T.I. BAJENESCU, M.I. BAZU, "Reliability of electronics components - A practical guide to electronic systems manufacturing", Springer, 1999, 509 pages.
Copyright - [Précédente] [Première page] [Suivante] - Home

Fiche : [LIVRE137]

Titre : T.I. BAJENESCU, M.I. BAZU, Reliability of electronics components - A practical guide to electronic systems manufacturing, Springer, 1999, 509 pages.

Auteur : Bajenescu, T.I., La Conversion, Switzerland
Auteur : Bazu, M.I., Bucharest, Romania

Stockage : Bibliothèque LMP
Fiche : N° LMP99-26i
Référence : 99xx/LMP
Date_d'achat : 15 juillet 1999
Prix_HT : 927.15 francs

Lien : Bazu.jpg - 11 Ko.
Lien : Books1.htm - cité dans cette page.
Site_web : http://www.springer.de
Fields : Electronics and Microelectronics; Materials and Components
Written_for : Professionals in electronic manufacturing
Book_category : Expert Book
Language : English
Lien : BAZU.pdf - 30 Ko, 11 pages, Table of Contents.
Année : 1999
Info : XLI, 212 figs., 105 tabs.
Pages : 1 - 509
ISBN : 3-540-65722-3

Abstract :
The objective of this book is to better understand why components fail, addressing the needs of
engineers who will apply reliability principles in design, manufacture, testing, and field service.
It so contributes to new approaches and the development of electronic and telecommunications
component reliability. As a reference source, it summarizes the knowledge on failure modes,
degradation and mechanisms, including a survey of accelerated testing, achieving better reliability,
total quality topics, screening tests and prediction methods. A detailed index, a glossary, acronym
lists, reliability dictionaries and a rich specific bibliography round the benefit offered by the
book. The technical level suites to senior and graduate students, as well as to experts and managers
in industries.

Contents :
- Introduction.
- State of the Art in Reliability.
- Reliability of Passive Electronic Parts.
- Reliability of Diodes.
- Reliability of Silicon Transistors.
- Reliability of Thyristors.
- Reliability of Integrated Circuits.
- Reliability of Hybrids.
- Reliability of Memories.
- Reliability of Optoelectronics.
- Noise and Reliability.
- Plastic Package and Reliability.
- Test and Testability of Logic ICs.
- Failure Analysis.
- Appendix. Electronics and Microelectronics, Materials and Components


Notes de lecture (Thierry LEQUEU)

TOP

Page_038 : Bibliographie de l'introduction, 133 références.
  [1] : [LIVRE206] R. E. BARLOW, F. PROCHAN, Mathematical theory of reliability, J. Wiley and Sons, Inc, New York, 1965.
  [2] : [LIVRE207] F. JENSEN, Electronic Component Reliability, Fundamentals, Modelling, Evaluation, and Assurance, 1995, Chichester, Editions John Wiley & Sons.
  [3] : [LIVRE192] M. PECHT, Integrated Circuit, Hybrid and Multichip Module Package Design Guidelines, John Wiley and Sons, Inc, 1994.
  [4] :  [DATA153] CNET RDF 93, Recueil de données de fiabilité des composants électronique, CNET, 1993.

Table_Of_Contents :
1 INTRODUCTION 1
1.1 Definition of reliability 1
1.2 Historical development perspective 2
1.3 Quality and reliability 3
1.4 Economics and optimisation 5
1.5 Probability; basic laws 5
1.5.1 Probability distributions 6
1.5.2 Basic reliability distribution theory 9
1.6 Specific terms 11
1.6.1 The generalised definition of ? and MTBF 13
1.7 Failures types 15
1.7.1 Failures classification 16
1.8 Reliability estimates 17
1.9 “Bath–tub” failure curve 19
1.10 Reliability of electronic systems 20
1.10.1 Can the batch reliability be increased? 20
1.10.2 What is the utility of screening tests? 21
1.10.3 Derating technique 24
1.10.4 About the testability of electronic and telecommunication systems 25
1.10.5 Accelerated ageing methods for equipped boards 26
1.10.6 Operational failures 27
1.10.7 FMEA/FMECA method 29
1.10.8 Fault tree analysis (FTA) 30
1.10.8.1 Monte Carlo techniques 30
1.10.9 Practical recommendations 32
1.10.10 Component reliability and market economy 33
1.11 Some examples 35
References 37

2 STATE OF THE ART IN RELIABILITY 43
2.1 Cultural features 44
2.1.1 Quality and reliability assurance 44
2.1.2 Total quality management (TQM) 46
2.1.3 Building-in reliability (BIR) 48
2.1.4 Concurrent engineering (CE) 49
2.1.5 Acquisition reform 50
2.2 Reliability building 51
2.2.1 Design for reliability 51
2.2.2 Process reliability 52
2.2.2.1 Technological synergies 53
2.2.3 Screening and burn-in 54
2.2.3.1 Burn-in 56
2.2.3.2 Economic aspects of burn-in 59
2.2.3.3 Other screening tests 60
2.2.3.4 Monitoring the screening 61
2.3 Reliability evaluation 65
2.3.1 Environmental reliability testing 66
2.3.1.1 Synergy of environmental factors 68
2.3.1.2 Temperature cycling 70
2.3.1.3 Behavior in a radiation field 72
2.3.2 Life testing with noncontinous inspection 73
2.3.3 Accelerated testing 75
2.3.3.1 Activation energy depends on the stress level 77
2.3.4 Physics of failure 78
2.3.4.1 Drift, drift failures and drift behaviour 81
2.3.5 Prediction methods 83
2.3.5.1 Prediction methods based on failure physics 84
2.3.5.2 Laboratory versus operational reliability 86
2.4 Standardisation 87
2.4.1 Quality systems 87
2.4.2 Dependability 87
References 87

3 RELIABILITY OF PASSIVE ELECTRONIC PARTS 93
3.1 How parts fail 93
3.2 Resistors 94
3.2.1 Some important parameters 97
3.2.2 Characteristics 98
3.2.3 Reasons for inconstant resistors [3.8]...[3.10] 100
3.2.3.1 Carbon film resistors (Fig. 3.4) 101
3.2.3.2 Metal film resistors 101
3.2.3.3 Composite resistors (on inorganic basis) 101
3.2.4 Some design rules 101
3.2.5 Some typical defects of resistors 102
3.2.5.1 Carbon film resistors 104
3.2.5.2 Metal film resistors 104
3.2.5.3 Film resistors 105
3.2.5.4 Fixed wirewound resistors 105
3.2.5.5 Variable wirewound resistors 105
3.2.5.6 Noise behaviour 105
3.3 Reliability of capacitors 105
3.3.1 Introduction 105
3.3.2 Aluminium electrolytic capacitors 107
3.3.2.1 Characteristics 108
3.3.2.2 Results of reliability research studies 110
3.3.2.3 Reliability data 111
3.3.2.4 Main failures types 111
3.3.2.5 Causes of failures 112
3.3.3 Tantalum capacitors 112
3.3.3.1 Introduction 112
3.3.3.2 Structure and properties 113
3.3.3.3 Reliability considerations 115
3.3.3.4 ?C/C0 variation with temperature 116
3.3.3.5 The failure rate and the product CU 117
3.3.3.6 Loss factor 117
3.3.3.7 Impedance at 100 Hz 117
3.3.3.8 Investigating the stability of 35 V tantalum capacitor 117
3.3.3.9 The failure rate model 121
3.3.4 Reliability comparison 121
3.3.5 Another reliability comparison 123
3.3.6 Polyester film / foil capacitors 124
3.3.6.1 Introduction 124
3.3.6.2 Life testing 125
3.3.6.3 ? as a function of temperature and load 126
3.3.6.4 Reliability conclusions 127
3.3.7 Wound capacitors 129
3.3.8 Reliability and screening methods [3.37] [3.38] 131
3.4 Zinc oxide (ZnO) varistors [3.39]...[3.45] 132
3.4.1 Pulse behaviour of ZnO varistors 134
3.4.2 Reliability results 138
3.5 Connectors 138
3.5.1 Specifications profile 139
3.5.2 Elements of a test plan 140
References 141

4 RELIABILITY OF DIODES 145
4.1 Introduction 145
4.2 Semiconductor diodes 146
4.2.1 Structure and properties 146
4.2.2 Reliability tests and results 146
4.2.3 Failure mechanisms 148
a. Mechanical failure mechanisms 148
b. Electrical failure mechanisms 148
4.2.4 New technologies 149
4.2.5 Correlation between technology and reliability 150
4.2.6 Intermittent short-circuits 153
4.3 Z diodes 154
4.3.1 Characteristics 154
4.3.2 Reliability investigations and results 155
4.3.3 Failure mechanisms 158
4.3.3.1 Failure mechanisms of Z diodes 159
4.3.3.2 Design for reliability 160
4.3.3.3 Some general remarks 161
4.3.3.4 Catastrophic failures 162
4.3.3.5 Degradation failures 162
4.4 Trans-Zorb diodes 163
4.4.1 Introduction 163
4.4.2 Structure and characteristics 163
4.5 Impatt (IMPact Avalanche and Transit-Time) diodes 163
4.5.1 Reliability test results for HP silicon single drift Impatt diodes 165
4.5.2 Reliability test results for HP silicon double drift Impatt diodes 166
4.5.3 Factors affecting the reliability and safe operation 166
References 169
5 RELIABILITY OF SILICON TRANSISTORS 171
5.1 Introduction 171
5.2 Technologies and power limitations 172
5.2.1 Bipolar transistors 173
5.2.2 Unipolar transistors 173
5.3 Electrical characteristics 175
5.3.1 Recommendations 176
5.3.2 Safety Limits 176
5.3.3 The du/dt phenomenon 177
5.4 Reliability characteristics 178
5.5 Thermal fatigue 180
5.6 Causes of failures 182
5.6.1 Failure mechanisms 182
5.6.2 Failure modes 183
5.6.3 A check-up for the users 185
5.6.4 Bipolar transistor peripherics 185
5.7 The package problem 185
5.8 Accelerated tests 186
5.8.1 The Arrhenius model 187
5.8.2 Thermal cycling 188
5.9 How to improve the reliability 190
5.10 Some recommendations 191
References 193

6 RELIABILITY OF THYRISTORS 197
6.1 Introduction 197
6.2 Design and reliability 199
6.2.1 Failure mechanisms 199
6.2.2 Plastic and hermetic package problems 202
6.2.3 Humidity problem 204
6.2.4 Evaluating the reliability 204
6.2.5 Thyristor failure rates 206
6.3 Derating 207
6.4 Reliability screens by General Electric 209
6.5 New technology in preparation: SITH 210
References 213

7. RELIABILITY OF INTEGRATED CIRCUITS 215
7.1 Introduction 215
7.2 Reliability evaluation 219
7.2.1 Some reliability problems 219
7.2.2 Evaluation of integrated circuit reliability 219
7.2.3 Accelerated thermal test 221
7.2.4 Humidity environment 222
7.2.5 Dynamic life testing 223
7.3 Failure analysis 224
7.3.1. Failure mechanisms 224
7.3.1.1 Gate oxide breakdown 225
7.3.1.2 Surface charges 226
7.3.1.3 Hot carrier effects 226
7.3.1.4 Metal diffusion 226
7.3.1.5 Electromigration 227
7.3.1.6 Fatigue 228
7.3.1.7 Aluminium-gold system 229
7.3.1.8 Brittle fracture 229
7.3.1.9 Electrostatic Discharge (ESD) 229
7.3.2 Early failures 230
7.3.3 Modeling IC reliability 231
7.4 Screening and burn-in 233
7.4.1 The necessity of screening 233
7.4.2 Efficiency and necessity of burn-in 235
7.4.3 Failures at screening and burn-in 237
7.5 Comparison between the IC families TTL Standard and TTL-LS 240
7.6 Application Specific Integrated Circuits (ASIC) 240
References 241
8 RELIABILITY OF HYBRIDS 247
8.1 Introduction 247
8.2 Thin-film hybrid circuits 250
8.2.1 Reliability characteristics of resistors 250
8.2.2 Reliability of throughout-contacts 251
8.3 Thick-film hybrids 252
8.3.1 Failure types 253
8.3.2 Reliability of resistors and capacitors 254
8.3.3 Reliability of “beam-leads“ 254
8.4 Thick-film versus thin-film hybrids 257
8.5 Reliability of hybrid ICs 259
8.6 Causes of failures 261
8.7 Influence of radiation 264
8.8 Prospect outlook of the hybrid technology 264
8.9 Die attach and bonding techniques 270
8.9.1 Introduction 270
8.9.2 Hybrid package styles 271
8.10 Failure mechanisms 274
References 275

9 RELIABILITY OF MEMORIES 277
9.1 Introduction 277
9.2 Process-related reliability aspects 283
9.3 Possible memories classifications 288
9.4 Silicon On Insulator (SOI) technologies 290
9.4.1 Silicon on sapphire (SOS) technology 291
9.5 Failure frequency of small geometry memories 291
9.6 Causes of hardware failures 292
9.6.1 Read only memories (ROMs) 294
9.6.2 Small geometry devices 296
9.7 Characterisation testing 296
9.7.1 Timing and its influence on characterisation and test 298
9.7.2 Test and characterisation of refresh 298
9.7.2.1 Screening tests and test strategies 299
9.7.3 Test–programmes and –categories 301
9.7.3.1 Test categories 301
9.7.3.2 RAM failure modes 302
9.7.3.3 Radiation environment in space; hardening approaches 303
9.8 Design trends in microprocessor domain 305
9.9 Failure mechanisms of microprocessors 306
References 310

10 RELIABILITY OF OPTOELECTRONICS 313
10.1 Introduction 313
10.2 LED reliability 316
10.3 Optocouplers 318
10.3.1 Introduction 318
10.3.2 Optocouplers ageing problem 318
10.3.3 CTR degradation and its cause 320
10.3.4 Reliability of optocouplers 321
10.3.5 Some basic rules for circuit designers 323
10.4 Liquid crystal displays 324
10.4.1 Quality and reliability of LCDs 325
References 327

11 NOISE AND RELIABILITY 329
11.1 Introduction 329
11.2 Excess noise and reliability 330
11.3 Popcorn noise 331
11.4 Flicker noise 333
11.4.1 Measuring noise 333
11.4.2 Low noise, long life 333
11.5 Noise figure 334
11.6 Improvements in signal quality of digital networks 336
References 336
12 PLASTIC PACKAGE AND RELIABILITY 339
12.1 Historical development 339
12.2 Package problems 341
12.2.1 Package functions 342
12.3 Some reliabilistic aspects of the plastic encapsulation 343
12.4 Reliability tests 344
12.4.1 Passive tests 345
12.4.2 Active tests 346
12.4.3 Life tests 347
12.4.4 Reliability of intermittent functioning plastic encapsulated ICs 349
12.5 Reliability predictions 352
12.6 Failure analysis 353
12.7 Technological improvements 354
12.7.1 Reliability testing of PCB equipped with PEM 356
12.7.2 Chip-Scale packaging 356
12.8 Can we use plastic encapsulated microcircuits (PEM) in high reliability applications? 357
References 359
13 TEST AND TESTABILITY OF LOGIC ICS 363
13.1 Introduction 363
13.2 Test and test systems 364
13.2.1 Indirect tests 365
13.3 Input control tests of electronic components 365
13.3.1 Electrical tests 366
13.3.2 Some economic considerations 367
13.3.3 What is the cost of the tests absence? 368
13.4 LIC selection and connected problems 369
13.4.1 Operational tests of memories 370
13.4.2 Microprocessor test methods 371
13.4.2.1 Selftesting 371
13.4.2.2 Comparison method 371
13.4.2.3 Real time algorithmic method 372
13.4.2.4 Registered patterns method 372
13.4.2.5 Random test of microprocessors 373
13.5 Testability of LICs 373
13.5.1 Constraints 374
13.5.2 Testability of sequential circuits 374
13.5.3 Independent and neutral test laboratories 375
13.6 On the testability of electronic and telecommunications systems 376
References 379

14 FAILURE ANALYSIS 381
14.1 Introduction [14.1]…[14.25] 381
14.2 The purpose of failure analysis 383
14.2.1 Where are discovered the failures? 383
14.2.2 Types of failures 384
14.3 Methods of analysis 386
14.3.1 Electrical analysis 386
14.3.2 X-ray analysis 387
14.3.3 Hermeticity testing methods 388
14.3.4 Conditioning tests 388
14.3.5 Chemical means 388
14.3.6 Mechanical means 389
14.3.7 Microscope analysis 389
14.3.8 Plasma etcher 389
14.3.9 Electron microscope 389
14.3.10 Special means 390
14.4 Failure causes 392
14.5. Some examples 393
References 410
15 APPENDIX 413
15.1 Software-package RAMTOOL++ [15.1] 413
15.1.1 Core and basic module R3 Trecker 413
15.1.2 RM analyst 414
15.1.3 Mechanicus (Maintainability analysis) 414
15.1.4 Logistics 414
15.1.5 RM FFT-module 415
15.1.6 PPoF-module 415
15.2 Failure rates for components used in telecommunications 415
15.3 Failure types for electronic components [15.2] 418
15.4 Detailed failure modes for some components 419
15.5 Storage reliability data [15.3] 420
15.6 Failure criteria. Some examples 420
15.7 Typical costs for the screening of plastic encapsulated ICs 421
15.8 Results of 1000 h HTB life tests for CMOS microprocessors 421
15.9. Results of 1000 h HTB life tests for linear circuits 422
15.10 Average values of the failure rates for some IC families 422
15.11 Activation energy values for various technologies 423
15.12 Failures at burn-in 424
References 424
GENERAL BIBLIOGRAPHY 425
RELIABILITY GLOSSARY 455
LIST OF ABBREVIATIONS 473
POLYGLOT DICTIONARY OF RELIABILITY TERMS 481
INDEX 501


Mise à jour le lundi 25 février 2019 à 15 h 33 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2019 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.