SERIES

IRK.136, .142, .162

NEW INT-A-pak Power Modules

Features
- High Voltage
- Electrically Isolated by DBC Ceramic (Al₂O₃)
- 3500 VRMS Isolating Voltage
- Industrial Standard Package
- High Surge Capability
- Glass Passivated Chips
- Modules uses High Voltage Power thyristor/diodes in three Basic Configurations
- Simple Mounting
- UL E78996 approved

Applications
- DC Motor Control and Drives
- Battery Charges
- Welders
- Power Converters
- Lighting Control
- Heat and Temperature Control

Major Ratings and Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>IRK.136..</th>
<th>IRK.142..</th>
<th>IRK.162..</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(AV) @ T<sub>c</sub></td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>I(RMS)</td>
<td>300</td>
<td>310</td>
<td>355</td>
<td>A</td>
</tr>
<tr>
<td>I<sub>SM</sub> @ 50Hz</td>
<td>3200</td>
<td>4500</td>
<td>4870</td>
<td>A</td>
</tr>
<tr>
<td>@ 60Hz</td>
<td>3360</td>
<td>4712</td>
<td>5100</td>
<td>A</td>
</tr>
<tr>
<td>P<sub>r</sub> @ 50Hz</td>
<td>51.5</td>
<td>102</td>
<td>119</td>
<td>KAJ/s</td>
</tr>
<tr>
<td>@ 60Hz</td>
<td>47</td>
<td>92.5</td>
<td>108</td>
<td>KAJ/s</td>
</tr>
<tr>
<td>I<sup>2</sup>t</td>
<td>515.5</td>
<td>1013</td>
<td>1190</td>
<td>KAJ²/α</td>
</tr>
<tr>
<td>V<sub>RMS</sub></td>
<td>400 to 1600</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T<sub>j</sub> range</td>
<td>-40 to 125</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electrical Specifications

Voltage Ratings

<table>
<thead>
<tr>
<th>Type number</th>
<th>Voltage Code</th>
<th>(V_{RMS}/V_{DRM})</th>
<th>(V_{RSM}/V_{DSM})</th>
<th>(I_{DRM}/I_{DSM}) @ 125°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRK.136</td>
<td>04</td>
<td>400</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>08</td>
<td>800</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1200</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1400</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1600</td>
<td>1700</td>
<td></td>
</tr>
</tbody>
</table>

Forward Conduction

#### Parameter	IRK.136	IRK.142	IRK.162	Units	Conditions
\(I_{T(AV)} \) Max. average on-state current @ Case temperature | 135 | 140 | 160 | A | 180° conduction, half sine wave |
\(I_{(RMS)} \) Max. RMS on-state current | 3200 | 4500 | 4870 | A | I = 10ms, No voltage reapplied |
\(I_{TM} \) Maximum peak, one-cycle on-state, non-repetitive surge current | 3360 | 4712 | 5100 | A | I = 10ms, 100% \(V_{RMS} \) reapplied |
\(P_{T} \) Maximum \(P_{T} \) for fusing | 51.5 | 102 | 119 | KA/s | I = 10ms, No voltage reapplied |
\(P_{1/T} \) Maximum \(P_{1/T} \) for fusing | 515.5 | 1013 | 1190 | KA/s | I = 0.1 to 10ms, no voltage reapplied |
\(V_{T(0)} \) Low level value of threshold voltage | 0.86 | 0.83 | 0.8 | V | (16.7% × \(π \) \(I_{T(AV)} \) < \(I \) < \(π \) \(I_{T(AV)} \)) @ \(T_{J} \) max. |
\(V_{T(100)} \) High level value of threshold voltage | 1.05 | 1 | 0.98 | (\(I > \pi \times I_{T(AV)} \)) @ \(T_{J} \) max. |
\(\eta_1 \) Low level value on-state slope resistance | 2.02 | 1.78 | 1.67 | mΩ | (16.7% × \(π \) \(I_{T(AV)} \) < \(I \) < \(π \) \(I_{T(AV)} \)) @ \(T_{J} \) max. |
\(\eta_2 \) High level value on-state slope resistance | 1.65 | 1.43 | 1.38 | (\(I > \pi \times I_{T(AV)} \)) @ \(T_{J} \) max. |
\(V_{FM} \) Maximum forward voltage drop | 1.57 | 1.55 | 1.54 | V | \(I_{FM} = \pi \times I_{T(AV)} \), \(T_{J} = 25°C \), 180° conduction |
\(I_{H} \) Maximum holding current | 200 | mA | Anode supply = 6V, initial \(I \) = 30A, \(T_{J} \) = 25°C |
\(I_{L} \) Maximum latching current | 400 | mA | Anode supply = 6V, resistive load = 1Ω Gate pulse: 10V, 100μs, \(T_{J} \) = 25°C |

Switching

\(t_{gd} \)	Typical delay time	1	μs	\(T_{J} \) = 25°C, Gate Current=1A dI/dt=1A/μs
\(t_{gr} \)	Typical rise time	2		\(T_{J} \) = 25°C, \(V_{dd}=0.67\% \(V_{RMS} \)
\(t_{q} \)	Typical turn-off time	50 - 200		\(I_{FM} = 300 \text{A} \), dI/dt = 15 A/μs, \(T_{J} \) = \(T_{J} \) max.

\(V_{dd} = 50 \text{V}, dV/dt = 20 \text{V/μs}, \text{Gate 0 V, 100Ω} \)
Thermal and Mechanical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IRK.136</th>
<th>IRK.142</th>
<th>IRK.162</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J Max. junction operating temperature range</td>
<td>-40 to 125</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{s4} Max. storage temperature range</td>
<td>-40 to 150</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{thJC} Max. thermal resistance, junction to case</td>
<td>0.18</td>
<td>0.18</td>
<td>0.16</td>
<td>K/W</td>
</tr>
<tr>
<td>R_{thCS} Max. thermal resistance, case to heatsink</td>
<td>0.05</td>
<td>K/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T Torque to heatsink</td>
<td>4 to 6</td>
<td>Nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt Approximate weight</td>
<td>200 (7.1)</td>
<td>g(oz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Style</td>
<td>New Int-A-Pak</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ΔR Conduction (per Junction)

(The following table shows the increment of thermal resistance R_{thJC}, when devices operate at different conduction angles than DC)

<table>
<thead>
<tr>
<th>Devices</th>
<th>180°</th>
<th>120°</th>
<th>90°</th>
<th>60°</th>
<th>30°</th>
<th>180°</th>
<th>120°</th>
<th>90°</th>
<th>60°</th>
<th>30°</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRK.136</td>
<td>0.007</td>
<td>0.01</td>
<td>0.013</td>
<td>0.0155</td>
<td>0.017</td>
<td>0.009</td>
<td>0.012</td>
<td>0.014</td>
<td>0.015</td>
<td>0.017</td>
</tr>
<tr>
<td>IRK.142</td>
<td>0.0019</td>
<td>0.0019</td>
<td>0.0002</td>
<td>0.0020</td>
<td>0.0021</td>
<td>0.0018</td>
<td>0.0022</td>
<td>0.0023</td>
<td>0.0023</td>
<td>0.0020</td>
</tr>
<tr>
<td>IRK.162</td>
<td>0.0030</td>
<td>0.0031</td>
<td>0.0032</td>
<td>0.0033</td>
<td>0.0034</td>
<td>0.0029</td>
<td>0.0036</td>
<td>0.0039</td>
<td>0.0041</td>
<td>0.0040</td>
</tr>
</tbody>
</table>
Ordering Information Table

<table>
<thead>
<tr>
<th>Device Code</th>
<th>IRK</th>
<th>T</th>
<th>162</th>
<th>/</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - Module Type
2 - Circuit Configuration
3 - Current Rating: \(I_{T(AV)} \)
4 - Voltage Code: Code \(\times 100 = V_{\text{RM}} \)

Outline Table

Dimensions are in millimeters and [inches]

NOTE: To order the Optional Hardware see Bulletin I27900
Fig. 1 - Current Ratings Characteristics

- Maximum Allowable Case Temperature (°C)
- Average Forward Current (A)

Fig. 2 - Current Ratings Characteristics

- Maximum Allowable Case Temperature (°C)
- Average On-state Current (A)

Fig. 3 - On-State Power Loss Characteristics

- Maximum Average On-state Power Loss (W)
- Average On-state Current (A)

Fig. 4 - On-State Power Loss Characteristics

- Maximum Average On-state Power Loss (W)
- Average On-state Current (A)

Fig. 5 - Maximum Non-Repetitive Surge Current

- Peak Half Wave On-state Current (A)
- Number of Equal Amplitude Half Cycle Current Pulses (N)

Fig. 6 - Maximum Non-Repetitive Surge Current

- Peak Half Wave On-state Current (A)
- Pulse Train Duration (s)

IRK.136, .142, .162 Series

Bulletin 127117 rev. C 03/02

- IRK.136, Series
- $R_{thJC} (DC) = 0.18 \text{kW}$

- Conduction Angle
- Conduction Period

- Initial $T_j = 125$°C

- No Voltage Reapplied

- Rated V_{RRM} Reapplied

- Control Of Conduction May Not Be Maintained

Document Number: 93743

www.vishay.com
Fig. 16 - On State Power Loss Characteristics

Fig. 17 - On State Power Loss Characteristics

Fig. 18 - On State Power Loss Characteristics
Maximum Allowable Ambient Temperature (°C)

IRK.136, .142, .162 Series

Fig. 25 - On State Power Loss Characteristics

Fig. 26 - On State Power Loss Characteristics

Fig. 27 - On State Power Loss Characteristics
Fig. 28 - On State Voltage Drop Characteristics

Fig. 29 - On State Voltage Drop Characteristics

Fig. 30 - On State Voltage Drop Characteristics

Fig. 31 - Thermal Impedance Z_{thJC} Characteristics

Fig. 32 - Thermal Impedance Z_{thJC} Characteristics

Fig. 33 - Thermal Impedance Z_{thJC} Characteristics
Fig. 34 - Gate Characteristics

(a) Rectangular gate pulse
(b) Recommended load line for

- TJ = -40°C
- TJ = 25°C
- TJ = 125°C

(a) Recommended load line for
- <= 30% rated di/dt: 15 V, 40 ohms
 - tr = 1 s, tp >= 6 s
- rated di/dt: 20 V, 20 ohms
 - tr = 0.5 s, tp >= 6 s

1) PGM = 200 W, tp = 300 s
2) PGM = 60 W, tp = 1 ms
3) PGM = 30 W, tp = 2 ms
4) PGM = 12 W, tp = 5 ms

Data and specifications subject to change without notice.
This product has been designed and qualified for Multiple Level.
Qualification Standards can be found on IR's Web site.
Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

IRKH136/04PBF IRKH136/08PBF IRKH136/12PBF IRKH136/14PBF IRKH136/16PBF IRKH142/08PBF
IRKH142/12PBF IRKH142/14PBF IRKH142/16PBF IRKH162/04PBF IRKH162/08PBF IRKH162/12PBF
IRKH162/14PBF IRKH162/16PBF IRKL136/04PBF IRKL136/08PBF IRKL136/12PBF IRKL136/14PBF
IRKL136/16PBF IRKL142/08PBF IRKL142/12PBF IRKL142/14PBF IRKL142/16PBF IRKL162/08PBF
IRKL162/12PBF IRKL162/14PBF IRKL162/16PBF IRKT136/04PBF IRKT136/08PBF IRKT136/12PBF
IRKT136/14PBF IRKT136/16PBF IRKT142/08PBF IRKT142/12PBF IRKT142/14PBF IRKT142/16PBF
IRKT162/04PBF IRKT162/08PBF IRKT162/12PBF IRKT162/14PBF IRKT162/16PBF