Failure Analysis of Semiconductors usin Scanning Probe Microscopy (SPM)	ng
Peter De Wolf Ph.D. Veeco Metrology, Europe	
Tutorial ESREF, Oct. 4, 2004	
Research & Industry	eco

Purpose
 Help you understand why one should use an AFM for Failure Analysis Understand the function and application of all specific SPM-based FA techniques Specific Examples of Fault Isolation and Root Cause Analysis with AFM Convince you that AFM is the future of Nanoscale FA
Research & Industry

SSRM Summary	
 SSRM can be used for conductivity & resistivity imaging 2-D carrier profiling in semiconductor dev current range: 10 pA - 100 μA spatial resolution: 10-25 nm 	vices
 carrier profiling Resolution: down to 2 nm (in literature) dynamic range: 10¹⁵-10²⁰ atoms/cm³ junction localization is possible: resistant peak 	ce
Research & Industry	Veeco

Comparison SCM & SSRM

SCM

- + resolution: about 15nm (10nm in literature)
- + range: 10¹⁵-10²⁰ atoms/cm³
- + low-force contact mode
- + Tips: metal-coated (Ptlr, CoCr)
- No signal on metals & insulators
- + n-type and p-type result in different polarity
- ± carrier concentration and dC/dV have non-linear relation

SSRM

- + resolution: about 15nm (2nm in literature)
- + range: 10¹⁵-10²⁰ atoms/cm³
- high-force contact mode
- **±** Tips: diamond-coated
- + Signal on metals
- n-type and p-type result in same polarity
- + sample resistivity and resistance are proportional

Veeco

Research & Industry

TUNA Summary
 Spatial resolution: 2-10 nm current range: 50 fA-120 pA
• 2-D imaging and local <i>I-V</i> spectra
 TUNA can be used for: current imaging in thin dielectric films: gate-oxides, Al-oxide, Dielectric film thickness uniformity Oxide defect localization, imaging and characterization Oxide breakdown measurement, reliability tests
Research & Industry

CI-AFM compared to Passive Voltage Contrast

- Sample Parallel Lapped to Contact Level
- BW Image is SEM Voltage Contrast
- Yellow Inset is AFM Current Imaging
- Current Image was acquired with -2V on the sample stage
- SEM VC relies on charging effect due to beam current

Veeco

FIB contacts deposited on 0.13µm SRAM transistors at Contact Level

- internal cache transistors are more susceptible to FIB damage at contact level
- Must probe at contact to access the individual transistors
- Sample prep is a ½ day process plus baking to lower ∆Vt
- Sample goes from PFA to EFA and back again creating long waits

Research & Industry

Veeco

Ato Re	Atomic Force Probing SRAM Cell Requirements					
	-					
Tec	hnolog Node	SRAM cell	Req'd Probe	S/D/G	Best Probe	
18	0nm	2.0μm	.5μm	.13 μm ²	250nm	
13	0nm	1.5µm	.38µm	.07 μm²	100nm	
9	Onm	1μm	.25µm	.03 μm²		
6	5nm	.8µm	.19µm	.018 μm²	FOrm	
4	ōnm	.6µm	.13µm	.009 μm²	SUNM	
esearch &	& Industry				Veeco	

