LM2599
SIMPLE SWITCHER® Power Converter 150 kHz 3A
Step-Down Voltage Regulator, with Features

General Description
The LM2599 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 3A load with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5V, 12V, and an adjustable output version.

This series of switching regulators is similar to the LM2596 series, with additional supervisory and performance features added.

Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation, improved line and load specifications, fixed-frequency oscillator, Shutdown/Soft-start, error flag delay and error flag output.

The LM2599 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 7-lead TO-220 package with several different lead bend options, and a 7-lead TO-263 Surface mount package.

A standard series of inductors (both through hole and surface mount types) are available from several different manufacturers optimized for use with the LM2599 series. This feature greatly simplifies the design of switch-mode power supplies.

Other features include a guaranteed ±4% tolerance on output voltage under all conditions of input voltage and output load conditions, and ±15% on the oscillator frequency. External shutdown is included, featuring typically 80 µA standby current. Self protection features include a two stage current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

Features
- 3.3V, 5V, 12V, and adjustable output versions
- Adjustable version output voltage range, 1.2V to 37V ±4% max over line and load conditions
- Guaranteed 3A output current
- Available in 7-pin TO-220 and TO-263 (surface mount) Package
- Input voltage range up to 40V
- 150 kHz fixed frequency internal oscillator
- Shutdown/Soft-start
- Out of regulation error flag
- Error output delay
- Low power standby mode, I_Q typically 80 µA
- High Efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications
- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to Negative converter

Note: † Patent Number 5,382,918.
### Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Limit (Note 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Supply Voltage (V_in)</td>
<td>45V</td>
<td></td>
</tr>
<tr>
<td>SD/SS Pin Input Voltage (Note 2)</td>
<td>6V</td>
<td></td>
</tr>
<tr>
<td>Delay Pin Voltage (Note 2)</td>
<td>1.5V</td>
<td></td>
</tr>
<tr>
<td>Flag Pin Voltage</td>
<td>≤ V ≤ 45V</td>
<td></td>
</tr>
<tr>
<td>Feedback Pin Voltage</td>
<td>≤ V ≤ +25V</td>
<td></td>
</tr>
<tr>
<td>Output Voltage to Ground (Steady State)</td>
<td>−1V</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Internally limited</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65˚C to +150˚C</td>
<td></td>
</tr>
</tbody>
</table>

### ESD Susceptibility
- Human Body Model (Note 3): 2 kV

### Operating Conditions
- Temperature Range: −40˚C ≤ T_J ≤ +125˚C
- Supply Voltage: 4.5V to 40V

### LM2599-3.3 Electrical Characteristics

Specifications with standard type face are for T_J = 25˚C, and those with **boldface type** apply over full Operating Temperature Range.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2599-3.3</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_OUT</td>
<td>Output Voltage</td>
<td>4.75V ≤ V_IN ≤ 40V, 0.2A ≤ I_LOAD ≤ 3A</td>
<td>3.3</td>
<td>V (V(min))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.168/3.135</td>
<td>V:max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.432/3.465</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>V_IN = 12V, I_LOAD = 3A</td>
<td>73</td>
<td>%</td>
</tr>
</tbody>
</table>

### LM2599-5.0 Electrical Characteristics

Specifications with standard type face are for T_J = 25˚C, and those with **boldface type** apply over full Operating Temperature Range.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2599-5.0</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_OUT</td>
<td>Output Voltage</td>
<td>7V ≤ V_IN ≤ 40V, 0.2A ≤ I_LOAD ≤ 3A</td>
<td>5</td>
<td>V (V(min))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.800/4.750</td>
<td>V(max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.200/5.250</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>V_IN = 12V, I_LOAD = 3A</td>
<td>80</td>
<td>%</td>
</tr>
</tbody>
</table>
### LM2599-12

**Electrical Characteristics**

Specifications with standard type face are for $T_J = 25\, ^\circ C$, and those with **boldface type** apply over full Operating Temperature Range.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2599-12</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typ (Note 4)</td>
<td>Limit (Note 5)</td>
</tr>
<tr>
<td><strong>SYSTEM PARAMETERS</strong> (Note 6) Test Circuit Figure 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{OUT}$</td>
<td>Output Voltage</td>
<td>$15V \leq V_{IN} \leq 40V$, $0.2A \leq I_{LOAD} \leq 3A$</td>
<td>12</td>
<td>$11.52/11.40$ $12.48/12.60$</td>
</tr>
<tr>
<td>$\eta$</td>
<td>Efficiency</td>
<td>$V_{IN} = 25V$, $I_{LOAD} = 3A$</td>
<td>90</td>
<td>%</td>
</tr>
</tbody>
</table>

### LM2599-ADJ

**Electrical Characteristics**

Specifications with standard type face are for $T_J = 25\, ^\circ C$, and those with **boldface type** apply over full Operating Temperature Range.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2599-ADJ</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typ (Note 4)</td>
<td>Limit (Note 5)</td>
</tr>
<tr>
<td><strong>SYSTEM PARAMETERS</strong> (Note 6) Test Circuit Figure 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{FB}$</td>
<td>Feedback Voltage</td>
<td>$4.5V \leq V_{IN} \leq 40V$, $0.2A \leq I_{LOAD} \leq 3A$ $V_{OUT}$ programmed for 3V, Circuit of Figure 1.</td>
<td>1.230</td>
<td>$1.193/1.180$ $1.267/1.280$</td>
</tr>
<tr>
<td>$\eta$</td>
<td>Efficiency</td>
<td>$V_{IN} = 12V$, $V_{OUT} = 3V$, $I_{LOAD} = 3A$</td>
<td>73</td>
<td>%</td>
</tr>
</tbody>
</table>

### All Output Voltage Versions

**Electrical Characteristics**

Specifications with standard type face are for $T_J = 25\, ^\circ C$, and those with **boldface type** apply over full Operating Temperature Range. Unless otherwise specified, $V_{IN} = 12V$ for the 3.3V, 5V, and Adjustable version and $V_{IN} = 24V$ for the 12V version. $I_{LOAD} = 500$ mA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2599-XX</th>
<th>Units (Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typ (Note 4)</td>
<td>Limit (Note 5)</td>
</tr>
<tr>
<td><strong>DEVICE PARAMETERS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_b$</td>
<td>Feedback Bias Current</td>
<td>Adjustable Version Only, $V_{FB} = 1.3V$</td>
<td>10</td>
<td>$50/100$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$nA$ (max)</td>
</tr>
<tr>
<td>$I_O$</td>
<td>Oscillator Frequency</td>
<td>(Note 7)</td>
<td>150</td>
<td>$127/110$ $173/173$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kHz(min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kHz(max)</td>
</tr>
<tr>
<td>$V_{SAT}$</td>
<td>Saturation Voltage</td>
<td>$I_{OUT} = 3A$ (Note 8) (Note 9)</td>
<td>1.16</td>
<td>$1.4/1.5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V(max)</td>
</tr>
<tr>
<td>$DC$</td>
<td>Max Duty Cycle (ON)</td>
<td>(Note 9)</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Min Duty Cycle (OFF)</td>
<td>(Note 10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{CL}$</td>
<td>Current Limit</td>
<td>Peak Current, (Note 8) (Note 9)</td>
<td>4.5</td>
<td>$3.6/3.4$ $6.9/7.5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A(min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A(max)</td>
</tr>
<tr>
<td>$I_L$</td>
<td>Output Leakage Current</td>
<td>(Note 8) (Note 10) (Note 11) Output = 0V Output = −1V</td>
<td>2</td>
<td>$50$ $30$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\mu A$ (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA(max)</td>
</tr>
</tbody>
</table>
All Output Voltage Versions
Electrical Characteristics (Continued)

Specifications with standard type face are for $T_J = 25{\degree}C$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $V_{IN} = 12V$ for the 3.3V, 5V, and Adjustable version and $V_{IN} = 24V$ for the 12V version. $I_{LOAD} = 500\ mA$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2599-XX</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typ (Note 4)</td>
<td>Limit (Note 5)</td>
</tr>
<tr>
<td>$I_Q$</td>
<td>Operating Quiescent Current</td>
<td>$SD /SS$ Pin Open (Note 10)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>$I_{STBY}$</td>
<td>Standby Quiescent Current</td>
<td>$SD /SS$ pin = 0V (Note 11)</td>
<td>80</td>
<td>200/250</td>
</tr>
<tr>
<td>$θ_{JC}$</td>
<td>Thermal Resistance</td>
<td>TO220 or TO263 Package, Junction to Case</td>
<td>2</td>
<td>'C/W</td>
</tr>
<tr>
<td>$θ_{JA}$</td>
<td></td>
<td>TO220 Package, Junction to Ambient (Note 12)</td>
<td>50</td>
<td>'C/W</td>
</tr>
<tr>
<td>$θ_{JA}$</td>
<td></td>
<td>TO263 Package, Junction to Ambient (Note 13)</td>
<td>50</td>
<td>'C/W</td>
</tr>
<tr>
<td>$θ_{JA}$</td>
<td></td>
<td>TO263 Package, Junction to Ambient (Note 14)</td>
<td>30</td>
<td>'C/W</td>
</tr>
<tr>
<td>$θ_{JA}$</td>
<td></td>
<td>TO263 Package, Junction to Ambient (Note 15)</td>
<td>20</td>
<td>'C/W</td>
</tr>
</tbody>
</table>

SHUTDOWN/SOFT-START CONTROL Test Circuit of Figure 1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2599-XX</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typ (Note 4)</td>
<td>Limit (Note 5)</td>
</tr>
<tr>
<td>$V_{SD}$</td>
<td>Shutdown Threshold Voltage</td>
<td>Low, (Shutdown Mode)</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High, (Soft-start Mode)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>$V_{SS}$</td>
<td>Soft-start Voltage</td>
<td>$V_{OUT} = 20%$ of Nominal Output Voltage</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{OUT} = 100%$ of Nominal Output Voltage</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>$I_{SD}$</td>
<td>Shutdown Current</td>
<td>$V_{SHUTDOWN} = 0.5V$</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>$I_{SS}$</td>
<td>Soft-start Current</td>
<td>$V_{Soft-start} = 2.5V$</td>
<td>1.6</td>
<td>5</td>
</tr>
</tbody>
</table>

FLAG/DELAY CONTROL Test Circuit of Figure 1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LM2599-XX</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typ (Note 4)</td>
<td>Limit (Note 5)</td>
</tr>
<tr>
<td>$V_{F\ SAT}$</td>
<td>Flag Output Saturation Voltage</td>
<td>$I_{SINK} = 3\ mA$</td>
<td>0.3</td>
<td>0.7/1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DELAY} = 0.5V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{F\ L}$</td>
<td>Flag Output Leakage Current</td>
<td>$V_{FLAG} = 40V$</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Delay Pin Threshold Voltage</td>
<td>Low (Flag ON)</td>
<td>96</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High (Flag OFF) and $V_{OUT}$ Regulated</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delay Pin Source Current</td>
<td>$V_{DELAY} = 0.5V$</td>
<td>3</td>
<td>$µA$</td>
</tr>
<tr>
<td></td>
<td>Delay Pin Saturation</td>
<td>Low (Flag ON)</td>
<td>55</td>
<td>350/400</td>
</tr>
</tbody>
</table>

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: Voltage internally clamped. If clamp voltage is exceeded, limit current to a maximum of 1 mA.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5k resistor into each pin.

Note 4: Typical numbers are at 25°C and represent the most likely norm.

Note 5: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Note 6: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2599 is used as shown in the Figure 1 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.

Note 7: The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is determined by the severity of current overload.
All Output Voltage Versions
Electrical Characteristics (Continued)

Note 8: No diode, inductor or capacitor connected to output pin.

Note 9: Feedback pin removed from output and connected to 0V to force the output transistor switch ON.

Note 10: Feedback pin removed from output and connected to 12V for the 3.3V, 5V, and the ADJ. version, and 15V for the 12V version, to force the output transistor switch OFF.

Note 11: $V_{IN} = 40V$.

Note 12: Junction to ambient thermal resistance (no external heat sink) for the package mounted TO-220 package mounted vertically, with the leads soldered to a printed circuit board with 0.5 in$^2$ of (1 oz.) copper area.

Note 13: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with 0.5 in$^2$ of (1 oz.) copper area.

Note 14: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with 2.5 in$^2$ of (1 oz.) copper area.

Note 15: Junction to ambient thermal resistance with the TO-263 package tab soldered to a double sided printed circuit board with 3 in$^2$ of (1 oz.) copper area on the LM2599S side of the board, and approximately 16 in$^2$ of copper on the other side of the p-c board. See application hints in this data sheet and the thermal model in Switchers Made Simple version 4.2.1 (or later) software.

Typical Performance Characteristics (Circuit of Figure 1)

Normalized Output Voltage

Line Regulation

Efficiency

Switch Saturation Voltage

Switch Current Limit

Dropout Voltage

Operating Quiescent Current

Shutdown Quiescent Current

Minimum Operating Supply Voltage
Typical Performance Characteristics (Circuit of Figure 1) (Continued)

Feedback Pin Bias Current

Flag Saturation Voltage

Switching Frequency

Soft-start

Shutdown / Soft-start Current

Daisy Pin Current

Soft-start Response

Shutdown/Soft-start Threshold Voltage

DS012582-11

DS012582-12

DS012582-13

DS012582-14

DS012582-15

DS012582-16

DS012582-17

DS012582-18

DS012582-53

DS012582-63

www.national.com 6
Typical Performance Characteristics (Circuit of Figure 1) (Continued)

Continuous Mode Switching Waveforms
\[ V_{IN} = 20V, V_{OUT} = 5V, I_{LOAD} = 2A \]
\[ L = 32 \mu H, C_{OUT} = 220 \mu F, C_{OUT ESR} = 50 m\Omega \]

Discontinuous Mode Switching Waveforms
\[ V_{IN} = 20V, V_{OUT} = 5V, I_{LOAD} = 500 mA \]
\[ L = 10 \mu H, C_{OUT} = 330 \mu F, C_{OUT ESR} = 45 m\Omega \]

Connection Diagrams and Order Information

Load Transient Response for Continuous Mode
\[ V_{IN} = 20V, V_{OUT} = 5V, I_{LOAD} = 500 mA to 2A \]
\[ L = 32 \mu H, C_{OUT} = 220 \mu F, C_{OUT ESR} = 50 m\Omega \]

Load Transient Response for Discontinuous Mode
\[ V_{IN} = 20V, V_{OUT} = 5V, I_{LOAD} = 500 mA to 2A \]
\[ L = 10 \mu H, C_{OUT} = 330 \mu F, C_{OUT ESR} = 45 m\Omega \]

Bent and Staggered Leads, Through Hole Package
7-Lead TO-220 (T)

Surface Mount Package
7-Lead TO-263 (S)

Order Number LM2599T-3.3, LM2599T-5.0,
LM2599T-12 or LM2599T-ADJ
See NS Package Number TA07B

Order Number LM2599S-3.3, LM2599S-5.0,
LM2599S-12 or LM2599S-ADJ
See NS Package Number TS7B

A: Output Pin Voltage, 10V/div.
B: Inductor Current 1A/div.
C: Output Ripple Voltage, 50 mV/div.

Horizontal Time Base: 2 µs/div.

A: Output Pin Voltage, 10V/div.
B: Inductor Current 0.5A/div.
C: Output Ripple Voltage, 100 mV/div.

Horizontal Time Base: 2 µs/div.

A: Output Voltage, 100 mV/div. (AC)
B: 500 mA to 2A Load Pulse

Horizontal Time Base: 50 µs/div.

A: Output Voltage, 100 mV/div. (AC)
B: 500 mA to 2A Load Pulse

Horizontal Time Base: 200 µs/div.
Component Values shown are for $V_{IN} = 15V,$
$V_{OUT} = 5V,$ $I_{LOAD} = 3A.$

- $C_{IN}$ — 470 µF, 50V, Aluminum Electrolytic Nichicon “PL Series”
- $C_{OUT}$ — 220 µF, 25V Aluminum Electrolytic, Nichicon “PL Series”
- $D1$ — 5A, 40V Schottky Rectifier, 1N5825
- $L1$ — 68 µH, L38

Typical Values

- $C_{SS}$ — 0.1 µF
- $C_{DELAY}$ — 0.1 µF
- $R_{PULL\ UP}$ — 4.7k
As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines should be wide printed circuit traces and should be kept as short and use ground plane construction for best results.

For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding. If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC groundpath and C\text{OUT} wiring can cause problems.

When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor. (See application section for more information.)

\[
V_{\text{OUT}} = V_{\text{REF}} \left(1 + \frac{R_2}{R_1}\right)
\]

where \(V_{\text{REF}} = 1.23\text{V}\)

\[
R_2 = R_1 \left(\frac{V_{\text{OUT}}}{V_{\text{REF}} - 1}\right)
\]

Select \(R_1\) to be approximately 1 k\(\Omega\), use a 1% resistor for best stability.

Component Values shown are for \(V_{\text{IN}} = 20\text{V}, V_{\text{OUT}} = 10\text{V}, I_{\text{LOAD}} = 3\text{A}\).

- \(C_{\text{IN}}:\quad 470\ \mu\text{F}, 35\text{V}, \text{Aluminum Electrolytic Nichicon "PL Series"}
- \(C_{\text{OUT}}:\quad 220\ \mu\text{F}, 35\text{V Aluminum Electrolytic, Nichicon "PL Series"}
- \(D_1:\quad 5\text{A, 30V Schottky Rectifier, 1N5824}
- \(L_1:\quad 68\ \mu\text{H, L38}
- \(R_1:\quad 1\ \text{k\(\Omega\), 1%}
- \(R_2:\quad 7.15\text{k}, 1%\)
- \(C_{\text{FF}}:\quad 3.3\ \text{nF}, \text{See Application Information Section}
- \(R_{\text{FF}}:\quad 3\ \text{k\(\Omega\), See Application Information Section}

Typical Values
- \(C_{\text{SS}}:\quad 0.1\ \mu\text{F}
- \(C_{\text{DELAY}}:\quad 0.1\ \mu\text{F}
- \(R_{\text{PULL UP}}:\quad 4.7\text{k}\)

**FIGURE 1. Standard Test Circuits and Layout Guides**

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding.

If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC groundpath and \(C_{\text{OUT}}\) wiring can cause problems.

When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor. (See application section for more information.)

Given:

\[ V_{\text{OUT}} = \text{Regulated Output Voltage (3.3V, 5V or 12V)} \]
\[ V_{\text{IN (max)}} = \text{Maximum DC Input Voltage} \]
\[ I_{\text{LOAD (max)}} = \text{Maximum Load Current} \]

1. Inductor Selection (L1)
   A. Select the correct inductor value selection guide from Figure 4, Figure 5, or 6. (Output voltages of 3.3V, 5V, or 12V respectively.) For all other voltages, see the design procedure for the adjustable version.
   B. From the inductor value selection guide, identify the inductance region intersected by the Maximum Input Voltage line and the Maximum Load Current line. Each region is identified by an inductance value and an inductor code (LXX).
   C. Select an appropriate inductor from the four manufacturer’s part numbers listed in Figure 8.

2. Output Capacitor Selection (C_{\text{OUT}})
   A. In the majority of applications, low ESR (Equivalent Series Resistance) electrolytic capacitors between 82 µF and 820 µF and low ESR solid tantalum capacitors between 10 µF and 470 µF provide the best results. This capacitor should be located close to the IC using short capacitor leads and short copper traces. Do not use capacitors larger than 820 µF.
   B. To simplify the capacitor selection procedure, refer to the quick design component selection table shown in Figure 2. This table contains different input voltages, output voltages, and load currents, and lists various inductors and output capacitors that will provide the best design solutions.
   C. The capacitor voltage rating for electrolytic capacitors should be at least 1.5 times greater than the output voltage, and often much higher voltage ratings are needed to satisfy the low ESR requirements for low output ripple voltage.
   D. For computer aided design software, see Switchers Made Simple (version 4.2.1 or later).
3. Catch Diode Selection (D1)
   A. The catch diode current rating must be at least 1.3 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2599. The most stressful condition for this diode is an overload or shorted output condition.
   B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.
   C. This diode must be fast (short reverse recovery time) and must be located close to the LM2599 using short leads and short printed circuit traces. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency, and should be the first choice, especially in low output voltage applications. Ultra-fast recovery, or High-Efficiency rectifiers also provide good results. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the IN5400 series are much too slow and should not be used.

4. Input Capacitor (C\textsubscript{IN})
   A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground to prevent large voltage transients from appearing at the input. In addition, the RMS current rating of the input capacitor should be selected to be at least \(\frac{1}{2}\) the DC load current. The capacitor manufacturers data sheet must be checked to assure that this current rating is not exceeded. The curve shown in Figure 16 shows typical RMS current ratings for several different aluminum electrolytic capacitor values.
   This capacitor should be located close to the IC using short leads and the voltage rating should be approximately 1.5 times the maximum input voltage.
   If solid tantalum input capacitors are used, it is recommended that they be surge current tested by the manufacturer.
   Use caution when using ceramic capacitors for input bypassing, because it may cause severe ringing at the \(V_{\text{IN}}\) pin.
   For additional information, see section on input capacitors in Application Information section.

3. Catch Diode Selection (D1)
   A. Refer to the table shown in Figure 11. In this example, a 5A, 20V, 1N5823 Schottky diode will provide the best performance, and will not be overstressed even for a shorted output.

4. Input Capacitor (C\textsubscript{IN})
   The important parameters for the Input capacitor are the input voltage rating and the RMS current rating. With a nominal input voltage of 12V, an aluminum electrolytic capacitor with a voltage rating greater than 18V (1.5 \(\times\) \(V_{\text{IN}}\)) would be needed. The next higher capacitor voltage rating is 25V.
   The RMS current rating requirement for the input capacitor in a buck regulator is approximately \(\frac{1}{2}\) the DC load current. In this example, with a 3A load, a capacitor with a RMS current rating of at least 1.5A is needed. The curves shown in Figure 16 can be used to select an appropriate input capacitor. From the curves, locate the 35V line and note which capacitor values have RMS current ratings greater than 1.5A. A 680 \(\mu\)F, 35V capacitor could be used.
   For a through hole design, a 680 \(\mu\)F/35V electrolytic capacitor (Panasonic HFQ series or Nichicon PL series or equivalent) would be adequate. other types or other manufacturers capacitors can be used provided the RMS ripple current ratings are adequate.
   For surface mount designs, solid tantalum capacitors are recommended. The TPS series available from AVX, and the 593D series from Sprague are both surge current tested.
LM2599 Series Buck Regulator Design Procedure (Fixed Output) (Continued)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Inductor</th>
<th>Output Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage (V)</td>
<td>Load Current (A)</td>
<td>Max Input Voltage (V)</td>
</tr>
<tr>
<td>3.3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

FIGURE 2. LM2599 Fixed Voltage Quick Design Component Selection Table

LM2599 Series Buck Regulator Design Procedure (Adjustable Output)

**PROCEDURE (Adjustable Output Voltage Version)**

Given:

- \( V_{\text{OUT}} = \) Regulated Output Voltage
- \( V_{\text{IN}}(\text{max}) = \) Maximum Input Voltage
- \( I_{\text{LOAD}}(\text{max}) = \) Maximum Load Current
- \( F = \) Switching Frequency (Fixed at a nominal 150 kHz).

1. Programming Output Voltage (Selecting \( R_1 \) and \( R_2 \), as shown in Figure 1)

Use the following formula to select the appropriate resistor values.

\[
V_{\text{OUT}} = V_{\text{REF}} \left( 1 + \frac{R_2}{R_1} \right) \quad \text{where} \quad V_{\text{REF}} = 1.23V
\]

Select a value for \( R_1 \) between 240Ω and 1.5 kΩ. The lower resistor values minimize noise pickup in the sensitive feedback pin. (For the lowest temperature coefficient and the best stability with time, use 1% metal film resistors.)

\[
R_2 = R_1 \left( \frac{V_{\text{OUT}}}{V_{\text{REF}}} - 1 \right)
\]

**EXAMPLE (Adjustable Output Voltage Version)**

Given:

- \( V_{\text{OUT}} = 20V \)
- \( V_{\text{IN}}(\text{max}) = 28V \)
- \( I_{\text{LOAD}}(\text{max}) = 3A \)
- \( F = \) Switching Frequency (Fixed at a nominal 150 kHz).

1. Programming Output Voltage (Selecting \( R_1 \) and \( R_2 \), as shown in Figure 1)

Select \( R_1 \) to be 1 kΩ, 1%. Solve for \( R_2 \):

\[
R_2 = R_1 \left( \frac{V_{\text{OUT}}}{V_{\text{REF}}} - 1 \right) = 1k \left( \frac{20V}{1.23V} - 1 \right)
\]

\[
R_2 = 1k (16.26 - 1) = 15.26k, \quad \text{closest 1% value is 15.4 kΩ.}
\]

\[
R_2 = 15.4 \text{ kΩ.}
\]
2. Inductor Selection (L1)

A. Calculate the inductor Volt • microsecond constant E • T (V • µs), from the following formula:

\[ E \times T = \left( V_{IN} - V_{OUT} - V_{SAT} \right) \times \frac{V_{OUT} + V_{D}}{V_{IN} - V_{SAT} + V_{D}} \times 1000 \] (V • µs)

where \( V_{SAT} \) = internal switch saturation voltage = 1.16V and \( V_{D} \) = diode forward voltage drop = 0.5V

B. Use the E • T value from the previous formula and match it with the E • T number on the vertical axis of the Inductor Value Selection Guide shown in Figure 7.

C. On the horizontal axis, select the maximum load current.

D. Identify the inductance region intersected by the E • T value and the Maximum Load Current value. Each region is identified by an inductance value and an inductor code (LXX).

E. Select an appropriate inductor from the four manufacturer's part numbers listed in Figure 8.

3. Output Capacitor Selection (C_{OUT})

A. In the majority of applications, low ESR electrolytic or solid tantalum capacitors between 82 µF and 820 µF provide the best results. This capacitor should be located close to the IC using short capacitor leads and short copper traces. Do not use capacitors larger than 820 µF. For additional information, see section on output capacitors in application information section.

B. To simplify the capacitor selection procedure, refer to the quick design table shown in Figure 3. This table contains different output voltages, and lists various output capacitors that will provide the best design solutions.

C. The capacitor voltage rating should be at least 1.5 times greater than the output voltage, and often much higher voltage ratings are needed to satisfy the low ESR requirements needed for low output ripple voltage.

4. Feedforward Capacitor (C_{FF}) (See Figure 1)

For output voltages greater than approximately 10V, an additional capacitor is required. The compensation capacitor is typically between 100 pF and 33 nF, and is wired in parallel with the output voltage setting resistor, \( R_2 \). It provides additional stability for high output voltages, low input-output voltages, and/or very low ESR output capacitors, such as solid tantalum capacitors.

\[ C_{FF} = \frac{1}{31 \times 10^3 \times R_2} \]

This capacitor type can be ceramic, plastic, silver mica, etc. (Because of the unstable characteristics of ceramic capacitors made with Z5U material, they are not recommended.)

2. Inductor Selection (L1)

A. Calculate the inductor Volt • microsecond constant (E • T),

\[ E \times T = \left( 28 - 20 - 1.16 \right) \times \frac{20 + 0.5}{28 - 1.16 + 0.5} \times 1000 \] (V • µs)

\[ E \times T = \left( 6.84 \right) \times \frac{20.5}{27.34} \times \frac{6.67}{V \times (V \times µs)} \times 34.2 \] (V • µs)

B. E • T = 34.2 (V • µs)

C. I_{LOAD(max)} = 3A

D. From the inductor value selection guide shown in Figure 7, the inductance region intersected by the 34 (V • µs) horizontal line and the 3A vertical line is 47 µH, and the inductor code is L39.

E. From the table in Figure 8, locate line L39, and select an inductor part number from the list of manufacturers part numbers.

3. Output Capacitor Selection (C_{OUT})

A. See section on C_{OUT} in Application Information section.

B. From the quick design table shown in Figure 3, locate the output voltage column. From that column, locate the output voltage closest to the output voltage in your application. In this example, select the 24V line. Under the output capacitor section, select a capacitor from the list of through hole electrolytic or surface mount tantalum types from four different capacitor manufacturers. It is recommended that both the manufacturers and the manufacturers series that are listed in the table be used.

In this example, through hole aluminum electrolytic capacitors from several different manufacturers are available.

220/35 Panasonic HFQ Series
150/35 Nichicon PL Series

C. For a 20V output, a capacitor rating of at least 30V or more is needed. In this example, either a 35V or 50V capacitor would work. A 50V rating was chosen because it has a lower ESR which provides a lower output ripple voltage.

Other manufacturers or other types of capacitors may also be used, provided the capacitor specifications (especially the 100 kHz ESR) closely match the types listed in the table. Refer to the capacitor manufacturer's data sheet for this information.

4. Feedforward Capacitor (C_{FF})

The table shown in Figure 3 contains feed forward capacitor values for various output voltages. In this example, a 560 pF capacitor is needed.
5. Catch Diode Selection (D1)
A. The catch diode current rating must be at least 1.3 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2599. The most stressful condition for this diode is an overload or shorted output condition.
B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.
C. This diode must be fast (short reverse recovery time) and must be located close to the LM2599 using short leads and short printed circuit traces. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency, and should be the first choice, especially in low output voltage applications. Ultra-fast recovery, or High-Efficiency rectifiers are also a good choice, but some types with an abrupt turn-off characteristic may cause instability or EMI problems. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the 1N4001 series are much too slow and should not be used.

6. Input Capacitor (C_IN)
A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground to prevent large voltage transients from appearing at the input. In addition, the RMS current rating of the input capacitor should be selected to be at least 1/2 the DC load current. The capacitor manufacturers data sheet must be checked to assure that this current rating is not exceeded. The curve shown in Figure 16 shows typical RMS current ratings for several different aluminum electrolytic capacitor values.
This capacitor should be located close to the IC using short leads and the voltage rating should be approximately 1.5 times the maximum input voltage.
If solid tantalum input capacitors are used, it is recommended that they be surge current tested by the manufacturer.
Use caution when using a high dielectric constant ceramic capacitor for input bypassing, because it may cause severe ringing at the V_IN pin.
For additional information, see section on input capacitor in application information section.

5. Catch Diode Selection (D1)
A. Refer to the table shown in Figure 11. Schottky diodes provide the best performance, and in this example a 3A, 40V, 1N5825 Schottky diode would be a good choice. The 3A diode rating is more than adequate and will not be overstressed even for a shorted output.

6. Input Capacitor (C_IN)
The important parameters for the Input capacitor are the input voltage rating and the RMS current rating. With a nominal input voltage of 28V, an aluminum electrolytic aluminum electrolytic capacitor with a voltage rating greater than 42V (1.5 x V_IN) would be needed. Since the the next higher capacitor voltage rating is 50V, a 50V capacitor should be used. The capacitor voltage rating of (1.5 x V_IN) is a conservative guideline, and can be modified somewhat if desired. The RMS current rating requirement for the input capacitor of a buck regulator is approximately 1/2 the DC load current. In this example, with a 3A load, a capacitor with a RMS current rating of at least 1.5A is needed.
The curves shown in Figure 16 can be used to select an appropriate input capacitor. From the curves, locate the 50V line and note which capacitor values have RMS current ratings greater than 1.5A. Either a 470 µF or 680 µF, 50V capacitor could be used.
For a through hole design, a 680 µF/50V electrolytic capacitor (Panasonic HFQ series or Nichicon PL series or equivalent) would be adequate. Other types or other manufacturers capacitors can be used provided the RMS ripple current ratings are adequate.
For surface mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor sure current rating (see Application Information or input capacitors in this data sheet). The TPS series available from AVX, and the 593D series from Sprague are both surge current tested.
To further simplify the buck regulator design procedure, National Semiconductor is making available computer design software to be used with the Simple Switcher line of switching regulators. Switchers Made Simple (version 4.2.1 or later) is available on a 3½” diskette for IBM compatible computers.
LM2599 Series Buck Regulator Design Procedure (Adjustable Output)

(Continued)

INDUCTOR VALUE SELECTION GUIDES
(For Continuous Mode Operation)

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Through Hole Output Capacitor</th>
<th>Surface Mount Output Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panasonic HFQ Series (µF/V)</td>
<td>AVX TPS Series (µF/V)</td>
</tr>
<tr>
<td></td>
<td>Nichicon PL Series (µF/V)</td>
<td>Sprague 595D Series (µF/V)</td>
</tr>
<tr>
<td></td>
<td>Feedforward Capacitor</td>
<td>Feedforward Capacitor</td>
</tr>
<tr>
<td>2</td>
<td>820/35 33 nF</td>
<td>330/6.3 33 nF</td>
</tr>
<tr>
<td>4</td>
<td>560/35 10 nF</td>
<td>390/6.3 10 nF</td>
</tr>
<tr>
<td>6</td>
<td>470/25 3.3 nF</td>
<td>330/6.3 3.3 nF</td>
</tr>
<tr>
<td>9</td>
<td>330/25 1.5 nF</td>
<td>100/16 1.5 nF</td>
</tr>
<tr>
<td>12</td>
<td>330/25 1 nF</td>
<td>100/16 1 nF</td>
</tr>
<tr>
<td>15</td>
<td>220/35 680 pF</td>
<td>120/20 680 pF</td>
</tr>
<tr>
<td>24</td>
<td>220/35 560 pF</td>
<td>33/25 220 pF</td>
</tr>
<tr>
<td>28</td>
<td>100/50 390 pF</td>
<td>10/35 220 pF</td>
</tr>
</tbody>
</table>

FIGURE 3. Output Capacitor and Feedforward Capacitor Selection Table

LM2599 Series Buck Regulator Design Procedure

FIGURE 4. LM2599-3.3

FIGURE 5. LM2599-5.0

FIGURE 6. LM2599-12

FIGURE 7. LM2599-ADJ
### LM2599 Series Buck Regulator Design Procedure (Continued)

<table>
<thead>
<tr>
<th>Inductance (µH)</th>
<th>Current (A)</th>
<th>Schott Through Hole</th>
<th>Surface Mount</th>
<th>Renco Through Hole</th>
<th>Surface Mount</th>
<th>Pulse Engineering Through Hole</th>
<th>Surface Mount</th>
<th>Coilcraft Surface Mount</th>
</tr>
</thead>
<tbody>
<tr>
<td>L15</td>
<td>22</td>
<td>0.99</td>
<td>67144030</td>
<td>67148460</td>
<td>RL-1284-22-43</td>
<td>RL1500-22</td>
<td>PE-53815</td>
<td>PE-53815-S DO3308-223</td>
</tr>
<tr>
<td>L21</td>
<td>68</td>
<td>0.99</td>
<td>67144070</td>
<td>67144450</td>
<td>RL-5471-5</td>
<td>RL1500-68</td>
<td>PE-53821</td>
<td>PE-53821-S DO3316-683</td>
</tr>
<tr>
<td>L22</td>
<td>47</td>
<td>1.17</td>
<td>67144080</td>
<td>67144460</td>
<td>RL-5471-6</td>
<td>—</td>
<td>PE-53822</td>
<td>PE-53822-S DO3316-473</td>
</tr>
<tr>
<td>L23</td>
<td>33</td>
<td>1.40</td>
<td>67144090</td>
<td>67144470</td>
<td>RL-5471-7</td>
<td>—</td>
<td>PE-53823</td>
<td>PE-53823-S DO3316-333</td>
</tr>
<tr>
<td>L24</td>
<td>22</td>
<td>1.70</td>
<td>67148370</td>
<td>67148480</td>
<td>RL-1283-22-43</td>
<td>—</td>
<td>PE-53824</td>
<td>PE-53825-S DO3316-223</td>
</tr>
<tr>
<td>L26</td>
<td>330</td>
<td>0.80</td>
<td>67144100</td>
<td>67144480</td>
<td>RL-5471-1</td>
<td>—</td>
<td>PE-53826</td>
<td>PE-53826-S DOS022P-334</td>
</tr>
<tr>
<td>L27</td>
<td>220</td>
<td>1.00</td>
<td>67144110</td>
<td>67144490</td>
<td>RL-5471-2</td>
<td>—</td>
<td>PE-53827</td>
<td>PE-53827-S DOS022P-224</td>
</tr>
<tr>
<td>L28</td>
<td>150</td>
<td>1.20</td>
<td>67144120</td>
<td>67144500</td>
<td>RL-5471-3</td>
<td>—</td>
<td>PE-53828</td>
<td>PE-53828-S DOS022P-154</td>
</tr>
<tr>
<td>L29</td>
<td>100</td>
<td>1.47</td>
<td>67144130</td>
<td>67144510</td>
<td>RL-5471-4</td>
<td>—</td>
<td>PE-53829</td>
<td>PE-53829-S DOS022P-104</td>
</tr>
<tr>
<td>L30</td>
<td>68</td>
<td>1.78</td>
<td>67144140</td>
<td>67144520</td>
<td>RL-5471-5</td>
<td>—</td>
<td>PE-53830</td>
<td>PE-53830-S DOS022P-683</td>
</tr>
<tr>
<td>L31</td>
<td>47</td>
<td>2.2</td>
<td>67144150</td>
<td>67144530</td>
<td>RL-5471-6</td>
<td>—</td>
<td>PE-53831</td>
<td>PE-53831-S DOS022P-473</td>
</tr>
<tr>
<td>L32</td>
<td>33</td>
<td>2.5</td>
<td>67144160</td>
<td>67144540</td>
<td>RL-5471-7</td>
<td>—</td>
<td>PE-53932</td>
<td>PE-53932-S DOS022P-334</td>
</tr>
<tr>
<td>L33</td>
<td>22</td>
<td>3.1</td>
<td>67148390</td>
<td>67148500</td>
<td>RL-1283-22-43</td>
<td>—</td>
<td>PE-53933</td>
<td>PE-53933-S DOS022P-223</td>
</tr>
<tr>
<td>L34</td>
<td>15</td>
<td>3.4</td>
<td>67148400</td>
<td>67148790</td>
<td>RL-1283-15-43</td>
<td>—</td>
<td>PE-53934</td>
<td>PE-53934-S DOS022P-153</td>
</tr>
<tr>
<td>L35</td>
<td>220</td>
<td>1.70</td>
<td>67144170</td>
<td>—</td>
<td>RL-5473-1</td>
<td>—</td>
<td>PE-53935</td>
<td>PE-53935-S — — — —</td>
</tr>
<tr>
<td>L36</td>
<td>150</td>
<td>2.1</td>
<td>67144180</td>
<td>—</td>
<td>RL-5473-4</td>
<td>—</td>
<td>PE-54036</td>
<td>PE-54036-S — — — —</td>
</tr>
<tr>
<td>L37</td>
<td>100</td>
<td>2.5</td>
<td>67144190</td>
<td>—</td>
<td>RL-5472-1</td>
<td>—</td>
<td>PE-54037</td>
<td>PE-54037-S — — — —</td>
</tr>
<tr>
<td>L38</td>
<td>68</td>
<td>3.1</td>
<td>67144200</td>
<td>—</td>
<td>RL-5472-2</td>
<td>—</td>
<td>PE-54038</td>
<td>PE-54038-S — — — —</td>
</tr>
<tr>
<td>L39</td>
<td>47</td>
<td>3.5</td>
<td>67144210</td>
<td>—</td>
<td>RL-5472-3</td>
<td>—</td>
<td>PE-54039</td>
<td>PE-54039-S — — — —</td>
</tr>
<tr>
<td>L40</td>
<td>33</td>
<td>3.5</td>
<td>67144220</td>
<td>67148290</td>
<td>RL-5472-4</td>
<td>—</td>
<td>PE-54040</td>
<td>PE-54040-S — — — —</td>
</tr>
<tr>
<td>L41</td>
<td>22</td>
<td>3.5</td>
<td>67144230</td>
<td>67148300</td>
<td>RL-5472-5</td>
<td>—</td>
<td>PE-54041</td>
<td>PE-54041-S — — — —</td>
</tr>
<tr>
<td>L42</td>
<td>150</td>
<td>2.7</td>
<td>67148410</td>
<td>—</td>
<td>RL-5473-4</td>
<td>—</td>
<td>PE-54042</td>
<td>PE-54042-S — — — —</td>
</tr>
<tr>
<td>L43</td>
<td>100</td>
<td>3.4</td>
<td>67144240</td>
<td>—</td>
<td>RL-5473-2</td>
<td>—</td>
<td>PE-54043</td>
<td>— — — — — — — —</td>
</tr>
<tr>
<td>L44</td>
<td>68</td>
<td>3.4</td>
<td>67144250</td>
<td>—</td>
<td>RL-5473-3</td>
<td>—</td>
<td>PE-54044</td>
<td>— — — — — — — —</td>
</tr>
</tbody>
</table>

**FIGURE 8. Inductor Manufacturers Part Numbers**

<table>
<thead>
<tr>
<th>Coilcraft Inc.</th>
<th>Phone (800) 322-2645</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAX (708) 639-1469</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coilcraft Inc., Europe</th>
<th>Phone +11 1236 730 595</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAX +44 1236 730 627</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulse Engineering Inc.</th>
<th>Phone (619) 674-8100</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAX (619) 674-8262</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulse Engineering Inc., Europe</th>
<th>Phone +353 93 24 107</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAX +353 93 24 459</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Renco Electronics Inc.</th>
<th>Phone (800) 645-5828</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAX (516) 586-5562</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schott Corp.</th>
<th>Phone (612) 475-1173</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAX (612) 475-1786</td>
<td></td>
</tr>
</tbody>
</table>

**FIGURE 9. Inductor Manufacturers Phone Numbers**
### 3 Amp Diodes

<table>
<thead>
<tr>
<th>VR</th>
<th>Surface Mount</th>
<th>Through Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>20V</td>
<td>All of these diodes are rated 30VQ03 to at least 50V.</td>
<td>All of these diodes are rated SR502 to at least 50WQ05</td>
</tr>
<tr>
<td>30V</td>
<td>SK32</td>
<td>MBR320 to at least 31DQ03</td>
</tr>
<tr>
<td>40V</td>
<td>SK34 MBR340</td>
<td>SR304 to at 50WQ04</td>
</tr>
<tr>
<td>50V or more</td>
<td>SK35 MBR360 30WQ05</td>
<td>SR305 to at 50WQ05</td>
</tr>
</tbody>
</table>

### 4 to 6 Amp Diodes

<table>
<thead>
<tr>
<th>VR</th>
<th>Surface Mount</th>
<th>Through Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>20V</td>
<td>All of these diodes are rated 30VQ03 to at least 50V.</td>
<td>All of these diodes are rated SR502 to at least 50WQ05</td>
</tr>
<tr>
<td>30V</td>
<td>SK32</td>
<td>MBR320 to at least 31DQ03</td>
</tr>
<tr>
<td>40V</td>
<td>SK34 MBR340</td>
<td>SR304 to at 50WQ04</td>
</tr>
<tr>
<td>50V or more</td>
<td>SK35 MBR360 30WQ05</td>
<td>SR305 to at 50WQ05</td>
</tr>
</tbody>
</table>

**FIGURE 11. Diode Selection Table**
Application Information

PIN FUNCTIONS

**+V IN** (Pin 1) — This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

**Ground** (Pin 4) — Circuit ground.

**Output** (Pin 2) — Internal switch. The voltage at this pin switches between approximately (+V IN −V SAT ) and approximately −0.5V, with a duty cycle of V OUT /V IN . To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept to a minimum.

**Feedback** (Pin 6) — Senses the regulated output voltage to complete the feedback loop.

**Shutdown /Soft-start** (Pin 7) — This dual function pin provides the following features: (a) Allows the switching regulator circuit to be shut down using logic level signals thus dropping the total input supply current to approximately 80 µA. (b) Adding a capacitor to this pin provides a soft-start feature which minimizes startup current and provides a controlled ramp up of the output voltage.

**Error Flag** (Pin 3) — Open collector output that provides a low signal (flag transistor ON) when the regulated output voltage drops more than 5% from the nominal output voltage. On start up, Error Flag is low until V COUT reaches 95% of the nominal output voltage and a delay time determined by the Delay pin capacitor. This signal can be used as a reset to a microprocessor on power-up.

**Delay** (Pin 5) — At power-up, this pin can be used to provide a time delay between the time the regulated output voltage reaches 95% of the nominal output voltage, and the time the error flag output goes high.

**Special Note** If any of the above three features (Shutdown /Soft-start, Error Flag, or Delay) are not used, the respective pins should be left open.

EXTERNAL COMPONENTS

**SOFT-START CAPACITOR**

C SS — A capacitor on this pin provides the regulator with a Soft-start feature (slow start-up). When the DC input voltage is first applied to the regulator, or when the Shutdown /Soft-start pin is allowed to go high, a constant current (approximately 5 µA begins charging this capacitor). As the capacitor voltage rises, the regulator goes through four operating regions (See the bottom curve in Figure 13).

1. **Regulator in Shutdown.** When the SD /SS pin voltage is between 0V and 1.3V, the regulator is in shutdown, the output voltage is zero, and the IC quiescent current is approximately 85 µA.

2. **Regulator ON, but the output voltage is zero.** With the SD /SS pin voltage between approximately 1.3V and 1.8V, the internal regulator circuitry is operating, the quiescent current rises to approximately 5 mA, but the output voltage is still zero. Also, as the 1.3V threshold is exceeded, the Soft-start capacitor charging current decreases from 5 µA down to approximately 1.6 µA. This decreases the slope of capacitor voltage ramp.

3. **Soft-start Region.** When the SD /SS pin voltage is between 1.8V and 2.8V (@25°C), the regulator is in a Soft-start condition. The switch (Pin 2) duty cycle initially starts out very low, with narrow pulses and gradually get wider as the capacitor SD /SS pin ramps up towards 2.8V. As the duty cycle increases, the output voltage also increases at a controlled ramp up. See the center curve in Figure 13. The input supply current requirement also starts out at a low level for
Application Information (Continued)

the narrow pulses and ramp up in a controlled manner. This is a very useful feature in some switcher topologies that require large startup currents (such as the inverting configuration) which can load down the input power supply.

Note: The lower curve shown in Figure 13 shows the Soft-start region from 0% to 100%. This is not the duty cycle percentage, but the output voltage percentage. Also, the Soft-start voltage range has a negative temperature coefficient associated with it. See the Soft-start curve in the electrical characteristics section.

4. Normal operation. Above 2.8V, the circuit operates as a standard Pulse Width Modulated switching regulator. The capacitor will continue to charge up until it reaches the internal clamp voltage of approximately 7V. If this pin is driven from a voltage source, the current must be limited to about 1 mA.

If the part is operated with an input voltage at or below the internal soft-start clamp voltage of approximately 7V, the voltage on the SD/SS pin tracks the input voltage and can be disturbed by a step in the voltage. To maintain proper function under these conditions, it is strongly recommended that the SD/SS pin be clamped externally between the 3V maximum soft-start threshold and the 4.5V minimum input voltage. Figure 15 is an example of an external 3.7V (approx.) clamp that prevents a line-step related glitch but does not interfere with the soft-start behavior of the device.
Application Information (Continued)

DELAY CAPACITOR

$C_{\text{DELAY}}$ — Provides delay for the error flag output. See the upper curve in Figure 13, and also refer to timing diagrams in Figure 14. A capacitor on this pin provides a time delay between the time the regulated output voltage (when it is increasing in value) reaches 95% of the nominal output voltage, and the time the error flag output goes high. A 3 µA constant current from the delay pin charges the delay capacitor resulting in a voltage ramp. When this voltage reaches a threshold of approximately 1.3V, the open collector error flag output (or power OK) goes high. This signal can be used to indicate that the regulated output has reached the correct voltage and has stabilized.

If, for any reason, the regulated output voltage drops by 5% or more, the error output flag (Pin 3) immediately goes low (internal transistor turns on). The delay capacitor provides very little delay if the regulated output is dropping out of regulation. The delay time for an output that is decreasing is approximately a 1000 times less than the delay for the rising output. For a 0.1 µF delay capacitor, the delay time would be approximately 50 ms when the output is rising and passes through the 95% threshold, but the delay for the output dropping would only be approximately 50 µs.

$R_{\text{Pull Up}}$ — The error flag output, (or power OK) is the collector of a NPN transistor, with the emitter internally grounded. To use the error flag, a pullup resistor to a positive voltage is needed. The error flag transistor is rated up to a maximum of 45V and can sink approximately 3 mA. If the error flag is not used, it can be left open.

FEEDFORWARD CAPACITOR

(Adjustable Output Voltage Version)

$C_{\text{FF}}$ — A Feedforward Capacitor $C_{\text{FF}}$ shown across $R_2$ in Figure 1 is used when the output voltage is greater than 10V or when $C_{\text{OUT}}$ has a very low ESR. This capacitor adds lead compensation to the feedback loop and increases the phase margin for better loop stability. For $C_{\text{FF}}$ selection, see the design procedure section.

If the output ripple is large (> 5% of the nominal output voltage), this ripple can be coupled to the feedback pin through the feedforward capacitor and cause the error comparator to trigger the error flag. In this situation, adding a resistor, $R_{\text{FF}}$, in series with the feedforward capacitor, approximately 3 times $R_1$, will attenuate the ripple voltage at the feedback pin.

INPUT CAPACITOR

$C_{\text{IN}}$ — A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin. It must be located near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on.

The important parameters for the Input capacitor are the voltage rating and the RMS current rating. Because of the relatively high RMS currents flowing in a buck regulator's input capacitor, this capacitor should be chosen for its RMS current rating rather than its capacitance or voltage ratings, although the capacitance value and voltage rating are directly related to the RMS current rating.

The RMS current rating of a capacitor could be viewed as a capacitor’s power rating. The RMS current flowing through the capacitors internal ESR produces power which causes the internal temperature of the capacitor to rise. The RMS current rating of a capacitor is determined by the amount of current required to raise the internal temperature approximately 10°C above an ambient temperature of 105°C. The ability of the capacitor to dissipate this heat to the surrounding air will determine the amount of current the capacitor can safely sustain. Capacitors that are physically large and have a large surface area will typically have higher RMS current ratings. For a given capacitor value, a higher voltage electrolytic capacitor will be physically larger than a lower voltage capacitor, and thus be able to dissipate more heat to the surrounding air, and therefore will have a higher RMS current rating.
face mount solid tantalum capacitors are often used for input
Because of their small size and excellent performance, sur-
shorter operating lifetime.
ESR numbers, lower RMS current ratings and typically have
“Standard” electrolytic capacitors typically have much higher
Transients for a post ripple filter.
ESR Electrolytic or solid tantalum capacitors designed for
ESR Electrolytic Capacitors (Typical)
FIGURE 16. RMS Current Ratings for Low
ESR Electrolytic Capacitors (Typical)
FIGURE 17. Capacitor ESR vs Capacitor Voltage Rating
(Typical Low ESR Electrolytic Capacitor)
The consequences of operating an electrolytic capacitor
above the RMS current rating is a shortened operating life.
The higher temperature speeds up the evaporation of the
capacitor’s electrolyte, resulting in eventual failure.
Selecting an input capacitor requires consulting the manu-
facturers data sheet for maximum allowable RMS ripple
current. For a maximum ambient temperature of 40˚C, a
general guideline would be to select a capacitor with a ripple
current rating of approximately 50% of the DC load current.
For ambient temperatures up to 70˚C, a current rating of
75% of the DC load current would be a good choice for a
conservative design. The capacitor voltage rating must be at
least 1.25 times greater than the maximum input voltage,
and often a much higher voltage capacitor is needed to
satisfy the RMS current requirements.
A graph shown in Figure 16 shows the relationship between
an electrolytic capacitor value, its voltage rating, and the
RMS current it is rated for. These curves were obtained from
the Nichicon “PL” series of low ESR, high reliability electro-
lytic capacitors designed for switching regulator applications.
Other capacitor manufacturers offer similar types of capaci-
tors, but always check the capacitor data sheet.
“Standard” electrolytic capacitors typically have much higher
ESR numbers, lower RMS current ratings and typically have
a shorter operating lifetime.
Because of their small size and excellent performance, sur-
face mount solid tantalum capacitors are often used for input
bypassing, but several precautions must be observed. A
small percentage of solid tantalum capacitors can short if the
inrush current rating is exceeded. This can happen at turn on
when the input voltage is suddenly applied, and of course,
higher input voltages produce higher inrush currents. Sev-
eral capacitor manufacturers do a 100% surge current test-
ing on their products to minimize this potential problem. If
high turn on currents are expected, it may be necessary to
limit this current by adding either some resistance or induc-
tance before the tantalum capacitor, or select a higher volt-
age capacitor. As with aluminum electrolytic capacitors, the
RMS ripple current rating must be sized to the load current.
OUTPUT CAPACITOR
Cout — An output capacitor is required to filter the output
and provide regulator loop stability. Low impedance or low
ESR Electrolytic or solid tantalum capacitors designed for
switching regulator applications must be used. When select-
ing an output capacitor, the important capacitor parameters
are; the 100 kHz Equivalent Series Resistance (ESR), the
RMS ripple current rating, voltage rating, and capacitance
value. For the output capacitor, the ESR value is the most
important parameter.
The output capacitor requires an ESR value that has an
upper and lower limit. For low output ripple voltage, a low
ESR value is needed. This value is determined by the max-
imum allowable output ripple voltage, typically 1% to 2% of
the output voltage. But if the selected capacitor’s ESR is
extremely low, there is a possibility of an unstable feedback
loop, resulting in an oscillation at the output. Using the
capacitors listed in the tables, or similar types, will provide
design solutions under all conditions.
If very low output ripple voltage (less than 15 mV) is re-
quired, refer to the section on Output Voltage Ripple and
Transients for a post ripple filter.
An aluminum electrolytic capacitor’s ESR value is related to
the capacitance value and its voltage rating. In most cases,
higher voltage electrolytic capacitors have lower ESR values
(see Figure 17). Often, capacitors with much higher voltage
ratings may be needed to provide the low ESR values re-
quired for low output ripple voltage.
The output capacitor for many different switcher designs
often can be satisfied with only three or four different capaci-
tor values and several different voltage ratings. See the
quick design component selection tables in Figure 2 and 3
for typical capacitor values, voltage ratings, and manufactur-
ers capacitor types.
Electrolytic capacitors are not recommended for tempera-
tures below −25˚C. The ESR rises dramatically at cold tem-
peratures and typically rises 3X @ −25˚C and as much as
10X @ −40˚C. See curve shown in Figure 18.
Solid tantalum capacitors have a much better ESR spec for
cold temperatures and are recommended for temperatures
below −25˚C.
CATCH DIODE
Buck regulators require a diode to provide a return path for
the inductor current when the switch turns off. This must be
a fast diode and must be located close to the LM2599 using
short leads and short printed circuit traces.
Because of their very fast switching speed and low forward
voltage drop, Schottky diodes provide the best performance,
especially in low output voltage applications (5V and lower).
Ultra-fast recovery, or High-Efficiency rectifiers are also a
good choice, but some types with an abrupt turnoff charac-
Application Information (Continued)

Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the IN5400 series are much too slow and should not be used.

**INDUCTOR SELECTION**

All switching regulators have two basic modes of operation; continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulators performance and requirements. Most switcher designs will operate in the discontinuous mode when the load current is low.

The LM2599 (or any of the Simple Switcher family) can be used for both continuous or discontinuous modes of operation. In many cases the preferred mode of operation is the continuous mode. It offers greater output power, lower peak switch, inductor and diode currents, and can have lower output ripple voltage. But it does require larger inductor values to keep the inductor current flowing continuously, especially at low output load currents and/or high input voltages.

To simplify the inductor selection process, an inductor selection guide (nomograph) was designed (see Figure 4 through 7). This guide assumes that the regulator is operating in the continuous mode, and selects an inductor that will allow a peak-to-peak inductor ripple current to be a certain percentage of the maximum design load current. This peak-to-peak inductor ripple current percentage is not fixed, but is allowed to change as different design load currents are selected. (See Figure 19).

By allowing the percentage of inductor ripple current to increase for low load currents, the inductor value and size can be kept relatively low.

When operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage), with the average value of this current waveform equal to the DC output load current.

Inductors are available in different styles such as pot core, toroid, E-core, bobbin core, etc., as well as different core materials, such as ferrites and powdered iron. The least expensive, the bobbin, rod or stick core, consists of wire wound on a ferrite bobbin. This type of construction makes for an inexpensive inductor, but since the magnetic flux is not completely contained within the core, it generates more Electro-Magnetic Interference (EMI). This magnetic flux can induce voltages into nearby printed circuit traces, thus causing problems with both the switching regulator operation and nearby sensitive circuitry, and can give incorrect scope readings because of induced voltages in the scope probe. Also see section on Open Core Inductors.

When multiple switching regulators are located on the same PC board, open core magnetics can cause interference between two or more of the regulator circuits, especially at high currents. A torroid or E-core inductor (closed magnetic structure) should be used in these situations.

The inductors listed in the selection chart include ferrite E-core construction for Schott, ferrite bobbin core for Renco and Collcraft, and powdered iron toroid for Pulse Engineering.

Exceeding an inductor’s maximum current rating may cause the inductor to overheat because of the copper wire losses, or the core may saturate. If the inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the DC resistance of the winding). This can cause the switch current to rise very rapidly and force the switch into a cycle-by-cycle current limit, thus reducing the DC output load current. This can also result in overheating of the inductor and/or the LM2599. Different inductor types have different saturation characteristics, and this should be kept in mind when selecting an inductor.

The inductor manufacturer’s data sheets include current and energy limits to avoid inductor saturation.
**Application Information** (Continued)

**DISCONTINUOUS MODE OPERATION**

The selection guide chooses inductor values suitable for continuous mode operation, but for low current applications and/or high input voltages, a discontinuous mode design may be a better choice. It would use an inductor that would be physically smaller, and would need only one half to one third the inductance value needed for a continuous mode design. The peak switch and inductor currents will be higher in a discontinuous design, but at these low load currents (1A and below), the maximum switch current will still be less than the switch current limit.

Discontinuous operation can have voltage waveforms that are considerable different than a continuous design. The output pin (switch) waveform can have some damped sinusoidal ringing present. (See Typical Performance Characteristics photo titled Discontinuous Mode Switching Waveforms) This ringing is normal for discontinuous operation, and is not caused by feedback loop instabilities. In discontinuous operation, there is a period of time where neither the switch or the diode are conducting, and the inductor current has dropped to zero. During this time, a small amount of energy can circulate between the inductor and the switch/diode parasitic capacitance causing this characteristic ringing. Normally this ringing is not a problem, unless the amplitude becomes great enough to exceed the input voltage, and even then, there is very little energy present to cause damage.

Different inductor types and/or core materials produce different amounts of this characteristic ringing. Ferrite core inductors have very little core loss and therefore produce the most ringing. The higher core loss of powdered iron inductors produce less ringing. If desired, a series RC could be placed in parallel with the inductor to dampen the ringing. The computer aided design software *Switchers Made Simple* (version 4.3) will provide all component values for continuous and discontinuous modes of operation.

**OUTPUT VOLTAGE RIPPLE AND TRANSIENTS**

The output voltage of a switching power supply operating in the continuous mode will contain a sawtooth ripple voltage at the switcher frequency, and may also contain short voltage spikes at the peaks of the sawtooth waveform. The output ripple voltage is a function of the inductor sawtooth ripple current and the ESR of the output capacitor. A typical output ripple voltage can range from approximately 0.5% to 5% of the output voltage. To obtain low ripple voltage, the ESR of the output capacitor must be low, however, caution must be exercised when using extremely low ESR capacitors because they can affect the loop stability, resulting in oscillation problems. If very low output ripple voltage is needed (less than 20 mV), a post ripple filter is recommended (See Figure 1). The inductance required is typically between 1 µH and 5 µH, with low DC resistance, to maintain good load regulation. A low ESR output filter capacitor is also required to assure good dynamic load response and ripple reduction. The ESR of this capacitor may be as low as desired, because it is out of the regulator feedback loop. The photo shown in Figure 20 shows a typical output ripple voltage, with and without a post ripple filter.

When observing output ripple with a scope, it is essential that a short, low inductance scope probe ground connection be used. Most scope probe manufacturers provide a special probe terminator which is soldered onto the regulator board, preferable at the output capacitor. This provides a very short scope ground thus eliminating the problems associated with the 3 inch ground lead normally provided with the probe, and provides a much cleaner and more accurate picture of the ripple voltage waveform.

The voltage spikes are caused by the fast switching action of the output switch, the diode, and the parasitic inductance of the output filter capacitor, and its associated wiring. To minimize these voltage spikes, the output capacitor should be designed for switching regulator applications, and the lead lengths must be kept very short. Wiring inductance, stray capacitance, as well as the scope probe used to evaluate these transients, all contribute to the amplitude of these spikes.

**FIGURE 21. Peak-to-Peak Inductor Ripple Current vs Load Current**

When a switching regulator is operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage). For a given input and output voltage, the peak-to-peak amplitude of this inductor current waveform remains constant. As the load current increases or decreases, the entire sawtooth current waveform also rises and falls. The average value (or the center) of this current waveform is equal to the DC load current.

If the load current drops to a low enough level, the bottom of the sawtooth current waveform will reach zero, and the switcher will smoothly change from a continuous to a discontinuous mode of operation. Most switcher designs (irregardless how large the inductor value is) will be forced to run discontinuous if the output is lightly loaded. This is a perfectly acceptable mode of operation.

In a switching regulator design, knowing the value of the peak-to-peak inductor ripple current ($\Delta I_{\text{IND}}$) can be useful for...
Application Information (Continued)

determining a number of other circuit parameters. Parameters such as, peak inductor or peak switch current, minimum load current before the circuit becomes discontinuous, output ripple voltage and output capacitor ESR can all be calculated from the peak-to-peak $\Delta I_{IND}$. When the inductor nomographs shown in Figure 4 through 7 are used to select an inductor value, the peak-to-peak inductor ripple current can immediately be determined. The curve shown in Figure 21 shows the range of ($\Delta I_{IND}$) that can be expected for different load currents. The curve also shows how the peak-to-peak inductor ripple current ($\Delta I_{IND}$) changes as you go from the lower border to the upper border (for a given load current) within an inductance region. The upper border represents a higher input voltage, while the lower border represents a lower input voltage (see Inductor Selection Guides).

These curves are only correct for continuous mode operation, and only if the inductor selection guides are used to select the inductor value.

Consider the following example:

$V_{OUT} = 5V$, maximum load current of 2.5A

$V_{IN} = 12V$, nominal, varying between 10V and 16V.

The selection guide in Figure 5 shows that the vertical line for a 2.5A load current, and the horizontal line for the 12V input voltage intersect approximately midway between the upper and lower borders of the 33 $\mu$H inductance region. A 33 $\mu$H inductor will allow a peak-to-peak inductor current ($\Delta I_{IND}$) to flow that will be a percentage of the maximum load current. Referring to Figure 21, follow the 2.5A line approximately midway into the inductance region, and read the peak-to-peak inductor ripple current ($\Delta I_{IND}$) on the left hand axis (approximately 620 mA p-p).

As the input voltage increases to 16V, it approaches the upper border of the inductance region, and the inductor ripple current increases. Referring to the curve in Figure 21, it can be seen that for a load current of 2.5A, the peak-to-peak inductor ripple current ($\Delta I_{IND}$) is 620 mA with 12V in, and can range from 740 mA at the upper border (16V in) to 500 mA at the lower border (10V in).

Once the $\Delta I_{IND}$ value is known, the following formulas can be used to calculate additional information about the switching regulator circuit.

1. Peak Inductor or peak switch current

   \[ I_{LOAD} + \frac{\Delta I_{IND}}{2} = \left(2.5A + \frac{0.62}{2}\right) = 2.81A \]

2. Minimum load current before the circuit becomes discontinuous

   \[ \frac{\Delta I_{IND}}{2} = \frac{0.62}{2} = 0.31A \]

3. Output Ripple Voltage = ($\Delta I_{IND}$) x (ESR of $C_{OUT}$)

   \[ 0.62A \times 0.1\Omega = 62 \text{ mV p-p} \]

4. ESR of $C_{OUT} = \frac{\text{Output Ripple Voltage ($\Delta V_{OUT}$)}}{\Delta I_{IND}}$

   \[ \frac{0.062V}{0.62A} = 0.1\Omega \]

OPEN CORE INDUCTORS

Another possible source of increased output ripple voltage or unstable operation is from an open core inductor. Ferrite bobbin or stick inductors have magnetic lines of flux flowing through the air from one end of the bobbin to the other end. These magnetic lines of flux will induce a voltage into any wire or PC board copper trace that comes within the inductor’s magnetic field. The strength of the magnetic field, the orientation and location of the PC copper trace to the magnetic field, and the distance between the copper trace and the inductor, determine the amount of voltage generated in the copper trace. Another way of looking at this inductive coupling is to consider the PC board copper trace as one turn of a transformer (secondary) with the inductor winding as the primary. Many millivolts can be generated in a copper trace located near an open core inductor which can cause stability problems or high output ripple voltage problems.

If unstable operation is seen, and an open core inductor is used, it’s possible that the location of the inductor with respect to other PC traces may be the problem. To determine if this is the problem, temporarily raise the inductor away from the board by several inches and then check circuit operation. If the circuit now operates correctly, then the magnetic flux from the open core inductor is causing the problem. Substituting a closed core inductor such as a torroid or E-core will correct the problem, or re-arranging the PC layout may be necessary. Magnetic flux cutting the IC device ground trace, feedback trace, or the positive or negative traces of the output capacitor should be minimized.

Sometimes, locating a trace directly beneath a bobbin inductor will provide good results, provided it is exactly in the center of the inductor (because the induced voltages cancel themselves out), but if it is off center one direction or the other, then problems could arise. If flux problems are present, even the direction of the inductor winding can make a difference in some circuits.

This discussion on open core inductors is not to frighten the user, but to alert the user on what kind of problems to watch out for when using them. Open core bobbin or “stick” inductors are an inexpensive, simple way of making a compact efficient inductor, and they are used by the millions in many different applications.

THERMAL CONSIDERATIONS

The LM2599 is available in two packages, a 7-pin TO-220 (T) and a 7-pin surface mount TO-263 (S).

The TO-220 package needs a heat sink under most conditions. The size of the heat sink depends on the input voltage, the output voltage, the load current and the ambient temperature. The curves in Figure 22 show the LM2599 junction temperature rises above ambient temperature for a 3A load and different input and output voltages. The data for these curves was taken with the LM2599T (TO-220 package) operating as a buck switching regulator in an ambient temperature of 25°C (still air). These temperature rise numbers are all approximate and there are many factors that can affect these temperatures. Higher ambient temperatures require more heat sinking.

The TO-263 surface mount package tab is designed to be soldered to the copper on a printed circuit board. The copper and the board are the heat sink for this package and the other heat producing components, such as the catch diode and inductor. The PC board copper area that the package is soldered to should be at least 0.4 in², and ideally should have 2 or more square inches of 0.0028 in copper. Additional copper area improves the thermal characteristics,
but with copper areas greater than approximately 6 in², only small improvements in heat dissipation are realized. If further thermal improvements are needed, double sided, multilayer pc-board with large copper areas and/or airflow are recommended.

The curves shown in Figure 23 show the LM2599S (TO-263 package) junction temperature rise above ambient temperature with a 2A load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a pc board to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 2A are used, double sided or multilayer pc-boards with large copper areas and/or airflow might be needed, especially for high ambient temperatures and high output voltages.

For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (One exception to this is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

Package thermal resistance and junction temperature rise numbers are all approximate, and there are many factors that will affect these numbers. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single- or double-sided, multilayer board and the amount of solder on the board. The effectiveness of the pc board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the pc board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.

SHUTDOWN /SOFT-START

The circuit shown in Figure 26 is a standard buck regulator with 20V in, 12V out, 1A load, and using a 0.068 µF Soft-start capacitor. The photo in Figure 24 Figure 25 show the effects of Soft-start on the output voltage, the input current, with, and without a Soft-start capacitor. The reduced input current required at startup is very evident when comparing the two photos. The Soft-start feature reduces the startup current from 2.6A down to 650 mA, and delays and slows down the output voltage rise time.
This reduction in start up current is useful in situations where the input power source is limited in the amount of current it can deliver. In some applications Soft-start can be used to replace undervoltage lockout or delayed startup functions. If a very slow output voltage ramp is desired, the Soft-start capacitor can be made much larger. Many seconds or even minutes are possible.

If only the shutdown feature is needed, the Soft-start capacitor can be eliminated.

**FIGURE 24. Output Voltage, Input Current, at Start-Up, WITH Soft-start**

**FIGURE 25. Output Voltage, Input Current, at Start-Up, WITHOUT Soft-start**

**FIGURE 26. Typical Circuit Using Shutdown /Soft-start and Error Flag Features**
INVERTING REGULATOR

The circuit in Figure 27 converts a positive input voltage to a negative output voltage with a common ground. The circuit operates by bootstrapping the regulator’s ground pin to the negative output voltage, then grounding the feedback pin, the regulator senses the inverted output voltage and regulates it.

This example uses the LM2599-5 to generate a −5V output, but other output voltages are possible by selecting other output voltage versions, including the adjustable version. Since this regulator topology can produce an output voltage that is either greater than or less than the input voltage, the maximum output current greatly depends on both the input and output voltage. The curve shown in Figure 28 provides a guide as to the amount of output load current possible for the different input and output voltage conditions.

The maximum voltage appearing across the regulator is the absolute sum of the input and output voltage, and this must be limited to a maximum of 40V. In this example, when converting +20V to −5V, the regulator would see 25V between the input pin and ground pin. The LM2599 has a maximum input voltage rating of 40V.

An additional diode is required in this regulator configuration. Diode D1 is used to isolate input voltage ripple or noise from coupling through the Cin capacitor to the output, under light or no load conditions. Also, this diode isolation changes the topology to closely resemble a buck configuration thus providing good closed loop stability. A Schottky diode is recommended for low input voltages, (because of its lower voltage drop) but for higher input voltages, a IN5400 diode could be used.

Because of differences in the operation of the inverting regulator, the standard design procedure is not used to select the inductor value. In the majority of designs, a 33 µH, 3.5A inductor is the best choice. Capacitor selection can also be narrowed down to just a few values. Using the values shown in Figure 27 will provide good results in the majority of inverting designs.

This type of inverting regulator can require relatively large amounts of input current when starting up, even with light loads. Input currents as high as the LM2599 current limit (approximately 4.5A) are needed for 2 ms or more, until the output reaches its nominal output voltage. The actual time depends on the output voltage and the size of the output capacitor. Input power sources that are current limited or sources that can not deliver these currents without getting loaded down, may not work correctly. Because of the relatively high startup currents required by the inverting topology, the Soft-start feature shown in Figure 27 is recommended.

Also shown in Figure 27 are several shutdown methods for the inverting configuration. With the inverting configuration, some level shifting is required, because the ground pin of the regulator is no longer at ground, but is now at the negative output voltage. The shutdown methods shown accept ground referenced shutdown signals.

UNDervoltage LOCKOUT

Some applications require the regulator to remain off until the input voltage reaches a predetermined voltage. Figure 29 contains a undervoltage lockout circuit for a buck configuration, while Figure 30 and 30 are for the inverting types (only the circuitry pertaining to the undervoltage lockout is
Application Information (Continued)

shown). Figure 29 uses a zener diode to establish the threshold voltage when the switcher begins operating. When the input voltage is less than the zener voltage, resistors R1 and R2 hold the Shutdown/Soft-start pin low, keeping the regulator in the shutdown mode. As the input voltage exceeds the zener voltage, the zener conducts, pulling the Shutdown/Soft-start pin high, allowing the regulator to begin switching. The threshold voltage for the undervoltage lockout feature is approximately 1.5V greater than the zener voltage.

Figure 30 and 30 apply the same feature to an inverting circuit. Figure 30 features a constant threshold voltage for turn on and turn off (zener voltage plus approximately one volt). If hysteresis is needed, the circuit in Figure 31 has a turn ON voltage which is different than the turn OFF voltage. The amount of hysteresis is approximately equal to the value of the output voltage. Since the SD/SS pin has an internal 7V zener clamp, R2 is needed to limit the current into this pin to approximately 1 mA when Q1 is on.

NEGATIVE VOLTAGE CHARGE PUMP

Occasionally a low current negative voltage is needed for biasing parts of a circuit. A simple method of generating a negative voltage using a charge pump technique and the switching waveform present at the OUT pin, is shown in Figure 32. This unregulated negative voltage is approximately equal to the positive input voltage (minus a few volts), and can supply up to a 600 mA of output current. There is a requirement however, that there be a minimum load of 1.2A on the regulated positive output for the charge pump to work correctly. Also, resistor R1 is required to limit the charging current of C1 to some value less than the LM2599 current limit (typically 4.5A).

This method of generating a negative output voltage without an additional inductor can be used with other members of the Simple Switcher Family, using either the buck or boost topology.
APPLICATION INFORMATION

TYPICAL THROUGH HOLE PC BOARD LAYOUT, FIXED OUTPUT (1X SIZE), DOUBLE SIDED

C IN: — 470 µF, 50V, Aluminum Electrolytic Panasonic, “HFQ Series”
D1: — 5A, 40V Schottky Rectifier, 1N5825
L1: — 47 µH, L39, Renco, Through Hole
R PULL UP: — 10k
C DELAY: — 0.1 µF
C SD/SS: — 0.1 µF
Thermalloy Heat Sink #7020
Application Information (Continued)

TYPICAL THROUGH HOLE PC BOARD LAYOUT, ADJUSTABLE OUTPUT (1X SIZE), DOUBLE SIDED

Bottom Side

Top Side (Component Side)

---

$C_{IN}$: — 470 µF, 50V, Aluminum Electrolytic Panasonic, “HFQ Series”
$C_{OUT}$: — 220 µF, 35V Aluminum Electrolytic Panasonic, “HFQ Series”
D1: — 5A, 40V Schottky Rectifier, 1N5825
L1: — 47 µH, L39, Renco, Through Hole
R1: — 1 kΩ, 1%
R2: — Use formula in Design Procedure
$C_{FF}$: — See Figure 4.
$R_{FF}$: — See Application Information Section ($C_{FF}$ Section)
R$PULL\ UP$: — 10k
$C_{DELAY}$: — 0.1 µF
$C_{SD/SS}$: — 0.1 µF
Thermalloy Heat Sink #7020

FIGURE 33. PC Board Layout
Physical Dimensions inches (millimeters) unless otherwise noted

7-Lead TO-220 Bent and Staggered Package
Order Number LM2599T-3.3, LM2599T-5.0,
LM2599T-12 or LM2599T-ADJ
NS Package Number TA07B

www.national.com
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.