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PURPOSE

The aim of this tutorial is to give you an overview on Laser 
testing techniques, their physical principles, their apparatus 
and their applications: 

Probe and pump modes
Thermal and photoelectric based techniques
Static and dynamic applications

For each technique, we focus not only on its principle but 
also on linked case studies to give you a rough idea on how 
you can use them that help you in your future choices.
This tutorial will be mostly dedicated to thermal laser 
stimulation because it is widely used in FA laboratories 
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OUTLINE

1. Laser Testing at a Glance
2. Pump modes

2.1 Thermal laser stimulation
2.2 Photoelectric laser Stimulation
2.3 Dynamic pump modes

3. Probe modes
4. Emerging techniques under investigation 
5. Conclusion
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1.1 Motivation
1.2 Pump, probe and mixed mode
1.3 Basic of laser testing
1.4 Absorption in doped Si
1.5 Spatial resolution and timing consideration
1.6 Apparatus
1.7 Static and dynamic laser testing
1.8 A possible classification

Outline

1. Laser Testing at a Glance
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1. Laser Testing at a Glance

Interest for all optical techniques
Technological evolution

Packaging (Flip chip, Lead on Cheap)
Front end

Number of metal layer
Dummy metal (planar process)
Region Of Interest hidden by upper metal 
layer

Backside analysis
Emission microscopy

Adapted for leakage (dielectric, Junction)
Based on de-excitation (interband or intraband)
Missing complementary technique for metal 
short that cannot be covered by liquid crystal

1.1 Motivation
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Laser techniques are widely used in SC industries and FA 
labs

A Tremendous palette of interaction between laser and Device 
Under Test (DUT)
A situation comparable to Ebeam testing in the 80’s
Commercial tools already available mostly using thermal 
effects
Some new Laser-based techniques are still under 
investigations

Knowledge of existing and future laser based techniques is 
mandatory

1.1 Motivation

1. Laser Testing at a Glance
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Device
under test

Electrical
parameters

reflection

transmission

absorption

LASER

Amplitude
Phase
Polarisation
...

1.2 Pump, probe and mixed modes

1. Laser Testing at a Glance
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Based on photon / IC interactions
Why a laser?

Very high power density
Wavelength choice according to expected effects

Optical absorption In IC
Photoelectric (in SC E photon > E gap)
Thermal (absorption in metal, polysilicon or heavily doped SC) 

Reflection of laser beam
Reflectometry

Optical image of device topography
Voltage, temperature

Interferometry improve sensitivity

1. Laser Testing at a Glance

1.3 Basic of IC laser testing
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1. Laser Testing at a Glance

Reflection R
Si / air  (20%)
Si / SiO2
Metal > 90%

Roughness dependence
Wavelength and metal dependant
Allow device imaging

Absorption
2 main phenomena

E-h generation (EG dependant)
Thermal (metal, poly, heavily doped Si)

Transmission
Beer-Lambert law
SiO2 (transparent), Si (doping 
dependant), metal (absorbent)

1.3 Basic of IC laser testing
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1. Laser Testing at a Glance

1.4 Absorption in doped Si

[JOH93]
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1. Laser Testing at a Glance

Spatial resolution limited to 
spot size 

Wavelentgh 
1064nm < 0.75µm
1340nm < 1.00µm

Beam waist
Exponential decay (R, z)
Timing consideration

Thermal ns -> µs
E-h generation fs -> ns
Effect of the device (IDD -> 
µs ... ms)
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1.5 Spatial resolution and timing considerations

Beam waist

w(z)

R

20w
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1. Laser Testing at a Glance

1.6 Apparatus R&D lab example
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1. Laser Testing at a Glance

Wavelength : 760 - 1100 nm
Pulse duration : 100 fs - 80ps
Energy : 10 fJ - 5 nJ
Pulse repetition rate : single shot - 80 MHz
Spot size (Φ) : 1.1, 3, 10 µm 
Scanning resolution : 0.1 µm
Window Definition
Discrete Scanning

1 point
1 pulse
1 measurement

1.6 Apparatus
R&D lab
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1. Laser Testing at a Glance

1.6 Apparatus Commercial tools
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1. Laser Testing at a Glance

1.6 Apparatus Commercial tool examples

IDS OptiCA (NPTest / Credence)
Dual laser source
1064nm and 1340nm 
PICA and SiAPD or MCT and SSPD

Phemos 1000 (Hamamatsu)
1064nm and / or 1340nm 
CCD and / or MCT
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Static versus dynamic is related to electrical stimulation
Static

Device is powered on and halted at a steady state
Laser is scanning the device while measuring electrical value 
(current, voltage …)
Laser beam can be continuous, pulsed or modulated

Dynamic
Device is permanently running a test pattern
Continuous laser is slowly scanning the DUT
During one test pattern laser spot is roughly at the same place

Full dynamic
Device is permanently running a test pattern
Laser beam is modulated or pulsed 
Laser pulses and test pattern are synchronized

1.7 Static and dynamic laser testing

1. Laser Testing at a Glance
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STIMULATION ANALYSIS TECHNIQUE

electrical electrical Electrical testing
(IDDQ, …)

optical electrical Pumping
(OBIC, …)

electrical optical Probing
(Reflectometry, …)

optical optical Pumping-Probing
(fs acoustic, …)

D.U.TD.U.T

1.8 A possible classification

1. Laser Testing at a Glance
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OUTLINE

1. Laser Testing at a Glance
2. Pump modes

2.1 Thermal laser stimulation
2.2 Photoelectric laser Stimulation
2.3 Dynamic pump modes

3. Probe modes
4. Emerging techniques under investigation 
5. Conclusion
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2. Pump modes

Thermal Laser Stimulation (OBIRCH, TIVA…)

Laser of λ > 1.1µm
Heats up IC’s 

absorbing elements

Current / voltage variation
⇒ Localization of shorts and ESD 

defects…

Photoelectric Laser Stimulation (OBIC, LIVA...)

Laser of λ < 1.1µm
Generation of e-h

pairs in Si

Induce a photocurrent
⇒ Localization of junction defects, 

opens…

TLS and PLS offer a wide range of applications
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2.1.1 Basic of thermal laser stimulation
Principles
Apparatus
Resistance change

2.1.2 TLS simulation
2.1.3 Case studies
2.1.4 TLS improvement
2.1.5 Seebeck Effect Imaging

Outline

2.1 Thermal laser stimulation



11

ESREF 2004 Zurich – October 4-8th, 2004

Local temperature increase:
Resistance change
Thermal expansion
Thermoelectric generation

Local heating

Effect on electrical 
parameters

Electrical 
stimulation

Analysis

LASER

Indirect heating: 
effects on Semiconductors (kT) ?

2.1 Thermal laser stimulation

2.1.1 Basic of thermal laser stimulation: Principles
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2.1 Thermal laser stimulation

2.1.1 Basic of thermal laser stimulation: Apparatus
Based on Optical microscope

Could be any wavelength
Generally 1.3 µm
100 to 500 mWPin hole

Confocal mode
Imaging

Can be combined with
PLS
Emission microscope

Apparatus for 
OBIRC (Nikawa et al)
TIVA (Cole et al)
SEI (Cole et Al)
XIVA (Falk et al)
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C.I.

AMPLI
V / V

C.I.

AMPLI
I / V

OBIRCH

C.I.

AMPLI
V / V

TIVA Apparatus:
Optical Beam Induced 
Resistance Change
Thermally Induce Voltage 
Alteration
Seebeck Effect Imaging
XIVA

2.1 Thermal laser stimulation

2.1.1 Basic of thermal laser stimulation: Apparatus

XIVA
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Resistor change under thermal stimulation

Other materials
Metal αTCR >0, δΤ >0
Polysilicium or doped Si, αTCR doping dependant, δΤ >0

Voltage source (OBIRCH: K. Nikawa)
Current source (TIVA: E. Cole) 
[NIK93], [COL94]

IRV ⋅∆=∆

αTCR = 4,29x10-3 

Aluminium

δT = 2,36x10-5

( )V RRI 2∆−=∆

( ) T
S

LR TTCR ∆−=∆ δαρ 20

2.1 Thermal laser stimulation

2.1.1 Basic of thermal laser stimulation: Resistance change
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2.1.1 Basic of thermal laser stimulation
2.1.2 TLS simulation

Introduction
Transversal and longitudinal cases
Timing considerations
Temperature profile
Resistance variation and laser power
Experimental validation

2.1.3 Case studies
2.1.4 TLS improvement
2.1.5 Seebeck Effect Imaging

Outline

2.1 Thermal laser stimulation
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Dynamic simulation of thermal heating
Why?

Link between ∆T and ∆R
Spatial extension of heating area
Temperature increase and decrease, timing considerations
Hot spot position versus laser position

How?
3D thermal simulation
Realistic laser scanning

Transversal mode (crossing a metal line)
Longitudinal (along a metal line)
Scanning speed

2.1 Thermal laser stimulation

2.1.2 TLS simulation: Introduction
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Length=120µmStructure 
parameters:
Tini: 25oC
Plaser: 100mW
Rlaser: 0,65mm
Vfast: 1,23m/s
Vslow: 0,00768m/s
Laser: Gaussian 
shape, F=1.3 µm

1µm
0.5µm
1µmSiO2

Silicium

1µm

4µm

10µm

Al

1µm

3D Simulation with ANSYS 

2.1 Thermal laser stimulation

2.1.2 TLS simulation: Introduction
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2.1 Thermal laser stimulation

2.1.2 TLS simulation: Transversal and longitudinal cases

Transversal

Laser
beam
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Thermal Laser Stimulation (7)

2.1.2 TLS simulation: Transversal and longitudinal cases

Longitudinal

Laser
beam
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Return to thermal equilibrium < 10µs
Slow scan is slightly better (Tmax)
Tmax at the middle of the line 
Small shift between Tmax and laser spot

25
35
45
55
65
75

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Position (µm)         Temps (µs) 

T 
(°

C
)

lent
rapide

10 µs

25

35

45

55

65

75

0,0E+00 5,0E-06 1,0E-05 1,5E-05 2,0E-05
Temps (s) 

T 
(°

C
) lent

rapide

Transversal case Longitudinal case

Fast
Slow

Fast
Slow

2.1 Thermal laser stimulation

2.1.2 TLS simulation: Timing considerations
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Spatial extension limited to few µm

25

35

45

55

65

75

-20 -10 0 10 20
Position / centre du laser (µm)

T (°C)trans. lent
trans. rapide
long. lent
long. rapide

T ∝ Plaser

∆Tmax = 0,55 oC/mW

Tmax = 79,9 oC

Position (µm), laser center at 0

Trans. slow
Trans. fast
Long. slow

Long. fast

2.1 Thermal laser stimulation

2.1.2 TLS simulation: Temperature profile
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2.1 Thermal laser stimulation

2.1.2 TLS simulation: Resistance variation and laser power
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Aluminum line (0,8 µm),
OBIRCH

V= 19,7 mV
(I = 1mA)
αTCR > 0

R=19,7 Ω
Measured ∆R 42,6 mΩ
Theoretical ∆R 39,1 mW
Jmin = 200 mA / µm²
∆R/R = 0.00216

Front side

Back side

Sumperimposed

OBIRCH

2.1 Thermal laser stimulation

2.1.2 TLS simulation: Experimental validation
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2.1.1 Basic of thermal laser stimulation
2.1.2 TLS simulation
2.1.3 Case studies

Current path
Metal and poly short
Melted material short (EOS ESD)
Comparison with emission microscopy
Device effect
Indirect heating

2.1.4 TLS improvement
2.1.5 Seebeck Effect Imaging

Outline

2.1 Thermal laser stimulation
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Test structure (German Chip)
OBIRCH,  I = 700 µA, 20 x

Al line 0.5 µm

2.1 Thermal laser stimulation

2.1.3 Case studies: Current path
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Metal short M1-M2
Front side analysis
CMOS device

2mA @ 5V
No photon emission

Metal short (M1-M2)TLS (20x)

TLS (200x)

2.1 Thermal laser stimulation

2.1.3 Case studies: metal or poly short
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Courtesy of A. Firiti, 
ST Microelectronics

TLS FS 20X

TLS BS 20X

Front side and 
backside analysis

CMOS device 
2.5 mA
100mV

2.1 Thermal laser stimulation

2.1.3 Case studies: metal or poly short

ESREF 2004 Zurich – October 4-8th, 2004

EMMI (100x) TLS (200x)

GGNMOS
Single ESD stress

Leakage I=2µA at p-n junction 
Melted silicon filament 

2.1 Thermal laser stimulation

2.1.3 Case studies: Comparison with emission microscopy
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CMOS transceiver
I ~ 60 mA @ 3V 
Defective area hidden by metal screening
Backside analysis

Photon emission
Linked to the defect
Not at defect site

Polysilicon filament

BS TLS
Defective area BS (20x)

BS EMMI

2.1 Thermal laser stimulation

2.1.3 Case studies: Comparison with emission microscopy

ESREF 2004 Zurich – October 4-8th, 2004

Effect of integrated circuit
SPICE simulation
No linear behavior
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2.1 Thermal laser stimulation

2.1.3 Case studies: Device effect



21

ESREF 2004 Zurich – October 4-8th, 2004

EMMI 4 samples
Layout / schematic
analysis

3 Hours

Mechanical
probing

10 Measurements

FIB device
modification

25 cuts
1 strap

25 measurements
(Voltage Contrast)

FIB high resolution 2 cross sections
SEM 5 observations
Total FA time 30 Hours

CMOS device
2mA @ 3V
Previous work with EMMI, CAD 
database an FB
Front side analysis

EMMI

2.1 Thermal laser stimulation

2.1.3 Case studies: Device effect
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TLS (20x)

Faster analysis with TLS
Short metal M2-M3
Effect of the device: no linear 
behavior

2.1 Thermal laser stimulation

2.1.3 Case studies: Device effect
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( )2
2 TG

ox
Dsat VV

dL
ZI −≅
µε

[BOIT04]

Indirect heating of MOS channel
Polysilicon gate heating (thermal 
diffusion through thin gate oxide)
Source or Drain contact heating 
(metal – heavily doped silicon 
contact)
Effect on carrier mobility …

2.1 Thermal laser stimulation

2.1.3 Case studies: Indirect heating
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2.1.1 Basic of thermal laser stimulation
2.1.2 TLS simulation
2.1.3 Case studies
2.1.4 TLS improvement

Sensible parameters
Detection improvements
Optical improvements
Practical considerations

2.1.5 Seebeck Effect Imaging

Outline

2.1 Thermal laser stimulation
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2.1 Thermal laser stimulation

2.1.4 TLS improvement: Sensible parameters

Signal increase
↑ Power supply (Voltage / current)
↑ Laser power
↑ Laser efficiecy (AR coating)
↓ scanning speed

Signal to noise ratio increase
Battery powered
↓ device temperature (thermal noise, αTCR ↑ )
Detection system

Dwell-time, Lock-in amplifier, self, Squid)

Spatial resolution
Immersion lens

Optical improvements

Detection
improvements
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2.1 Thermal laser stimulation

Dwell-time control [PAL01]
Point mode scan control

Balance continuous scanning effect (tail)
Allow relaxation of the electronic without 
imaging
Adjustable (minimum 75 µs)

Lock-in amplifier
Well none process to improve SNR
Need laser modulation
Could gain orders of magnitude
Drawback

Very low scan speed
Acquisition time

2.1.4 TLS improvement: Detection improvements
Reflected backside image 
of the test diode

TIVA image using a pixel 
dwell time of 1 ms

Conventional TIVA image.
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2.1 Thermal laser stimulation

Self (XIVA), [FAL01]
Good ∆I->∆V transducer
No change in DC current
Sensitivity improvement
10 to 20 times in SNR

SQUID [NIK02 ]
Contactless measurement
Less noise
High sensitivity
Drawback

Cryogenic constraints
Cost

2.1.4 TLS improvement: Detection improvements
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2.1 Thermal laser stimulation

2.1.4 TLS improvement: Optical improvements 

Anti reflective coating  [DAV00]
Increase transmission for laser testing through backside 
From 69,1 % to nearly 100 %

Immersion lens [EIL01]
Increase NA more than 1!
Increase spatial resolution
0.5 µm instead of 0.75 µm with 1064nm laser
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2.1 Thermal laser stimulation

Current path analysis
If I2>>I1, hidden defect 
Defect size versus spot size

Effect on ∆R defect
Better sensitivity on small defects

Elements Size on the current path
+ Void detection
- Artifacts

Need a current path!

OBIRCH or TIVA?
Ultra stable voltage source
Voltage measurement

2.1.4 TLS improvement: Practical considerations
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2.1.1 Basic of thermal laser stimulation
2.1.2 TLS simulation
2.1.3 Case studies
2.1.4 TLS improvement
2.1.5 Seebeck Effect Imaging

Principle
Metal – doped Si thermocouple

Validation on test structure
Case studies
Practical considerations

2.1.6 Dynamic thermal laser stimulation
2.1.7 Thermal laser stimulation summary

Outline

2.1 Thermal laser stimulation
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T > T0

T0

Laser

T0 M1 M 2

Material Q12 (µV/oC)

Al / W 7,0

-121

Al / n+ Si
(1020cm-3) -105

Al / n+ Poly

( ) ( ) ( )01202112 TTQTTQQV −=−−=

Seebeck effect
Two materials
Temperature difference
Voltage generation

NB_TLS
No Biased TLS
SEI Seebeck effect imaging 

∆V = V12

2.1 Thermal laser stimulation

2.1.5 Seebeck Effect Imaging: Principle
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2.1 Thermal laser stimulation

2.1.5 Seebeck Effect Imaging: Metal–doped Si thermocouple

Dopant
concentration
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Metal / Metal
FIB

Circuit edit
Pt / Al
2 thermocouples
Pt / Al

VPt/Al

VAl/Pt

2.1 Thermal laser stimulation

2.1.5 Seebeck Effect Imaging: Validation on test structure

ESREF 2004 Zurich – October 4-8th, 2004

∆ T°

T0T > T0 T > T0

Metal / Poly (0,8µm) 
TLS (I = 1 mA) versus  NBTLS

2.1 Thermal laser stimulation

2.1.5 Seebeck Effect Imaging: Validation on test structure

∆V (ND = 1x1020 cm-3)
measured 1.1 mV
theoretical 1.3 mV
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Test structure
Contact chain
Al / Si P+

NB-TLS (80x)

Laser

Rdiff

Laser

∆T ∆T
W W

Al Al

2.1 Thermal laser stimulation

2.1.5 Seebeck Effect Imaging: Validation on test structure
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Vias M1-M2
R=7.14 (spec R=0.8 Ohm)

Courtesy of  Abdellatif Firiti, 
ST Microelectronics

2.1 Thermal laser stimulation

2.1.5 Seebeck Effect Imaging: Case studies

NB-TLS (50x)
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SRAM memory IC
ESD stressed (HBM)
No result with EMMI or with TLS
Molten Si/Al filament

NB-TLS (200x) NB-TLS (50x)

5,000x

10,000x

2.1 Thermal laser stimulation

2.1.5 Seebeck Effect Imaging: Case studies
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2.1 Thermal laser stimulation

A complex network
A lot of thermocouples
What are we measuring outside?

TLS – NB TLS Comparison
NB – TLS less invasive (nA, mV)
TLS needs a current flow through 
the defect path
NB – TLS: the choice of 
measurement pins is critical 

NB – TLS perfect for test 
structure (Yield, WLR …)

2.1.5 Seebeck Effect Imaging: Practical considerations



30

ESREF 2004 Zurich – October 4-8th, 2004

OUTLINE

1. Laser Testing at a Glance
2. Pump modes

2.1 Thermal laser stimulation
2.2 Photoelectric laser stimulation
2.3 Dynamic pump modes

3. Probe modes
4. Emerging techniques under investigation 
5. Conclusion
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2.2.1 Basics of PLS
Principles
Apparatus

2.2.2 OBIC applications at Junction level
2.2.3 Applications at device level
2.2.4 Practical considerations on PLS

Outline

2.2 Photoelectric laser stimulation
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2.2.1 Basics of PLS: Principles

2.2 Photoelectric laser stimulation

PLS comes from an old 
technique

OBIC: Optical Beam 
Induced Currents
Junction imaging instead or 
in complement to EBIC
80’s (LSM Zeiss)

Laser – SC interaction
E-h generation
L < 1110 nm (25°C)
E >1,12eV
Other process (impurities, 
E~1.1 eV)

ESREF 2004 Zurich – October 4-8th, 2004

2.2.1 Basics of PLS: Principles

2.2 Photoelectric laser stimulation

Generated e-h
Diffusion
Recombination
Dissociation

Dissociation
Electrical field
Charge space region
Junction

Current generator
R (shunt and diode)
C (transition and diffusion)
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2.2.1 Basics of PLS: Principles

2.2 Photoelectric laser stimulation

Estimated value of I=Ie+Ih
Absorption in lightly doped silicon ->e-h generation

λ =>E =>α =>absorption
=>GOP(z) e-h generation rate at depth z 
=>optical flux at depth z (less attenuated ΦOP(z)=ΦOP(0) e– α z)

Free carrier absorption => quantum efficiency η<1

ΦOP(z) limited to charge space region

100016712.51/e depth (µm)

1060800Absorption coefficient α (cm-1)
λ0=1,06µmλ0=1µmλ0=0,8µmWavelength

dzzqdzzGqIIz
dz

zdzG
z

z
OP

z

z
OPheOP

OP
OP ∫∫ ===⇒=−=

2

1

2

1

)()()()()( φαηφαηφ
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2.2.1 Basics of PLS: Apparatus

2.2 Photoelectric laser stimulation

Same as TLS apparatus
Use of λ<1.1 µm laser 
source
Optical microscope
Pin hole

Confocal mode
Imaging

Can be combined with
TLS
Emission microscope
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2.2.1 Basics of PLS
2.2.2 OBIC applications at Junction level

OBIC and NB-OBIC
SCOBIC

2.2.3 Applications at device level
2.2.4 Practical considerations on PLS

Outline

2.2 Photoelectric laser stimulation
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2.2.2 OBIC applications at Junction level: OBIC and NB-OBIC

2.2 Photoelectric laser stimulation

30µm

20µm

Input

GBNPN transistor
(ESD protection)

Test vehicle, ESD stress (HBM)

Base
Emitter

Collector
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2.2.2 OBIC applications at Junction level: OBIC and NB-OBIC

2.2 Photoelectric laser stimulation

Reference device: 
NB-OBIC (No Bias OBIC)                       OBIC

ESREF 2004 Zurich – October 4-8th, 2004

2.2.2 OBIC applications at Junction level: OBIC and NB-OBIC

2.2 Photoelectric laser stimulation

NBOBIC OBIC

Stressed device number 1
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2.2.2 OBIC applications at Junction level: SCOBIC

2.2 Photoelectric laser stimulation

Single Contact OBIC
No need for 2 contacts across 
the imaged junction
Current loop through parasitic 
capacitor

Optical beam induced current 
IB charge the parasitic 
capacitor
Voltage capacitor forward 
biases the diode
ID flows through the diode
Equilibrium ID=IB

Unbiased device

Physical connection of the device

[PAL00]
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2.2.2 OBIC applications at Junction level: SCOBIC

2.2 Photoelectric laser stimulation

Backside SCOBIC imaging capability: CMOS Inverter 
(54HCU04) thinned down to 200µm, λ = 1µm

Ground-Vdd shunted

Inverter

PMOS

NMOS

Inverter



36

ESREF 2004 Zurich – October 4-8th, 2004

2.2.2 OBIC applications at Junction level: SCOBIC

2.2 Photoelectric laser stimulation

SCOBIC OBICNBOBIC

Defect localization in all cases
High sensitivity
No parasitic PLS signal
Needs time

ESREF 2004 Zurich – October 4-8th, 2004

2.2.1 Basics of PLS
2.2.2 OBIC applications at Junction level
2.2.3 Applications at device level

OBIC
Observability
Controllability
Latchup sensitivity
SEU Sensitivity

2.2.4 Practical considerations on PLS

Outline

2.2 Photoelectric laser stimulation
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2.2.2 OBIC applications at device level: OBIC

2.2 Photoelectric laser stimulation

Case study on .18 µm CMOS device
Different localization techniques are successfully used
Shortage by dummy metal confirmed by physical analysis

From Yoshiretu Yamada [YAM00]

OBIRCHOBIC
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2.2.2 OBIC applications at device level: Observability

2.2 Photoelectric laser stimulation

N+N+

Node
under

test

VSS

VDD

PMOS0

A current is
measured in 
VDD line

LASER

P substrate
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2.2.2 OBIC applications at device level: Observability

2.2 Photoelectric laser stimulation

N+ N+

Node
under

test

VSS

VDD

PMOS

LASER

1

NO current is
measured in 
VDD line

P substrate
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2.2.2 OBIC applications at device level: Observability

2.2 Photoelectric laser stimulation

Ability to determine logical states
Backside LIVA Logic State Imaging of a SRAM in µP

LIVA like TIVA apparatus: Current source, Voltage measurement
Courtesy of Ed Cole [COL94] 

Reflected image LIVA image
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2.2.2 OBIC applications at device level: Controllability

2.2 Photoelectric laser stimulation

VDD 

GND 

VOUT

MNL1

MP1 

MNOU 

MPOU 
MPL0

MN0 

6/3

6/3

6/3

6/4

6/4

6/8

Optical
Input 0

Optical
Input 1

Vout
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2.2.2 OBIC applications at device level: Controllability

2.2 Photoelectric laser stimulation

Ability to localize open inside the device
Open localization inside a CMOS SRAM

LIVA technique
Courtesy of Ed Cole [COL94] 

Superimposed imageLIVA image
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2.2.2 OBIC applications at device level: Latchup sensitivity

2.2 Photoelectric laser stimulation

Ability to localize latchup sensitive areas (debug …)

N+ P+ N+ P+

VDD VSS

P substrate
N well

VDD VSS
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2.2.2 OBIC applications at device level: SEU Sensitivity

2.2 Photoelectric laser stimulation

Heavy ions trigger Single Effects: Upset, Transient …

+
+
++

++

-

--
--

-

Heavy Ion Laser Pulse

Coulombian Interaction
Energy : ~ 100 MeV
Range in Si : ~ 10 µm
LET : ~ 10 MeV / µm

Photoelectric effect
Energy per pulse :  ~ 10 pJ
Wavelength : 800 nm
Absorption coeff :  ~ 800 cm-1

Charge : ~ 1 pC
Time : ~ 1 ps

-

+
+
++
++

-

--
- -
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2.2.2 OBIC applications at device level: SEU Sensitivity

2.2 Photoelectric laser stimulation

SEU mapping in a test SRAM cell 

10pJ10pJ

30pJ30pJ

49pJ49pJ

120pJ120pJ

177pJ177pJ

305pJ305pJ

Energy
Energy

588pJ588pJ

891pJ891pJ

Device to scanDevice to scan

ESREF 2004 Zurich – October 4-8th, 2004

2.2.4 Practical considerations on PLS

2.2 Photoelectric laser stimulation

A complex network
A lot of current generator
A complex interaction (parasitic 
bipolar can be triggered)
What are we measuring outside?

TLS – PLS Comparison
PLS – NB-TLS similarity but

Current versus voltage generation
Effects order of magnitude higher 
than NB TLS

PLS only in junctions
PLS more “confidential”

PLS very versatile,  perfect for 
test structure (Yield, WLR …)
80’s but wide field of application

Electrical model of NMOS  irradiated
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2.2.4 Practical considerations on PLS

2.2 Photoelectric laser stimulation

Band gap is a key parameter
PLS with 1.3 µm

Low band gap material
Shottky

No PLS at 1064 nm for high band 
gap material

Geometrical parameters
Width (applied voltage)
Depth (horizontal versus vertical)
Large reverse biased junction 
generate “high” current

Induced current can looped 
inside the device

1.3 µm OBIC on solar cell
tri-junction (GaInP/GaAs/Ge)
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OUTLINE

1. Laser Testing at a Glance
2. Pump modes

2.1 Thermal laser stimulation
2.2 Photoelectric laser stimulation
2.3 Dynamic pump modes

3. Probe modes
4. Emerging techniques under investigation 
5. Conclusion
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2.3.1 From static to dynamic 
2.3.2 Dynamic thermal laser stimulation

RIL
SDL
Case studies

2.3.3 Dynamic photoelectric laser stimulation
Case studies
DTLS – DPLS comparison

2.3.4 Practical considerations on DLS

Outline

2.3 Dynamic pump modes
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2.3 Dynamic pump modes

OBIRCH and TIVA are 
based on small variation of 
standby power consumption
CMOS switching current 

>> Istandby

hide ∆Istandby

Laser still has effect on the 
device:

It can modify the dynamic 
behavior of the device
It can activate defects that are 
not in static leakage paths

2.3.1 From static to dynamic 
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2.3 Dynamic pump modes

Device status is the parameter under control
Real time comparison
Whole device or a specific pin at a specific vector

2.3.1 From static to dynamic 

Window comparator
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2.3 Dynamic pump modes

DLS: DTLS and DPLS
Localization of thermal and/or photoelectric sensitive area on 
dynamically failed ICs!
Front / Backside contacless techniques

Output Map
Pass / Fail based on windows comparator
Timing modification (analog)
Very valuable on no latched devices

2.3.1 From static to dynamic 
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2.3 Dynamic pump modes

Resistive Interconnection 
Localization
Proposed by Cole et al. (2001) 
[Col01]
Under thermal stimulation

Physical expansion fills the void
=> Strong no linear behavior of 
resistance 

Detection of various defects
Via void or particle
Contact ….

2.3.2 Dynamic thermal laser stimulation: RIL

ESREF 2004 Zurich – October 4-8th, 2004

Soft Defect Localization
Proposed by Bruce et al. (2002) [Bru02]
Extend RIL applications
Can localize a lot of soft defects

Metallization or interconnect defects (Via push up or voids, 
Electromigration, Stress voids, Metal “mouse bites”, Granularity)
Oxide Defects (Soft gate oxide shorts, Hot carrier injection)
Inter-level Dielectric (Voids, Metal “slivers”, Contamination, Process 
variations) 
Transistor effects (Vt shifts, Leff shift, Weff shift, NMOS to PMOS 
length, ratio, Diffusion resistance)
Interconnect (Metal thickness variations, Spacing or pitch variations)
Gate Oxide and ILD (Thickness variation)
Operating or environmental conditions (Frequency, Voltage, 
Temperature …)

2.3 Dynamic pump modes

2.3.2 Dynamic thermal laser stimulation: SDL
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2.3 Dynamic pump modes

2.3.2 Dynamic thermal laser stimulation: Case studies
Micro-controllers

0.5mm technology 
3 metal layer

Dynamic failure 
soft defect

Specific test board for 
DLS VoltageV1 V2

Frequency

F0
Fail PassPass

Test pattern is 
programmed into the 

failed ICs

In : Clock, Vdd

Out : Test Pass / Fail 

ESREF 2004 Zurich – October 4-8th, 2004

2.3 Dynamic pump modes

2.3.2 Dynamic thermal laser stimulation: Case studies

V < V2

V > V2

Blue → Pass
Red → Fail
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2.3.1 From static to dynamic 
2.3.2 Dynamic thermal laser stimulation

RIL
SDL
Case studies

2.3.3 Dynamic photoelectric laser stimulation
Case studies
DTLS – DPLS comparison

2.3.4 Practical considerations on DLS

Outline

2.3 Dynamic pump modes
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2.3 Dynamic pump modes

Low power with 1064nm 
(Timing perturbation) 
Mapping of Q1 counter output
One RAZ and one CLK pulse 
at each sequence. 
∆T between CLK and Reset:

1 - 62ns
2 - 62.5ns

Laser beam generates an 
additional current in the 
device which speeds up or 
slows down the signals.

2.3.3 Dynamic photoelectric laser stimulation: Cases studies

ab
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2.3 Dynamic pump modes

High power with 1064nm 
(latch toggle)
Initial counter state is 0
one pulse at each test 
sequence is applied to reset 
the device.
Additional current produce by 
the laser beam affect the 
latch and the output rises to 
5V (white).
This new state is stored by 
the device.

2.3.3 Dynamic photoelectric laser stimulation: Cases studies
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2.3 Dynamic pump modes

Transient fault injection in an ADC
2.3.3 Dynamic photoelectric laser stimulation: Cases studies

MSB comparators

LSB comparators

DAC DAC

Control
logic

Over
flowD7D6D5D4

D2D3

D0

D1

3.10 mm

2.
87

 m
m

DUT
AD7821

WR

Vin
Vref

INT

Data

Laser

Trig

WR

INT

Laser

Conversio
n start

MSB 
latche
d

Data 
available

TLa

s

500n
s
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2.3 Dynamic pump modes

post-conversion sensitivity of output buffers
Logical level modification

2.3.3 Dynamic photoelectric laser stimulation: Cases studies

Output buffers

                                        

                                        

                                        

0 10 20 30 40 50 60 70
100
101
102
103
104
105
106

N
 p

oi
nt

s

Error

Error code

Noise
D5 D6
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2 MSB comparators

2.3 Dynamic pump modes

2.3.3 Dynamic photoelectric laser stimulation: Cases studies
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2.3 Dynamic pump modes

2.3.2 Dynamic photoelectric laser stimulation: versus DTLS
40X DPLS images 30 s. (66ms / pixel)

Fail (white)→ Pass (black) 

V < V2 V > V2

Pass (black) → Fail (white)
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2.3 Dynamic pump modes

2.3.2 Dynamic photoelectric laser stimulation: versus DTLS
60X DTLS images 30 s. (66ms / pixel)

V < V2 V > V2

Fail (white)→ Pass (black) Pass (black) → Fail (white)
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2.3 Dynamic pump modes

DTLS and DPLS can localize the same sensitive areas
DTLS mostly at interconnection level, low perturbation
DPLS only at junction level, high perturbation

DPLS is faster (high speed device)
Not used with continuous laser stimulation
Underlined in pulsed mode

DPLS is more complex (current injection)
It can trigger parasitic structures
Different effects

Toggle latches
SET
Timing

2.3.2 Dynamic photoelectric laser stimulation: versus DTLS

Laser power
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2.2.4 Practical considerations on DLS

2.3 Dynamic pump modes

Sensitive area mapping
Not necessarily a direct failure localization
Test pattern dependence

Vectors and timing
Power supply (low voltage testing)
Real time output signal of the Pass/Fail status or timing measurement

DPLS can trigger parasitic structure

Complex interaction with the device
Use of a golden device is helpful
Electrical analysis of the results before physical analysis is mandatory

Powerful technique for a wide range of application
FA (RIL …)
Debug (soft errors, bottleneck, hardness ….)
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OUTLINE

1. Laser Testing at a Glance
2. Pump modes

2.1 Thermal laser stimulation
2.2 Photoelectric laser stimulation
2.3 Dynamic pump modes

3. Probe modes
4. Emerging techniques under investigation 
5. Conclusion
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3.1 Basics of Probe modes
3.2 Application of Probe modes

Temperature mapping
Laser Voltage Probing (LVP)

3.3 Practical considerations on Probe modes

Outline

3. Probe modes
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3.1 Basics of Probe modes

3. Probe modes

Electrical
Stimulation 

Electro-optical
Electro-thermal
Piezzo-electrical…

Physical effect

Electro-optical
Electro-thermal
Piezzo-electrical…

Physical effect

Temperature
Carrier Density
Volumes…

Disturbance

Temperature
Carrier Density
Volumes…

Disturbance

Index
Dimensions
…
Affected parameters

Index
Dimensions
…
Affected parameters

D.U.T

Analysis
Potential
Current
Temperature
Constraints
Carrier density
….                       RESULTS

Potential
Current
Temperature
Constraints
Carrier density
….                       RESULTS

Reflectometry
Interferometry
Polarimetry
deflectometry
…

Detection

Reflectometry
Interferometry
Polarimetry
deflectometry
…

Detection

L
A
S
E
R
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3.1 Basics of Probe modes: Reflectometry

3. Probe modes

0I 0RI ( ) 0IRR ∆+

T1NN
R

R
1

R
TNR ∆κ∆∆ +∂

∂=),(
0tIelec ≠)(

0tIelec =)(

T10x51N10R
TNR 422 ∆∆∆ −−

+≈− .),(

At Si-SiO2 interface and with λ=632 nm
mK1T≈∆
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3.1 Basics of Probe modes: Interferometry

3. Probe modes

Different techniques
Homodyne, heterodyne, differential

0I

LASERLASER

InterferometerInterferometer

0tIelec ≠)(

( )r0I ϕϕ −

0ϕ

iϕ
rϕ

Displacement
Optical index
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3.2 Application of Probe modes: Temperature mapping

3. Probe modes

Thermoreflectance temperature measurement

Calibration : κ determination

Reflectance measurement

Temperature measurement

0
∆R
R

∆T

∆I
I0

Cx

T
R
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I
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∆=
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3.2 Application of Probe modes: Temperature mapping

3. Probe modes

Application to test structure

5 10-5 1 10-4 1.5 10-40² R/R
² T 2° 4° 6°0

0 40 80 120
position (µm)

0 40 80 120
position (µm)

0

40

80

B
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T
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3.2 Application of Probe modes: Temperature mapping

3. Probe modes

Temperature induced surface displacement

Ox

Oy

Heat diffusion

Doped Si

0.5 µm

0.3 - 1 µm

Al line

Si O2

Doped Si

I0cosωt            Joule : 



 +

2
2cos12

0

tRI ω

)(tT∆ Thermal expansion )(tz∆ Surface displacement

mKtTetz 1266 105.01105.010)(..)( −−− =××=∆∝∆ α
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3.2 Application of Probe modes: Temperature mapping

3. Probe modes

Temperature induced surface displacement, sample
- semiconductor resistor,
- ohmic contacts A and B,
- p-doped zone between A and B,

Peltier or Seebeck effect.
Peltier Effect Imaging (PEI)
Seebeck effect imaging (SEI)

laser
Apparatus: Very high resolution
interferometry
- Actively stabilized homodyne
Michelson Interferometer
- Lock in time constant : 1s
- Sine wave excitation 20kHz, 15mW 
HeNe laser
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3.2 Application of Probe modes: Temperature mapping

3. Probe modes

Temperature induced surface displacement, issue

10-13

10-14

10-15

10-16

10-17

Current (A)
10-4 10-3 10-2 10-1

Surface displacement (m)

Joule effect

Shot noise
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3.2 Application of Probe modes: Temperature mapping

3. Probe modes

Peltier Effect Imaging (PEI) 

PEI
probe
laser

0

PEI

Amplitude

Phase 

180°

A.U.
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3.2 Application of Probe modes: Temperature mapping

3. Probe modes

Imaging of temperature, topography and surface displacement

800µm

800µm
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3.2 Application of Probe modes: Temperature mapping

3. Probe modes

Normal surface displacement

100nm

800 µm

800 µm
0
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3.2 Application of Probe modes: Temperature mapping

3. Probe modes

Temperature imaging
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3.2 Application of Probe modes: Laser Voltage Probing

3. Probe modes

Refractive index (n) and absorption coefficient (α)
Change with free carrier density modulation

Free Carrier Refraction

Free Carrier Absorption

Change with electric field modulation (Franz-Keldysh effect)
Effective bandgap reduction

Electro-refraction

Electro-absorption
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3.2 Application of Probe modes: Laser Voltage Probing

3. Probe modes

Wavelength choice
F-K effect is quite large at 1064 nm
Free carrier absorption and refraction greater at longer wavelength 
1064 nm Draw back: OBIC (nA range)

Apparatus
Scanning mode for imaging
Use of pulsed laser, temporal resolution linked to pulse width
Point  mode for probing

Reflectometer (IDS 2000)
Interferometer (IDS 2500)

Still working at low power supply
Invasiveness and spot size issue (SOI and nanoscale)

2λ∝
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3.2 Application of Probe modes: Laser Voltage Probing

3. Probe modes

Input
Signal

Pulsed
laser beam

Reflected
Laser beam

Wave
reconstruction
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3.2 Application of Probe modes: Laser Voltage Probing

3. Probe modes

Goog timing resolution, no voltage resolution
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3.3 Practical considerations on Probe modes

3. Probe modes

Wide range of application
Very high sensitivity (interferometer)
Simultaneous phenomena can jeopardize measurement 
accuracy

Temperature 
Carrier density
Electrical field
Mechanical movements
Optical properties (surface roughness, parasitic reflection …)
Unwanted invasiveness (OBIC)…

Temperature measurement 
High frequency waveforms (pulse width down to 50 fs)

lateral resolution 0.5µm
sensitivity 100µK

Only reflected wave measurement
-amplitude
-phase 
…
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OUTLINE

1. Laser Testing at a Glance
2. Pump modes

2.1 Thermal laser stimulation
2.2 Photoelectric laser stimulation
2.3 Dynamic pump modes

3. Probe modes
4. Emerging techniques under investigation 
5. Conclusion
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Outline

4. Emerging techniques under investigation 

4.1Picosecond ultrasonic 
4.2 No linear effects

Electric-Field-Induced Second-Harmonic (EFISH)
Two Photons Absorption (TPA)

4.3 Other techniques
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4.1 Picosecond ultrasonic

4. Emerging techniques under investigation

Optical pump - probe technique [AND03]
Pump (pulsed)

Wavelength 800 nm
Pulse duration 100fs, 1 ps, or 20 ps
Energy 1 nJ generate an acoustic wave

Partial relaxation by phonon emission
Subpicosecond laser pulses (acoustic wave 
up to 1 THz)

Probe
Energy 0.1-0.2 nJ measure reflectance 
variation
Adjustable delay from – 100ps to 1.5 ns
Temporal resolution of 1 fs

Transient reflectivity changes
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4.1 Picosecond ultrasonic

4. Emerging techniques under investigation

Typical signal on a basic microelectronic test sample (Al 
track on a Si substrate)
∆R

( normalized )

Pump probe delay ( ps )
-100 0 100 200

0.0

0.5

1.0

B

3 Components :

B => Exponential decay
(thermal relaxation
of the device)

A => Pump-probe coincidenceA

Al

Si

100 fs 
Laser pulse

C
C => Acoustic echo

ESREF 2004 Zurich – October 4-8th, 2004

4.1 Picosecond ultrasonic

4. Emerging techniques under investigation

Application : Thickness variations across a device

Experiments on the same IC, 
on several spots presenting 

the same stack of layers

-0.05

                                        

                                        

                                        

                                        

                                        

                                        

Pump-probe delay (ps)

∆ R
(arb. units)

0.05

0

200 400 600 800

Si

Laser
pulse

Al
SiO2

SiO2

Si3N4A
B
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4. Emerging techniques under investigation

Comparison with usual acoustic microscopy
Higher resolution

THz for laser
10-600 MHz for acoustic microscope
Echo issues

Amplitude
multi layer …)

4.1 Picosecond ultrasonic

Coupling
Liquid for acoustic microscope
Nothing for laser

Apparatus
Commercial tool for acoustic

Efficiency
“Low cost”

Lab tool for Picosecond ultrasonic
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4.2 No linear effects: Electric-Field-Induced Second-Harmonic

4. Emerging techniques under investigation

Probe mode
Weakness of a third-order 
process

Second harmonic
Electrical field dependance

effect observable in 
semiconductors

large electric fields
Si junctions, Si/SiO2

laser wavelength above bandgap
large carrier concentrations
limited probe beam penetration
Improved with 2µm (SH 1 µm)

[PET01] Apparatus from
K. A. Peterson And D. J . Kane
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4.2 No linear effects: Electric-Field-Induced Second-Harmonic

4. Emerging techniques under investigation

Waveform measurement
EFISH intensity

χ(3) third order non 
linear susceptibility
Eω electric field of the 
probe laser
Ev applied electric field

Waveform measured at low 
frequency
Possible high-speed 
gigahertz waveforms

( )[ ]223
2 vEEI ωω χ∝

Waveform from
Peterson et al [PET01]
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4.2 No linear effects: Two Photons Absorption (TPA)

4. Emerging techniques under investigation

Two-photon Optical Beam Induced Current [RAM02]
TOBIC effect

Two photons with energy Ep below bandgap Eg can simultaneously 
interact with an electron
Energy exchange allow e-h creation like only one photon with 2 Ep
energy
Only significant phenomenon under very high photon density

Small x, y, z part of the beam

Wavelength consideration
Better transmission at long wavelength (low energy Ep)
Better absorption at short wavelength (energy 2 Ep)

Increase x, y resolution
Allow z resolution
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4.2 No linear effects: Two Photons Absorption (TPA)

4. Emerging techniques under investigation

[MOR02]
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4.2 No linear effects: Two Photons Absorption

4. Emerging techniques under investigation

Application to backside analysis

[RAM02]
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4.2 No linear effects: Two Photons Absorption (TPA)

4. Emerging techniques under investigation

Application:
3D mapping of TOBIC 
signal max 
cross sections along 2 
directions 
Courtesy of E. 
Ramsay [RAM02]

Ultra short pulsed 
laser allows high 
temporal resolution
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4.3 Other techniques

4. Emerging techniques under investigation

Seismography upon 
integrated circuits

Active layers produce thermo elastic waves into the surrounding medium

I(t).V(t) p(t) ∆T(x,y,t) d(x,y,t)

Thermoelastic waveThermal wave
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4.3 Other techniques

4. Emerging techniques under investigation

Shearography : strain energy density 
sensitive to displacement gradients
Probe mode

P = 10 W

P        

Crack
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OUTLINE

1. Laser Testing at a Glance
2. Pump modes

2.1 Thermal laser stimulation
2.2 Photoelectric laser stimulation
2.3 Dynamic pump modes

3. Probe modes
4. Emerging techniques under investigation 
5. Conclusion
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Conclusions
Laser techniques are very efficient to test devices

Static pump modes
TLS is widely used

OBIRCH and TIVA allows “metal” leakage localization
SEI is very efficient for via/contact defect localization

PLS is older but less used
Complex interaction with the device
Junction defect localization

Dynamic pump mode are complementary
Soft defect localization (RIL, SDL)
DPLS should be a key technique for its timing abilities

Probe modes (LVP…), alone or coupled with pump modes 
allows the measurement of a wide range of physical or 
electrical parameters

TPA based techniques are very promising
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