30A, 200V, 0.085 Ohm, N-Channel Power MOSFET

This N-Channel enhancement mode silicon gate power field effect transistor is designed, tested and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. These MOSFETs are designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. They can be operated directly from integrated circuits.

Formerly developmental type TA09295.

Features

- 30A, 200V
- $r_{DS(ON)} = 0.085 \Omega$
- Single Pulse Avalanche Energy Rated
- SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- Related Literature
 - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BRAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRF250</td>
<td>TO-204AE</td>
<td>IRF250</td>
</tr>
</tbody>
</table>

NOTE: When ordering, include the entire part number.

Symbol

![Symbol Diagram]

Packaging

![Packaging Diagram]
Absolute Maximum Ratings $T_C = 25^\circ\text{C}$, Unless Otherwise Specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Voltage (Note 1)</td>
<td>V_{DS}</td>
<td>$V_{GS} = 0V, I_D = 250\mu A$ (Figure 10)</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)</td>
<td>V_{DSR}</td>
<td>$V_{GS} = V_{DS}, I_D = 250\mu A$</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_D</td>
<td>$T_C = 100^\circ\text{C}$</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current (Note 3)</td>
<td>I_{DM}</td>
<td>$T_C = 100^\circ\text{C}$</td>
<td>120</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Gate to Source Voltage</td>
<td>V_{GS}</td>
<td>$T_C = 100^\circ\text{C}$</td>
<td>±20</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Power Dissipation</td>
<td>P_D</td>
<td>$T_C = 100^\circ\text{C}$</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>W</td>
</tr>
<tr>
<td>Single Pulse Avalanche Energy Rating (Note 4)</td>
<td>E_{AS}</td>
<td>$T_C = 100^\circ\text{C}$</td>
<td>910</td>
<td>-</td>
<td>-</td>
<td>mJ</td>
</tr>
<tr>
<td>Operating and Storage Temperature</td>
<td>T_J, T_{STG}</td>
<td>$T_C = 100^\circ\text{C}$</td>
<td>-55</td>
<td>-</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Temperature for Soldering</td>
<td>T_L</td>
<td>$T_C = 100^\circ\text{C}$</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>°C</td>
</tr>
<tr>
<td>Package Body for 10s, See Techbrief 334</td>
<td>T_{pkg}</td>
<td>$T_C = 100^\circ\text{C}$</td>
<td>260</td>
<td>-</td>
<td>-</td>
<td>°C</td>
</tr>
</tbody>
</table>

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. $T_J = 25^\circ\text{C}$ to 125°C.

Electrical Specifications $T_C = 25^\circ\text{C}$, Unless Otherwise Specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Breakdown Voltage</td>
<td>BV_{DSS}</td>
<td>$V_{GS} = 0V, I_D = 250\mu A$ (Figure 10)</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>$V_{GS(TH)}$</td>
<td>$V_{GS} = V_{DS}, I_D = 250\mu A$</td>
<td>2.0</td>
<td>-</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{DSS}</td>
<td>$V_{DS} = \text{Rated } BV_{DSS}, V_{GS} = 0V$</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DS} = 0.8 \times \text{Rated } BV_{DSS}, V_{GS} = 0V, T_J = 125^\circ\text{C}$</td>
<td>-</td>
<td>-</td>
<td>250</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>On State Drain Current (Note 2)</td>
<td>$I_{D(ON)}$</td>
<td>$V_{DS} > I_{D(ON)} \times r_{DS(ON)}$MAX, $V_{GS} = 10V$</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>I_{GSS}</td>
<td>$V_{GS} = \pm 200V$</td>
<td>-</td>
<td>-</td>
<td>±100</td>
<td>nA</td>
</tr>
<tr>
<td>Drain to Source On Resistance (Note 2)</td>
<td>$r_{DS(ON)}$</td>
<td>$V_{GS} = 10V, I_D = 16A$ (Figures 8, 9)</td>
<td>0.07</td>
<td>0.085</td>
<td>-</td>
<td>Ω</td>
</tr>
<tr>
<td>Forward Transconductance (Note 2)</td>
<td>g_{fs}</td>
<td>$V_{DS} \geq 50V, I_D = 16V$ (Figure 12)</td>
<td>13</td>
<td>19</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>$t_{D(ON)}$</td>
<td>$V_{DD} = 100V, I_D = 30A, R_G = 6.2\Omega, R_L = 3.2\Omega$ (Figures 17, 18) MOSFET Switching Times are Essentially Independent of Operating Temperature</td>
<td>-</td>
<td>20</td>
<td>30</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>180</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>$t_{D(OFF)}$</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>120</td>
<td>ns</td>
</tr>
<tr>
<td>Total Gate Charge (Gate to Source + Gate to Drain)</td>
<td>$Q_g(TOT)$</td>
<td>$V_{GS} = 10V, I_D = 30A, V_{DS} = 0.8 \times \text{Rated } BV_{DSS}, I_{G(REF)} = 1.5mA$ (Figures 14, 19, 20) Gate Charge is Essentially Independent of Operating Temperature</td>
<td>-</td>
<td>79</td>
<td>120</td>
<td>nC</td>
</tr>
<tr>
<td>Gate to Source Charge</td>
<td>Q_{gs}</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>Gate to Drain “Miller” Charge</td>
<td>Q_{gd}</td>
<td>-</td>
<td>-</td>
<td>42</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_{ISS}</td>
<td>$V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz$ (Figure 11)</td>
<td>-</td>
<td>2000</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{OSS}</td>
<td>-</td>
<td>-</td>
<td>800</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse-Transfer Capacitance</td>
<td>C_{RSS}</td>
<td>-</td>
<td>-</td>
<td>300</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Internal Drain Inductance</td>
<td>L_D</td>
<td>Measured between the Contact Screw on Header that is Closer to Source and Gate Pins and Center of Die</td>
<td>-</td>
<td>12.5</td>
<td>-</td>
<td>nH</td>
</tr>
<tr>
<td>Internal Source Inductance</td>
<td>L_S</td>
<td>Measured from the Source Lead, 6mm (0.25in) from Header to Source Bonding Pad</td>
<td>-</td>
<td>12.5</td>
<td>-</td>
<td>nH</td>
</tr>
<tr>
<td>Thermal Resistance Junction to Case</td>
<td>R_{JJC}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.83</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance Junction to Ambient</td>
<td>R_{JJA}</td>
<td>Free Air Operation</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Source to Drain Diode Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Source to Drain Current</td>
<td>I_{SD}</td>
<td>Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Diode</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Pulse Source to Drain Current (Note 3)</td>
<td>I_{SDM}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>Source to Drain Diode Voltage (Note 2)</td>
<td>V_{SD}</td>
<td>$T_J = 25^\circ C$, $I_{SD} = 30A$, $V_{GS} = 0V$ (Figure 13)</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_{rr}</td>
<td>$T_J = 25^\circ C$, $I_{SD} = 30A$, $dI_{SD}/dt = 100A/\mu s$</td>
<td>140</td>
<td>350</td>
<td>630</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse Recovered Charge</td>
<td>Q_{RR}</td>
<td>$T_J = 25^\circ C$, $I_{SD} = 30A$, $dI_{SD}/dt = 100A/\mu s$</td>
<td>1.8</td>
<td>4.7</td>
<td>8.1</td>
<td>μC</td>
</tr>
</tbody>
</table>

NOTES:
2. Pulse Test: Pulse width $\leq 300\mu s$, duty cycle $\leq 2\%$.
3. Repetitive Rating: Pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. $V_{DD} = 50V$, starting $T_J = 25^\circ C$, $L = 1.5mH$, $R_G = 25\Omega$, peak $I_{AS} = 30A$. See Figures 15 and 16.

Typical Performance Curves Unless Otherwise Specified

![Figure 1. Normalized Power Dissipation vs Case Temperature](image1)
![Figure 2. Maximum Continuous Drain Current vs Case Temperature](image2)
![Figure 3. Normalized Maximum Transient Thermal Impedance](image3)
Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

FIGURE 5. OUTPUT CHARACTERISTICS

FIGURE 6. SATURATION CHARACTERISTICS

FIGURE 7. TRANSFER CHARACTERISTICS

FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
Typical Performance Curves

Unless Otherwise Specified (Continued)

FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT

FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE

FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
Test Circuits and Waveforms

FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT

- V_{DD}
- V_{GS}
- I_{AS}
- R_G
- L
- $0V$
- t_P
- VARY t_P TO OBTAIN REQUIRED PEAK I_{AS}

FIGURE 16. UNCLAMPED ENERGY WAVEFORMS

- V_{DS}
- I_{AS}
- t_{P}
- t_{AV}

FIGURE 17. SWITCHING TIME TEST CIRCUIT

- R_L
- V_{GS}
- V_{DD}

FIGURE 18. RESISTIVE SWITCHING WAVEFORMS

- t_{ON}
- $t_{d(ON)}$
- t_{f}
- $t_{d(OFF)}$
- t_{OFF}

FIGURE 19. GATE CHARGE TEST CIRCUIT

- V_{DD}
- $I_{g}(REF)$
- $0.2\mu F$
- $0.3\mu F$
- $50k\Omega$
- $12V$

FIGURE 20. GATE CHARGE WAVEFORMS

- $I_{g}(REF)$
- $Q_{g(TOT)}$
- Q_{gs}
- Q_{gd}
- V_{GS}
- V_{DS}
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240

EUROPE

Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029