224A/324A

V^+ = 5.0 V, (1); unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LM124A</th>
<th>LM224A</th>
<th>LM324A</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>T_A = 25°C(2)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Input Bias Current(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range(4)</td>
<td>V^+ = 30 V, (LM2902-N, V^+ = 26 V), T_A = 25°C</td>
<td>0</td>
<td>V^+−1.5</td>
<td>0</td>
<td>V^+−1.5</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Over Full Temperature Range, R_L = 0 on All Op Amps, V^+ = 30 V (LM2902-N V^+ = 26 V)</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V^+ = 15 V, R_L ≥ 2 kΩ, (V_o = 1 V to 11 V), T_A = 25°C</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>DC, V_CM = 0 V to V^+ − 1.5 V, T_A = 25°C</td>
<td>70</td>
<td>85</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>V^+ = 5 V to 30 V, (LM2902-N, V^+ = 5 V to 26 V), T_A = 25°C</td>
<td>65</td>
<td>100</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>Amplifier-to-Amplifier Coupling(5)</td>
<td>f = 1 kHz to 20 kHz, T_A = 25°C, (Input Referred)</td>
<td>−120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current</td>
<td>Source</td>
<td>V_in^+ = 1 V, V_in^− = 0 V, V^+ = 15 V, V_o = 2 V, T_A = 25°C</td>
<td>20</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Sink</td>
<td>V_in^+ = 1 V, V_in^− = 0 V, V^+ = 15 V, V_o = 2 V, T_A = 25°C</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_in^+ = 1 V, V_in^− = 0 V, V^+ = 15 V, V_o = 200 mV, T_A = 25°C</td>
<td>12</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>Short Circuit to Ground</td>
<td>V^+ = 15 V, T_A = 25°C(6)</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>See(5)</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>mV</td>
</tr>
<tr>
<td>V_{DD} Drift</td>
<td>R_{in} = 0 Ω</td>
<td>7</td>
<td>20</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td></td>
<td>30</td>
<td>30</td>
<td>75</td>
<td>nA</td>
</tr>
</tbody>
</table>

(1) These specifications are limited to −55°C ≤ T_A ≤ +125°C for the LM124-N/LM124A. With the LM224-N/LM224A, all temperature specifications are limited to −25°C ≤ T_A ≤ +85°C, the LM324-N/LM324A temperature specifications are limited to 0°C ≤ T_A ≤ +70°C, and the LM2902-N/LM324A specifications are limited to −40°C ≤ T_A ≤ +85°C.

(2) V_D = 1.4V, R_S = 0 Ω with V^+ from 5 V to 30 V; and over the full input common-mode range (0 V to V^+ − 1.5 V) for LM2902-N, V^+ from 5 V to 26 V.

(3) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

(4) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at 25°C). The upper end of the common-mode voltage range is V^− − 1.5 V (at 25°C), but either or both inputs can go to 32 V without damage (26 V for LM2902-N), independent of the magnitude of V^+.

(5) Due to proximity of external components, insulate that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

(6) Short circuits from the output to V^+ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V^+. At values of supply voltage in excess of 15 V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
Electrical Characteristics: LM124A/224A/324A (continued)

V^+ = 5.0 V, (1), unless otherwise stated

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LM124A</th>
<th>LM224A</th>
<th>LM324A</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>I_{OS} Drift</td>
<td>R_{O} = 0 Ω</td>
<td>10</td>
<td>200</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_{IN+}, or I_{IN-}</td>
<td>40</td>
<td>100</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range(4)</td>
<td>V^+ = 30 V, (LM2902-N, V^+ = 26 V)</td>
<td>0</td>
<td>V−2</td>
<td>0</td>
<td>V−2</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V^+ = 15 V (V_{O\text{P-Swing}} = 1 V to 11 V), R_L ≥ 2 kΩ</td>
<td>25</td>
<td>25</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>28</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>V_{OL} = V^+ = 5 V, R_L = 10 kΩ</td>
<td>5</td>
<td>20</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current Source</td>
<td>V_O = 2 V</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

6.6 Electrical Characteristics: LM124-N/224-N/324-N/2902-N

V^+ = +5.0V, (1), unless otherwise stated

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LM124-N / LM224-N</th>
<th>LM324-N</th>
<th>LM2902-N</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>T_A = 25°C(2)</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Input Bias Current(3)</td>
<td>I_{IN+}, or I_{IN-}, V_{CM} = 0 V, T_A = 25°C</td>
<td>45</td>
<td>150</td>
<td>45</td>
<td>250</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{IN+}, or I_{IN-}, V_{CM} = 0 V, T_A = 25°C</td>
<td>3</td>
<td>30</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range(4)</td>
<td>V^+ = 30 V, (LM2902-N, V^+ = 26 V), T_A = 25°C</td>
<td>0</td>
<td>V−1</td>
<td>0</td>
<td>V−1</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Over Full Temperature Range</td>
<td>3.1</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>R_L = On All Op Amps, V^+ = 30 V (LM2902-N V^+ = 26 V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V^+ = 5 V</td>
<td>0.7</td>
<td>1.2</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V^+ = 15 V, R_L ≥ 2 kΩ</td>
<td>50</td>
<td>100</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>DC, V_{CM} = 0 V to V^+ − 1.5 V, T_A = 25°C</td>
<td>70</td>
<td>85</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>V^+ = 5 V to 30 V (LM2902-N, V^+ = 5 V to 26 V), T_A = 25°C</td>
<td>65</td>
<td>100</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>Amplifier-to-Amplifier Coupling(5)</td>
<td>f = 1 kHz to 20 kHz, T_A = 25°C (Input Referred)</td>
<td>−120</td>
<td>−120</td>
<td>−120</td>
<td>−120</td>
</tr>
</tbody>
</table>

(1) These specifications are limited to −55°C ≤ T_A ≤ +125°C for the LM124-N/LM124A. With the LM224-N/LM224A, all temperature specifications are limited to −25°C ≤ T_A ≤ +85°C, the LM324-N/LM324A temperature specifications are limited to 0°C ≤ T_A ≤ +70°C, and the LM2902-N specifications are limited to −40°C ≤ T_A ≤ +85°C.

(2) V_O = 1.4V, R_O = 0 Ω with V^+ from 5 V to 30 V; and over the full input common-mode range (0 V to V^+ − 1.5 V) for LM2902-N, V^+ from 5 V to 26 V.

(3) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

(4) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at 25°C). The upper end of the common-mode voltage range is V^+ − 1.5 V (at 25°C), but either or both inputs can go to 32 V without damage (26 V for LM2902-N), independent of the magnitude of V^+.

(5) Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.
Electrical Characteristics: LM124-N/224-N/324-N/2902-N (continued)

V+ = +5.0V, unless otherwise stated

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LM124-N / LM224-N</th>
<th>LM324-N</th>
<th>LM2902-N</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Source</td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>Output Current</td>
<td></td>
<td>20</td>
<td>40</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Sink</td>
<td>10</td>
<td>20</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>50</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Short Circuit to Ground</td>
<td>40</td>
<td>60</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Input Offset Voltage</td>
<td>See (6)</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>VOS Drift</td>
<td>R_S = 0 Ω</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Input Offset Current</td>
<td>I_{IN+} - I_{IN-}, V_{CM} = 0 V</td>
<td>100</td>
<td>150</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>I_{OS} Drift</td>
<td>R_S = 0 Ω</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Input Bias Current</td>
<td>I_{IN+} or I_{IN-}</td>
<td>40</td>
<td>300</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Input Common-Mode Voltage Range (4)</td>
<td>V+ = 30 V, (LM2902-N, V+ = 26 V)</td>
<td>0</td>
<td>V+−2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Large Signal Voltage Gain</td>
<td>V+ = 15 V (V_{S}Swing = 1V to 11V), R_L ≥ 2 kΩ</td>
<td>25</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Output Voltage Swing</td>
<td>V_{CH} = 30 V (LM2902-N, V+ = 26 V)</td>
<td>26</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_L = 2 kΩ</td>
<td>26</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_L = 10 kΩ</td>
<td>27</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>V_{OL}</td>
<td>V+ = 5 V, R_L = 10 kΩ</td>
<td>5</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>20</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Output Current</td>
<td>Source</td>
<td>V_G = 2 V</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

(6) Short circuits from the output to V+ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of 15 V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
6.7 Typical Characteristics

Figure 1. Input Voltage Range

Figure 2. Input Current

Figure 3. Supply Current

Figure 4. Voltage Gain

Figure 5. Open-Loop Frequency Response

Figure 6. Common Mode Rejection Ratio
Typical Characteristics (continued)

Figure 7. Voltage Follower Pulse Response

Figure 8. Voltage Follower Pulse Response (Small Signal)

Figure 9. Large Signal Frequency Response

Figure 10. Output Characteristics Current Sourcing

Figure 11. Output Characteristics Current Sinking

Figure 12. Current Limiting
Typical Characteristics (continued)

Figure 13. Input Current (LM2902-N Only)

Figure 14. Voltage Gain (LM2902-N Only)
7 Detailed Description

7.1 Overview
The LM124-N series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 V_DC. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 V_DC.

7.2 Functional Block Diagram

7.3 Feature Description
The LM124 provides a compelling balance of performance versus current consumption. The 700 μA of supply current draw over the wide operating conditions with a 1-MHz gain-bandwidth and temperature compensated bias currents makes the LM124 an effective solution for large variety of applications. The input offset voltage of 2 mV and offset current of 5 nA, along with the 45n-A bias current across a wide supply voltage means a single design can be used in a large number of different implementations.

7.4 Device Functional Modes
Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^+ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 V_DC (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion.

Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.
Device Functional Modes (continued)

The bias network of the LM124-N establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $3 \, V_{DC}$ to $30 \, V_{DC}$.

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at $25^\circ C$ provides a larger output current capability at elevated temperatures (see Typical Characteristics) than a standard IC op amp.
8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LM124 series of amplifiers is specified for operation from 3 V to 32 V (±1.5 V to ±16 V). Many of the specifications apply from –40°C to 125°C. Parameters that can exhibit significant variance with regards to operating voltage or temperature are presented in Typical Characteristics.

8.2 Typical Applications

Figure 15 emphasizes operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V+ 2) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

8.2.1 Non-Inverting DC Gain (0 V Input = 0 V Output)

![Non-Inverting Amplifier with G=100](image)

8.2.1.1 Design Requirements

For this example application, the required signal gain is a non-inverting 100±5% with a supply voltage of 5 V.

8.2.1.2 Detailed Design Procedure

Using the equation for a non-inverting gain configuration, \(Av = 1 + \frac{R_2}{R_1} \). Setting the R1 to 10 kΩ, R2 is 99 times larger than R1, which is 990 kΩ. A 1MΩ is more readily available, and provides a gain of 101, which is within the desired specification.

The gain-frequency characteristic of the amplifier and its feedback network must be such that oscillation does not occur. To meet this condition, the phase shift through amplifier and feedback network must never exceed 180° for any frequency where the gain of the amplifier and its feedback network is greater than unity. In practical applications, the phase shift should not approach 180° since this is the situation of conditional stability. Obviously the most critical case occurs when the attenuation of the feedback network is zero.
Typical Applications (continued)

8.2.1.3 Application Curve

Figure 16. Non-Inverting Amplified Response Curve
Typical Applications (continued)

8.2.2 Other Application Circuits at $V^+ = 5.0 \, V_{DC}$

Where:

$V_0 = V_1 + V_2 - V_3 - V_4$

$(V_1 + V_2) \geq (V_3 + V_4)$ to keep $V_0 > 0 \, V_{DC}$

Figure 17. DC Summing Amplifier

$(V_{IN'S} \geq 0 \, V_{DC} \, \text{And} \, V_0 \geq V_{DC})$

Where:

$V_0 = 0 \, V_{DC} \, \text{for} \, V_{IN} = 0 \, V_{DC}$

$A_V = 10$

Figure 18. Power Amplifier

$f_0 = 1 \, kHz \quad Q = 50 \quad A_V = 100 \, (40 \, dB)$

Figure 19. LED Driver

Figure 20. “BI-QUAD” RC Active Bandpass Filter
Typical Applications (continued)

Figure 21. Fixed Current Sources

\[i_2 = \left(\frac{R_1}{R_2} \right) i_1 \]

*(Increase R1 for \(i_L \) small)

Figure 22. Lamp Driver

Figure 23. Current Monitor

Figure 24. Driving TTL

Figure 25. Voltage Follower
Typical Applications (continued)

Figure 26. Pulse Generator

Figure 27. Squarewave Oscillator

I_O = 1 amp/volt V_IN (Increase R_E for I_o small)

Figure 28. Pulse Generator

Figure 29. High Compliance Current Sink
Typical Applications (continued)

Figure 30. Low Drift Peak Detector

![Low Drift Peak Detector Diagram]

Figure 31. Comparator With Hysteresis

![Comparator With Hysteresis Diagram]

*Wide control voltage range:
0 \(V_{DC} \leq V_C \leq 2 \left(V^+ - 1.5 \ V_{DC} \right) *

Figure 32. Ground Referencing a Differential Input Signal

![Ground Referencing Diagram]

\[V_O = V_R \]

Figure 33. Voltage Controlled Oscillator Circuit

![Voltage Controlled Oscillator Circuit Diagram]
Typical Applications (continued)

Q = 1

Figure 34. Photo Voltaic-Cell Amplifier

A_V = 2

Figure 35. DC Coupled Low-Pass RC Active Filter

A_V = \frac{R_2}{R_1} (As shown, A_V = 10)

Figure 36. AC Coupled Inverting Amplifier

A_V = 1 + \frac{R_2}{R_1}

A_V = 11 (As shown)

Figure 37. AC Coupled Non-Inverting Amplifier
Typical Applications (continued)

Figure 38. High Input Z, DC Differential Amplifier

![High Input Z, DC Differential Amplifier Circuit Diagram]

For \(\frac{R_1}{R_2} = \frac{R_4}{R_3} \) (CMRR depends on this resistor ratio match)

\[V_O = 1 + \frac{R_4}{R_3} (V_2 - V_1) \]

As shown: \(V_O = 2(V_2 - V_1) \)

Figure 39. High Input Z Adjustable-Gain DC Instrumentation Amplifier

![High Input Z Adjustable-Gain DC Instrumentation Amplifier Circuit Diagram]

If \(R_1 = R_5 \) & \(R_3 = R_4 \) = \(R_6 = R_7 \) (CMRR depends on match)

\[V_O = 1 + \frac{2R_1}{R_2} (V_2 - V_1) \]

As shown \(V_O = 101 (V_2 - V_1) \)
Typical Applications (continued)

Figure 40. Bridge Current Amplifier

$$V_O = V_{REF} \left(\frac{\delta}{2} \frac{R_f}{R} \right)$$

For $\delta << 1$ and $R_f >> R$

Figure 41. Using Symmetrical Amplifiers to Reduce Input Current (General Concept)
Typical Applications (continued)

\[f_0 = 1 \text{ kHz} \quad Q = 25 \]

Figure 42. Bandpass Active Filter
9 Power Supply Recommendations

The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14).

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

10 Layout

10.1 Layout Guidelines

The V+ pin should be bypassed to ground with a low-ESR capacitor. The optimum placement is closest to the V+ and ground pins.

Take care to minimize the loop area formed by the bypass capacitor connection between V+ and ground.

The ground pin should be connected to the PCB ground plane at the pin of the device.

The feedback components should be placed as close to the device as possible minimizing strays.

10.2 Layout Example
11 Device and Documentation Support

11.1 Related Links
The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

<table>
<thead>
<tr>
<th>PARTS</th>
<th>PRODUCT FOLDER</th>
<th>SAMPLE & BUY</th>
<th>TECHNICAL DOCUMENTS</th>
<th>TOOLS & SOFTWARE</th>
<th>SUPPORT & COMMUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM124-N</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>LM224-N</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>LM2902-N</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
<tr>
<td>LM324-N</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
<td>Click here</td>
</tr>
</tbody>
</table>

11.2 Trademarks
All trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.4 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM124AJ/PB</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>25</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-25 to 85</td>
<td>LM124AJ</td>
<td>Samples</td>
</tr>
<tr>
<td>LM124J/PB</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>25</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>LM124J</td>
<td>Samples</td>
</tr>
<tr>
<td>LM224J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>25</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>LM224J</td>
<td>Samples</td>
</tr>
<tr>
<td>LM2902M</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>55</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>LM2902M</td>
<td>Samples</td>
</tr>
<tr>
<td>LM2902M/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>55</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>LM2902M</td>
<td>Samples</td>
</tr>
<tr>
<td>LM2902MT</td>
<td>NRND</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>94</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>LM2902MT</td>
<td>Samples</td>
</tr>
<tr>
<td>LM2902MT/NOPB</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>94</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>LM2902MT</td>
<td>Samples</td>
</tr>
<tr>
<td>LM2902MX</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>LM2902MX</td>
<td>Samples</td>
</tr>
<tr>
<td>LM2902MX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>LM2902MX</td>
<td>Samples</td>
</tr>
<tr>
<td>LM2902N/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>NFF</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>-40 to 85</td>
<td>LM2902N</td>
<td>Samples</td>
</tr>
<tr>
<td>LM324AM</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>55</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM324AM</td>
<td>Samples</td>
</tr>
<tr>
<td>LM324AM/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>55</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM324AM</td>
<td>Samples</td>
</tr>
<tr>
<td>LM324AMX</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM324AMX</td>
<td>Samples</td>
</tr>
<tr>
<td>LM324AMX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM324AMX</td>
<td>Samples</td>
</tr>
<tr>
<td>LM324AN/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>NFF</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 70</td>
<td>LM324AN</td>
<td>Samples</td>
</tr>
<tr>
<td>LM324J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>25</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM324J</td>
<td>Samples</td>
</tr>
<tr>
<td>LM324M</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>55</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM324M</td>
<td>Samples</td>
</tr>
<tr>
<td>LM324M/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>55</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM324M</td>
<td>Samples</td>
</tr>
<tr>
<td>LM324MT/NOPB</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>94</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM324MT</td>
<td>Samples</td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan</td>
<td>Lead/Ball Finish</td>
<td>MSL Peak Temp</td>
<td>Op Temp (°C)</td>
<td>Device Marking</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>LM324MTX</td>
<td>NRND</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2500</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM324 MT</td>
<td></td>
</tr>
<tr>
<td>LM324MTX/NOPB</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM324 MT</td>
<td></td>
</tr>
<tr>
<td>LM324MX</td>
<td>NRND</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>LM324M</td>
<td></td>
</tr>
<tr>
<td>LM324MX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>LM324M</td>
<td></td>
</tr>
<tr>
<td>LM324N/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>NFF</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 70</td>
<td>LM324N</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSELETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

Reel Dimensions

![Reel Diagram](image)

Tape Dimensions

![Tape Diagram](image)

<table>
<thead>
<tr>
<th>Quadrant Assignments for Pin 1 Orientation in Tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprocket Holes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>Material</th>
<th>Dimensions</th>
<th>Pin Count</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td></td>
</tr>
</tbody>
</table>

All dimensions are nominal.

- **Device**: LM2902MTX/NOPB
- **Package Type**: TSSOP
- **Drawing**: PW
- **Pins**: 14
- **SPQ**: 2500
- **Reel Diameter**: 330.0
- **Reel Width W1**: 12.4
- **A0**: 6.95
- **B0**: 8.3
- **K0**: 1.6
- **P1**: 8.0
- **W**: 12.0
- **Pin 1 Quadrant**: Q1

- **Device**: LM2902MX
- **Package Type**: SOIC
- **Drawing**: D
- **Pins**: 14
- **SPQ**: 2500
- **Reel Diameter**: 330.0
- **Reel Width W1**: 16.4
- **A0**: 6.5
- **B0**: 9.35
- **K0**: 2.3
- **P1**: 8.0
- **W**: 16.0
- **Pin 1 Quadrant**: Q1

- **Device**: LM2902MX/NOPB
- **Package Type**: SOIC
- **Drawing**: D
- **Pins**: 14
- **SPQ**: 2500
- **Reel Diameter**: 330.0
- **Reel Width W1**: 16.4
- **A0**: 6.5
- **B0**: 9.35
- **K0**: 2.3
- **P1**: 8.0
- **W**: 16.0
- **Pin 1 Quadrant**: Q1

- **Device**: LM324AMX
- **Package Type**: SOIC
- **Drawing**: D
- **Pins**: 14
- **SPQ**: 2500
- **Reel Diameter**: 330.0
- **Reel Width W1**: 16.4
- **A0**: 6.5
- **B0**: 9.35
- **K0**: 2.3
- **P1**: 8.0
- **W**: 16.0
- **Pin 1 Quadrant**: Q1

- **Device**: LM324AMX/NOPB
- **Package Type**: SOIC
- **Drawing**: D
- **Pins**: 14
- **SPQ**: 2500
- **Reel Diameter**: 330.0
- **Reel Width W1**: 16.4
- **A0**: 6.5
- **B0**: 9.35
- **K0**: 2.3
- **P1**: 8.0
- **W**: 16.0
- **Pin 1 Quadrant**: Q1

- **Device**: LM324MTX
- **Package Type**: TSSOP
- **Drawing**: PW
- **Pins**: 14
- **SPQ**: 2500
- **Reel Diameter**: 330.0
- **Reel Width W1**: 12.4
- **A0**: 6.95
- **B0**: 8.3
- **K0**: 1.6
- **P1**: 8.0
- **W**: 12.0
- **Pin 1 Quadrant**: Q1

- **Device**: LM324MTX/NOPB
- **Package Type**: TSSOP
- **Drawing**: PW
- **Pins**: 14
- **SPQ**: 2500
- **Reel Diameter**: 330.0
- **Reel Width W1**: 12.4
- **A0**: 6.95
- **B0**: 8.3
- **K0**: 1.6
- **P1**: 8.0
- **W**: 12.0
- **Pin 1 Quadrant**: Q1

- **Device**: LM324MX
- **Package Type**: SOIC
- **Drawing**: D
- **Pins**: 14
- **SPQ**: 2500
- **Reel Diameter**: 330.0
- **Reel Width W1**: 16.4
- **A0**: 6.5
- **B0**: 9.35
- **K0**: 2.3
- **P1**: 8.0
- **W**: 16.0
- **Pin 1 Quadrant**: Q1

- **Device**: LM324MX/NOPB
- **Package Type**: SOIC
- **Drawing**: D
- **Pins**: 14
- **SPQ**: 2500
- **Reel Diameter**: 330.0
- **Reel Width W1**: 16.4
- **A0**: 6.5
- **B0**: 9.35
- **K0**: 2.3
- **P1**: 8.0
- **W**: 16.0
- **Pin 1 Quadrant**: Q1
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2902MTX/NOPB</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM2902MX</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM2902MX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM324AMX</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM324AMX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM324MTX</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM324MTX/NOPB</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM324MX</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM324MX/NOPB</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.
MECHANICAL DATA

DIMENSIONS ARE IN INCHES

DIMENSIONS IN () FOR REFERENCE ONLY

TI0014A (Rev G)
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.

⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AB.
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.25 each side.
E. Falls within JEDEC MO-153
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>www.ti.com/audio</th>
<th>Automotive and Transportation</th>
<th>www.ti.com/automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
<td>amplifier.ti.com</td>
<td></td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
<td>dsp.ti.com</td>
<td></td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
<td>www.ti.com/clocks</td>
<td></td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
<td>interface.ti.com</td>
<td></td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
<td>logic.ti.com</td>
<td></td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
<td>power.ti.com</td>
<td></td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Video and Imaging</td>
<td>microcontroller.ti.com</td>
<td></td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td></td>
<td>www.ti-rfid.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFID</td>
<td></td>
<td>www.ti.com/omap</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated