IRFP460A
20A, 500V, 0.22 Ohm, N-Channel SMPS Power MOSFET

Applications
• Switch Mode Power Supplies (SMPS)
• Uninterruptable Power Supply
• High Speed Power Switching

Features
• Low Gate Charge Qg results in Simple Drive Requirement
• Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
• Improved rDS(ON)
• Reduced Miller Capacitance

Absolute Maximum Ratings $T_A = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DSS}</td>
<td>Drain to Source Voltage</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate to Source Voltage</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain Current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous ($T_C = 25^\circ C$, $V_{GS} = 10V$)</td>
<td>20</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Continuous ($T_C = 100^\circ C$, $V_{GS} = 10V$)</td>
<td>13</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Pulsed</td>
<td>80</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>P_D</td>
<td>Power dissipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>280</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td>2.2</td>
<td>W/°C</td>
<td></td>
</tr>
<tr>
<td>T_J, T_{STG}</td>
<td>Operating and Storage Temperature</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering Temperature for 10 seconds</td>
<td>300 (1.6mm from case)</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Mounting Torque, 8-32 or M3 Screw</td>
<td>10ibf"in (1.1N"m)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JIC}</td>
<td>Thermal Resistance Junction to Case</td>
<td>0.45</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{ICS}</td>
<td>Thermal Resistance Case to Sink, Flat, Greased Surface</td>
<td>0.24 TYP</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JUA}</td>
<td>Thermal Resistance Junction to Ambient</td>
<td>40</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Device Marking</th>
<th>Device</th>
<th>Package</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRFP460A</td>
<td>IRFP460A</td>
<td>TO-247</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Electrical Characteristics \[T_J = 25^\circ C \] (unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{VDSS}</td>
<td>Drain to Source Breakdown Voltage</td>
<td>$I_D = 250\mu A, V_{GS} = 0V$</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>$\Delta B_{\text{VDSS}}/\Delta T_J$</td>
<td>Breakdown Voltage Temp. Coefficient</td>
<td>$V/\circ C$ Reference to $25^\circ C$, $Id = 1mA$</td>
<td>-</td>
<td>0.61</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>I_{DSON}</td>
<td>Drin to Source On-Resistance</td>
<td>$V_{GS} = 10V, I_D = 12A$</td>
<td>-</td>
<td>0.17</td>
<td>0.22</td>
<td>\Omega</td>
</tr>
<tr>
<td>$V_{\text{GS(RH)}}$</td>
<td>Gate Threshold Voltage</td>
<td>$V_{DS} = V_{GS}, I_D = 250\mu A$</td>
<td>2.0</td>
<td>3.3</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>I_{DSS}</td>
<td>Zero Gate Voltage Drain Current</td>
<td>$V_{DS} = 25V$</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>\mu A</td>
</tr>
<tr>
<td>I_{GS}</td>
<td>Gate to Source Leakage Current</td>
<td>$V_{GS} = \pm 20V$</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
</tbody>
</table>

Statics

- B_{VDSS}: Drain to Source Breakdown Voltage
- $\Delta B_{\text{VDSS}}/\Delta T_J$: Breakdown Voltage Temp. Coefficient
- I_{DSON}: Drin to Source On-Resistance
- $V_{\text{GS(RH)}}$: Gate Threshold Voltage
- I_{DSS}: Zero Gate Voltage Drain Current
- I_{GS}: Gate to Source Leakage Current

Dynamics

- g_{m}: Forward Transconductance
- $Q_{q(TOT)}$: Total Gate Charge
- Q_{qg}: Gate to Source Gate Charge
- Q_{qd}: Gate to Drain “Miller” Charge
- t_{ON}: Turn-On Delay Time
- I_{R}: Rise Time
- t_{OFF}: Turn-Off Delay Time
- I_{off}: Fall Time
- C_{ISS}: Input Capacitance
- C_{OSS}: Output Capacitance
- C_{RSS}: Reverse Transfer Capacitance

Avalanche Characteristics

- E_{AS}: Single Pulse Avalanche Energy
- I_{AR}: Avalanche Current
- E_{AR}: Repetitive Avalanche Energy

Drain-Source Diode Characteristics

- I_{S}: Continuous Source Current (Body Diode)
- I_{SM}: Pulsed Source Current (Body Diode)
- V_{SD}: Source to Drain Diode Voltage
- I_{RR}: Reverse Recovered Charge

Notes:
1. Repetitive rating; pulse width limited by maximum junction temperature
2. $V_{DC} = 50V$, $\text{Stating } T_J = 25^\circ C$, $L = 7.0mH$, $R_D = 25\Omega$, $I_{AS} = 14A$
3. $I_{SD} < 14A$, $dI/dt < 100A/\mu s$, $V_{DD} < V_{ds(on)}$, $T_J < 150^\circ C$
4. Pulse width $< 300\mu s$, duty cycle $< 2\%$

©2002 Fairchild Semiconductor Corporation
Typical Characteristics

Figure 1. Output Characteristics

Figure 2. Output Characteristics

Figure 3. Transfer Characteristics

Figure 4. Drain To Source On Resistance vs Junction Temperature

Figure 5. Capacitance vs Drain To Source Voltage

Figure 6. Gate Charge Waveforms For Constant Gate Current
Typical Characteristics (Continued)

Figure 7. Body Diode Forward Voltage vs Body Diode Current

Figure 8. Maximum Safe Operating Area

Figure 9. Maximum Drain Current vs Case Temperature

Figure 10. Normalized Transient Thermal Impedance, Junction to Case
Test Circuits and Waveforms

Figure 11. Unclamped Energy Test Circuit

Figure 12. Unclamped Energy Waveforms

Figure 13. Gate Charge Test Circuit

Figure 14. Gate Charge Waveforms

Figure 15. Switching Time Test Circuit

Figure 16. Switching Time Waveform
TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

- ACEx™
- Bottomless™
- CoolFET™
- CROSSVOLT™
- DenseTrench™
- DOME™
- EcoSPARK™
- E²CMOS™
- EnSigna™
- FACT™
- FACT Quiet Series™
- MICROWIRE™

- FAST®
- FASTr™
- FFRFET™
- GlobalOptoisolator™
- GTO™
- HiSeC™
- ISOPLANAR™
- LittleFET™
- MicroFET™
- MicroPak™

- OPTOLOGIC™
- OPTOPLANAR™
- PACMAN™
- POP™
- Power24™
- PowerTrench®
- QFET™
- QS™
- QT Optoelectronics™
- Quiet Series™
- SILENT SWITCHER®

- SMART START™
- START™
- STAR*POWER™
- Stealth™
- SuperSOT™-3
- SuperSOT™-6
- SuperSOT™-8
- SyncFET™
- TinyLogic™
- TruTranslation™
- UHC™
- UltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.</td>
</tr>
</tbody>
</table>