This datasheet is subject to change without notice.

THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Power MOSFET

FEATURES
- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>200 V</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>± 20 V</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>V_{GS} at 10 V</td>
<td>I_D</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>T_C = 25 °C</td>
<td>3.3</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>T_C = 100 °C</td>
<td>18</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current^a</td>
<td>I_{DM}</td>
<td>18</td>
<td>A</td>
</tr>
<tr>
<td>Linear Derating Factor</td>
<td></td>
<td>0.40</td>
<td>W/°C</td>
</tr>
<tr>
<td>Single Pulse Avalanche Energy^b</td>
<td>E_{AS}</td>
<td>110</td>
<td>mJ</td>
</tr>
<tr>
<td>Repetitive Avalanche Current^a</td>
<td>I_{AR}</td>
<td>5.2</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive Avalanche Energy^a</td>
<td>E_{AR}</td>
<td>5.0</td>
<td>mJ</td>
</tr>
<tr>
<td>Maximum Power Dissipation</td>
<td>T_C = 25 °C</td>
<td>P_D</td>
<td>50</td>
</tr>
<tr>
<td>Peak Diode Recovery dV/dt^c</td>
<td></td>
<td>5.0</td>
<td>V/ns</td>
</tr>
<tr>
<td>Operating Junction and Storage Temperature Range</td>
<td>T_J, T_{stg}</td>
<td>- 55 to + 150</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering Recommendations (Peak Temperature) for 10 s</td>
<td></td>
<td>300^2</td>
<td>°C</td>
</tr>
<tr>
<td>Mounting Torque</td>
<td></td>
<td>10</td>
<td>lbf · in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1</td>
<td>N · m</td>
</tr>
</tbody>
</table>

NOTES

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. V_{DD} = 50 V, starting T_J = 25 °C, L = 6.1 mH, R_S = 25 Ω, I_{AS} = 5.2 A (see fig. 12).

c. I_{DD} ≤ 5.2 A, dI/dt ≤ 95 A/µs, V_{OD} ≤ V_{DS}. T_J ≤ 150 °C.

d. 1.6 mm from case.

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 91027
www.vishay.com
S11-0510-Rev. B, 21-Mar-11

This datasheet is subject to change without notice.

THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF620, SiHF620
Vishay Siliconix

THERMAL RESISTANCE RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TYP</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient</td>
<td>R_{thJA}</td>
<td>-</td>
<td>62</td>
<td>°C/W</td>
</tr>
<tr>
<td>Case-to-Sink, Flat, Greased Surface</td>
<td>R_{thCS}</td>
<td>0.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maximum Junction-to-Case (Drain)</td>
<td>R_{thJC}</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
</tr>
</tbody>
</table>

SPECIFICATIONS *(T_J = 25 °C, unless otherwise noted)*

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-Source Breakdown Voltage</td>
<td>V_{DS}</td>
<td>V_GS = 0 V, I_D = 250 μA</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V_{DS} Temperature Coefficient</td>
<td>\Delta V_{DS}/T_J</td>
<td>Reference to 25 °C, I_D = 1 mA</td>
<td>-</td>
<td>0.29</td>
<td>-</td>
<td>V/°C</td>
</tr>
<tr>
<td>Gate-Source Threshold Voltage</td>
<td>V_{GS(th)}</td>
<td>V_{DS} = V_GS, I_D = 250 μA</td>
<td>2.0</td>
<td>-</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Leakage</td>
<td>I_{GS}</td>
<td>V_GS = ± 20 V</td>
<td>-</td>
<td>-</td>
<td>± 100</td>
<td>nA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{DSS}</td>
<td>V_{DS} = 200 V, V_GS = 0 V</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>μA</td>
</tr>
<tr>
<td>Drain-Source On-State Resistance</td>
<td>R_{DS(on)}</td>
<td>V_GS = 10 V</td>
<td>I_D = 3.1 A</td>
<td>-</td>
<td>-</td>
<td>0.80</td>
</tr>
<tr>
<td>Forward Transconductance</td>
<td>g_m</td>
<td>V_{DS} = 50 V, I_D = 3.1 A</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_{iss}</td>
<td>V_GS = 0 V, f = 1.0 MHz, see fig. 5</td>
<td>-</td>
<td>260</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{oss}</td>
<td>V_{DS} = 25 V</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_{rss}</td>
<td>V_GS = 10 V</td>
<td>I_D = 4.8 A, V_{DS} = 160 V, see fig. 6 and 13a</td>
<td>-</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Q_g</td>
<td>V_GS = 10 V</td>
<td>I_D = 4.8 A, V_{DS} = 160 V, see fig. 6 and 13a</td>
<td>-</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>Gate-Source Charge</td>
<td>Q_{gs}</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>Gate-Drain Charge</td>
<td>Q_{gd}</td>
<td>-</td>
<td>-</td>
<td>7.9</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>t_{on}</td>
<td>V_{DD} = 100 V, I_D = 4.8 A, R_g = 18 Ω, R_D = 20 Ω, see fig. 10b</td>
<td>-</td>
<td>7.2</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>t_{off}</td>
<td>-</td>
<td>-</td>
<td>19</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Internal Drain Inductance</td>
<td>L_D</td>
<td>Between lead, 6 mm (0.25”) from package and center of die contact</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>nH</td>
</tr>
<tr>
<td>Internal Source Inductance</td>
<td>L_S</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
<td>nH</td>
</tr>
<tr>
<td>Drain-Source Body Diode Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Source-Drain Diode Current</td>
<td>I_S</td>
<td>MOSFET symbol showing the integral reverse p - n junction diode</td>
<td>-</td>
<td>-</td>
<td>5.2</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Diode Forward Currenta</td>
<td>I_{SM}</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Body Diode Voltage</td>
<td>V_{SD}</td>
<td>T_J = 25 °C, I_F = 5.2 A, V_{GS} = 0 V</td>
<td>-</td>
<td>-</td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>Body Diode Reverse Recovery Time</td>
<td>t_r</td>
<td>T_J = 25 °C, I_F = 4.8 A, dI/dt = 100 A/μs</td>
<td>-</td>
<td>150</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>Body Diode Reverse Recovery Charge</td>
<td>Q_r</td>
<td>-</td>
<td>0.91</td>
<td>1.8</td>
<td>μC</td>
<td></td>
</tr>
<tr>
<td>Forward Turn-On Time</td>
<td>t_{on}</td>
<td>Intrinsic turn-on time is negligible (turn-on is dominated by L_G and L_D)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width ≤ 300 μs; duty cycle ≤ 2 %.
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

![Fig. 1 - Typical Output Characteristics, TC = 25 °C](image1)

![Fig. 2 - Typical Output Characteristics, TC = 150 °C](image2)

![Fig. 3 - Typical Transfer Characteristics](image3)

![Fig. 4 - Normalized On-Resistance vs. Temperature](image4)
IRF620, SiHF620

Vishay Siliconix

Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

![Capacitance vs. Drain-to-Source Voltage](image1)

- $V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$
- $C_{iss} = C_{gs} + C_{gd}$, $C_{rss} = C_{gd}$
- $C_{oss} = C_{ds} + C_{gd}$

Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

![Gate Charge vs. Gate-to-Source Voltage](image2)

- Q_{G}, Total Gate Charge (nC)
- V_{GS}, Gate-to-Source Voltage (V)

Fig. 7 - Typical Source-Drain Diode Forward Voltage

![Source-Drain Diode Forward Voltage](image3)

- V_{SD}, Source-to-Drain Voltage (V)
- I_{SD}, Reverse Drain Current (A)

Fig. 8 - Maximum Safe Operating Area

![Maximum Safe Operating Area](image4)

- V_{DS}, Drain-to-Source Voltage (V)
- I_D, Drain Current (A)

For test circuit, see figure 13

This datasheet is subject to change without notice.
The product described herein and this datasheet are subject to specific disclaimers, set forth at www.vishay.com/doc?91000
Fig. 9 - Maximum Drain Current vs. Case Temperature

Fig. 10a - Switching Time Test Circuit

Fig. 10b - Switching Time Waveforms

Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 12a - Unclamped Inductive Test Circuit

Fig. 12b - Unclamped Inductive Waveforms
IRF620, SiHF620

Vishay Siliconix

Fig. 12c - Maximum Avalanche Energy vs. Drain Current

![Graph showing maximum avalanche energy vs. drain current.](image)

Fig. 13a - Basic Gate Charge Waveform

![Diagram of basic gate charge waveform.](image)

Fig. 13b - Gate Charge Test Circuit

![Diagram of gate charge test circuit.](image)
Peak Diode Recovery dV/dt Test Circuit

D.U.T.

Circuit layout considerations
- Low stray inductance
- Ground plane
- Low leakage inductance current transformer

D.U.T.

- dV/dt controlled by Rg
- Driver same type as D.U.T.
- ISD controlled by duty factor “D”
- D.U.T. - device under test

Driver gate drive

Period

D = P.W. / Period

VGS = 10 V

D.U.T. I_SD waveform

Reverse recovery current

Body diode forward current

di/dt

D.U.T. VGS waveform

Diode recovery dV/dt

Re-applied voltage

Inductor current

Body diode forward drop

Ripple ≤ 5 %

Note
a. VGS = 5 V for logic level devices

Fig. 14 - For N-Channel
TO-220-1

Notes
- $M^* = 0.052$ inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM
- Outline conforms to JEDEC® outline TO-220AB with exception of dimension F

<table>
<thead>
<tr>
<th>DIM.</th>
<th>MILLIMETERS</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.14</td>
<td>0.163</td>
</tr>
<tr>
<td>b</td>
<td>0.69</td>
<td>0.027</td>
</tr>
<tr>
<td>b(1)</td>
<td>1.14</td>
<td>0.045</td>
</tr>
<tr>
<td>c</td>
<td>0.36</td>
<td>0.014</td>
</tr>
<tr>
<td>D</td>
<td>14.33</td>
<td>0.564</td>
</tr>
<tr>
<td>E</td>
<td>9.96</td>
<td>0.392</td>
</tr>
<tr>
<td>e</td>
<td>2.41</td>
<td>0.095</td>
</tr>
<tr>
<td>e(1)</td>
<td>4.88</td>
<td>0.192</td>
</tr>
<tr>
<td>F</td>
<td>0.43</td>
<td>0.017</td>
</tr>
<tr>
<td>H(1)</td>
<td>6.10</td>
<td>0.240</td>
</tr>
<tr>
<td>J(1)</td>
<td>2.41</td>
<td>0.095</td>
</tr>
<tr>
<td>L</td>
<td>13.36</td>
<td>0.526</td>
</tr>
<tr>
<td>L(1)</td>
<td>3.33</td>
<td>0.131</td>
</tr>
<tr>
<td>ØP</td>
<td>3.53</td>
<td>0.139</td>
</tr>
<tr>
<td>Q</td>
<td>2.59</td>
<td>0.102</td>
</tr>
</tbody>
</table>

DWG: 6031
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.