5.6A, 100V, 0.540 Ohm, N-Channel Power MOSFET

This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA17441.

Features

- 5.6A, 100V
- $r_{DS(ON)} = 0.540\Omega$
- Single Pulse Avalanche Energy Rated
- SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- Related Literature
 - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”

Symbol

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BRAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRF510</td>
<td>TO-220AB</td>
<td>IRF510</td>
</tr>
</tbody>
</table>

NOTE: When ordering, include the entire part number.
Absolute Maximum Ratings \(T_C = 25^\circ \text{C}, \) Unless Otherwise Specified

- Drain to Source Voltage (Note 1) \(V_{DS} \) 100 V
- Drain to Gate Voltage \((R_{GS} = 20k\Omega) \) (Note 1) \(V_{DG} \) 100 V
- Continuous Drain Current \(I_D \) 5.6 A
- \(T_C = 100^\circ \text{C} \) \(I_D \) 4 A
- Pulsed Drain Current (Note 3) \(I_{DM} \) ±20 A
- Gate to Source Voltage \(V_{GS} \) 100 V
- Maximum Power Dissipation \(P_D \) 43 W
- Linear Derating Factor \(0.29 \text{ W}/^\circ \text{C} \)
- Single Pulse Avalanche Energy Rating (Note 4) \(E_{AS} \) 19 mJ
- Operating and Storage Temperature Range \(T_J, T_{STG} \) -55 to 175 \(^\circ \text{C} \)
- Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s \(T_L \) 300 \(^\circ \text{C} \)
- Package Body for 10s, See Techbrief 334 \(T_{pkg} \) 260 \(^\circ \text{C} \)

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(T_J = 25^\circ \text{C} \) to 150\(^\circ\)C.

Electrical Specifications \(T_C = 25^\circ \text{C}, \) Unless Otherwise Specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Breakdown Voltage</td>
<td>(BV_{DSS})</td>
<td>(V_{GS} = 0V, I_D = 250\mu A,) (V_{GS} = 0V, I_D = 250\mu A,) (V_{DS} = \text{Rated } BV_{DSS}, V_{GS} = 0V,) (V_{DS} = \text{Rated } BV_{DSS}, V_{GS} = 0V,) (V_{DS} = 0.8 \times \text{Rated } BV_{DSS}, V_{GS} = 0V, T_J = 150^\circ \text{C})</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Gate to Threshold Voltage</td>
<td>(V_{GSS})</td>
<td>(V_{GS} = V_{DS}, I_D = 250\mu A)</td>
<td>2.0</td>
<td>-</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Zero-Gate Voltage Drain Current</td>
<td>(I_{DSS})</td>
<td>(V_{DS} = \text{Rated } BV_{DSS}, V_{GS} = 0V)</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>On-State Drain Current (Note 2)</td>
<td>(I_{D(ON)})</td>
<td>(V_{DS} > I_{D(ON)} \times r_{DS(ON)\text{MAX}}, V_{GS} = 10V) (Figure 7)</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>(I_{GS})</td>
<td>(V_{GS} = \pm 20V)</td>
<td>-</td>
<td>-</td>
<td>±100</td>
<td>nA</td>
</tr>
<tr>
<td>Drain to Source On Resistance (Note 2)</td>
<td>(r_{DS(ON)})</td>
<td>(V_{GS} = 10V, I_D = 3.4A) (Figures 8, 9)</td>
<td>-</td>
<td>0.4</td>
<td>0.54</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Forward Transconductance (Note 2)</td>
<td>(g_{fs})</td>
<td>(V_{GS} = 50V, I_D = 3.4A) (Figure 12)</td>
<td>1.3</td>
<td>2.0</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>(t_{d(ON)})</td>
<td>(I_D = 5.6A, R_{GS} = 24\Omega, V_{DD} = 50V, R_L = 9\Omega, V_{DD} = 50V, V_{GS} = 10V)</td>
<td>-</td>
<td>8</td>
<td>11</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>(t_r)</td>
<td>(V_{GS} = \text{Rated } BV_{DSS}, V_{GS} = 0V, T_J = 150^\circ \text{C})</td>
<td>-</td>
<td>25</td>
<td>36</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>(t_{d(OFF)})</td>
<td>(I_D = 5.6A, R_{GS} = 24\Omega, V_{DD} = 50V, R_L = 9\Omega, V_{DD} = 50V, V_{GS} = 10V)</td>
<td>-</td>
<td>15</td>
<td>21</td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td>(t_f)</td>
<td>(V_{GS} = \text{Rated } BV_{DSS}, V_{GS} = 0V, T_J = 150^\circ \text{C})</td>
<td>-</td>
<td>12</td>
<td>21</td>
<td>ns</td>
</tr>
<tr>
<td>Total Gate Charge (Gate to Source + Gate to Drain)</td>
<td>(Q_g\text{(TOT)})</td>
<td>(V_{GS} = 10V, I_D = 5.6A, V_{DS} = 0.8 \times \text{Rated } BV_{DSS}, I_{G(REF)} = 1.5mA) (Figure 14)</td>
<td>-</td>
<td>5.0</td>
<td>7.7</td>
<td>nC</td>
</tr>
<tr>
<td>Gate to Source Charge</td>
<td>(Q_{gs})</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td>nC</td>
<td></td>
</tr>
<tr>
<td>Gate to Drain “Miller” Charge</td>
<td>(Q_{gd})</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
<td>nC</td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>(C_{ISS})</td>
<td>(V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz) (Figure 11)</td>
<td>-</td>
<td>135</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>(C_{OSS})</td>
<td>-</td>
<td>80</td>
<td>-</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Reverse-Transfer Capacitance</td>
<td>(C_{RSS})</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Internal Drain Inductance</td>
<td>(L_D)</td>
<td>Measured From the Contact Screw On Tab To Center of Die</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>nH</td>
</tr>
<tr>
<td>Internal Source Inductance</td>
<td>(L_S)</td>
<td>Measured From The Source Lead, 6mm (0.25in) From Header to Source Bonding Pad</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>nH</td>
</tr>
<tr>
<td>Junction to Case</td>
<td>(R_{INJC})</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction to Ambient</td>
<td>(R_{INJA})</td>
<td>Free air operation</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>PARAMETER</td>
<td>SYMBOL</td>
<td>Test Conditions</td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
<td>UNITS</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Continuous Source to Drain Current</td>
<td>I_{SD}</td>
<td>Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Diode</td>
<td>-</td>
<td>-</td>
<td>5.6</td>
<td>A</td>
</tr>
<tr>
<td>Pulse Source to Drain Current (Note 3)</td>
<td>I_{SDM}</td>
<td></td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Source to Drain Diode Voltage (Note 2)</td>
<td>V_{SD}</td>
<td>$T_J = 25^\circ C$, $I_{SD} = 5.6A$, $V_{GS} = 0V$ (Figure 13)</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_{rr}</td>
<td>$T_J = 25^\circ C$, $I_{SD} = 5.6A$, $dI_{SD}/dt = 100A/\mu s$</td>
<td>4.6</td>
<td>96</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse Recovered Charge</td>
<td>Q_{RR}</td>
<td>$T_J = 25^\circ C$, $I_{SD} = 5.6A$, $dI_{SD}/dt = 100A/\mu s$</td>
<td>0.17</td>
<td>0.4</td>
<td>0.83</td>
<td>μC</td>
</tr>
</tbody>
</table>

NOTES:
2. Pulse test: pulse width $\leq 300\mu s$, duty cycle $\leq 2\%$.
3. Repetitive rating: pulse width limited by max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. $V_{DD} = 25V$, start $T_J = 25^\circ C$, $L = 910\mu H$, $R_G = 25\Omega$, peak $I_{AS} = 5.6A$.

Typical Performance Curves Unless Otherwise Specified

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE
Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

![Forward Bias Safe Operating Area](image1)

- Operation in this region is limited by $r_{DS(ON)}$
- $T_C = 25^\circ C$
- $T_J = 175^\circ C$

FIGURE 5. OUTPUT CHARACTERISTICS

![Output Characteristics](image2)

- Pulse duration = 80μs
- Duty cycle = 0.5% max

FIGURE 6. SATURATION CHARACTERISTICS

![Saturation Characteristics](image3)

- Pulse duration = 80μs
- Duty cycle = 0.5% max

FIGURE 7. TRANSFER CHARACTERISTICS

![Transfer Characteristics](image4)

- Pulse duration = 80μs
- Duty cycle = 0.5% max

FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

![Drain to Source On Resistance](image5)

- Pulse duration = 80μs
- Duty cycle = 0.5% max

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

![Normalized Drain to Source On Resistance](image6)

- Pulse duration = 80μs
- Duty cycle = 0.5% max
Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT

FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE

FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
Test Circuits and Waveforms

FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 16. UNCLAMPED ENERGY WAVEFORMS

FIGURE 17. SWITCHING TIME TEST CIRCUIT

FIGURE 18. RESISTIVE SWITCHING WAVEFORMS

FIGURE 19. GATE CHARGE TEST CIRCUIT

FIGURE 20. GATE CHARGE WAVEFORM