

Getting Started with the CodeVisionAVR
Extension for Atmel Studio 6.1

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 1

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1
Revision 2/10.2013
Copyright © 2012-2013 Pavel Haiduc and HP InfoTech S.R.L. All rights reserved.
No part of this document may be reproduced in any form except by written permission of the author.
All rights of translation reserved.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 2

Table of Contents
1. Introduction...3
2. Preparation...3
3. Creating a New Project ..4
4. Editing the Source Code ... 16
5. Configuring the Project.. 17
6. Building the Project and Programming the Chip ... 20
7. Debugging the Program .. 21
8. Conclusion... 26
Appendix A – The Source Code.. 27

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 3

1. Introduction
The purpose of this document is to guide the user through the preparation, building and debugging of an
example C program using the CodeVisionAVR V3.07 or later C compiler extension for Atmel Studio 6.1 or
later.
The example is a simple program for the Atmel ATmega328 microcontroller on an Arduino UNO board.

2. Preparation
Download and install Atmel Studio from www.atmel.com
Install the CodeVisionAVR C Compiler by executing the CodeVisionAVR.msi installer.
When prompted, use the default installation directory suggested by the installer.
Please note that Administrator privileges are required under Windows for installing and using
CodeVisionAVR.

Make the following hardware preparations:

• If it is not already installed, solder a 6 pin header to the location marked ICSP on the Arduino UNO
board

• Connect the cathodes of 8 LEDs to the outputs marked DIGITAL 0..7 on the board. These outputs
correspond to PORTD pins PD0..PD7 of the microcontroller.

• Connect each LED’s anode, using a 1k resistor, to the pin marked 5V of the board’s POWER
connector header.

• Connect the USB connector of the Arduino board to an USB port of your computer. This will provide
power supply and communication to the board.

http://www.atmel.com/

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 4

3. Creating a New Project
Launch the Atmel Studio IDE.
Execute the File|New|Project Using the CodeWizardAVR... menu command.
A dialog window will be displayed, allowing selecting the AVR chip family for which the CodeWizardAVR will
create the program:

Select the AT90, ATtiny, ATmega option and click on the OK button.
The CodeWizardAVR will be launched and the following window will be displayed:

In the Chip Settings panel, select the Chip type: ATmega328P and Clock frequency: 16 MHz.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 5

The next step is to configure the PORTD pins PD0 to PD7 as outputs.
In order to achieve this, click on the Ports node of the CodeWizard’s tree.
A new configuration panel for Port Settings will be displayed:

Click on the Port D tab in order to select the PORTD configuration:

As can be seen, the Port D Data Direction for all I/O pins is set by default as inputs (In).

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 6

Click on each Bit 0 to Bit 7 button in order to set the I/O pins as outputs:

As the LEDs must be OFF after chip reset, the potential of their cathodes must be +5V, so the Output Values
for Port D Bit 0 to Bit 7 must be set to 1 by clicking on the corresponding buttons:

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 7

The next step is to configure a Timer/Counter to generate an interrupt after each 200 ms.
Click on the Timers/Counters node of the CodeWizard’s tree.
A Timers/Counters Settings panel will be displayed:

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 8

Timer1 will be used, so click on the corresponding tab:

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 9

As we need a Timer 1 compare match interrupt after each 200 ms, we must select the operating Mode as:
CTC top=OCR1A, specify the Period value: 200 ms in the Requirements panel and check the Interrupt on
Compare A Match check box:

In this operating mode the Timer 1 will count pre-scaled system clock pulses until the TCNT1 register will be
equal with the value of the OCR1A register. When this will occur, the TCNT1 register will be automatically
reset to 0 and a Timer 1 compare with OCR1A match interrupt will be generated.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 10

By clicking on the Apply button in the Requirements panel, the CodeWizardAVR will establish the required
values for Timer 1 configuration registers:

As can be seen in the above window, the 16 MHz system clock will be divided by 64 in order to obtain a Timer
1 Clock Value of 250 kHz and the OCR1A register will be initialized with the value 0xC34F.
The obtained time period between two interrupts will be 0.2 seconds, matching our requirement with a 0%
error.

Note: The automatic Timer configuration is disabled in the CodeVisionAVR Evaluation version.
Therefore an error message will be issued by the Evaluation version when the Apply button is clicked.
The user will have to manually select Clock Value: 250.000 kHz and enter the value C34F in the Comp. A
field.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 11

The next step, before generating the actual program code, is to specify some comments regarding our
program by clicking on the Project Information node and completing the comments in the corresponding
panel:

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 12

Using the Program|Generate menu or clicking on the toolbar button, will create the C program, which can
be previewed in the Program Preview window:

By clicking on a peripheral node in the CodeWizard’s tree, the cursor in the Program Preview window will be
positioned at the corresponding initialization code sequence for that peripheral.

Note: By default the CodeWizardAVR generates initialization code even for peripherals that are not in use
(disabled).
This is a safety measure to configure correctly the chip if a software reset occurred by jumping to address 0.
In order to reduce generated program size, this can be disabled by un-checking the Program|Generate Code
for Disabled Peripherals menu option.

Once we are satisfied with the generated code, we must save the new program by using the
Program|Generate, Save and Exit menu or clicking on the toolbar button.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 13

First we will be prompted for the name of the first .c source file of the project:

Next we will have to specify the name of the Atmel Studio project:

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 14

And finally we must save the peripheral configuration for our project in a CodeWizardAVR project .cwp file:

This will allow us to use the same peripheral configuration for other projects, just by reloading the .cwp file in
the CodeWizardAVR.

Once all these files were saved, Atmel Studio will prompt us if we wish to create a new solution for the “led
demo” project:

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 15

We will click on the Yes button and will be prompted for the solution name:

Once this is done, the new solution and project are loaded in Atmel Studio and the corresponding information
is displayed in the Solution Explorer:

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 16

4. Editing the Source Code
The CodeWizardAVR has created all the code needed to initialize the peripherals for our application, now we
must add the part of code required to execute our task: light sequentially with a 200 ms delay, each of the 8
LEDs connected to PORTD.
In order to open the project’s C source file in the editor, we must double click on the led demo.c node in the
Solution Explorer.
Once the file is loaded in the Editor window we can apply changes to it:

All the action of the program is performed by Timer 1 compare with OCR1A match interrupt service routine
timer1_compa_isr which is called every 200 ms.
The required code will be added there, in bold text:

// Timer1 output compare A interrupt service routine
interrupt [TIM1_COMPA] void timer1_compa_isr(void)
{
// Place your code here

// If all LEDs are off, light the first one
if (PORTD == 0xFF) PORTD = 0xFE;
// One of the LEDs is already lighted, turn it off and light the next one
else PORTD = (PORTD << 1) | 1;
}

Note: As the LEDs’ anodes are connected to +5V by a resistor and the cathodes are connected to PORTD
outputs, in order for them to be lighted the corresponding output must be set to logic level 0.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 17

5. Configuring the Project
Once the required changes were made to the program’s source code, the next step is to configure the
project’s build options using the Project|Configure menu.
The dialog window will be displayed:

We need to automatically program the chip after a successful Build.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 18

This can be achieved by selecting the After Build tab and enabling the Action: Upload to Arduino option:

In the Arduino Upload Settings the following options must be set:

• Arduino Board Type: Arduino Uno ATmega328P
• COM Port: the serial port used for communication with the development board.

Note: The serial communication port is virtual and provided by the FTDI USB driver when the Arduino UNO
board is connected to the computer.
It will be detected by the CodeVisionAVR extension and will appear in the COM Port list (if the Arduino UNO
board is connected to the computer).
If your computer has several serial ports, please make sure to select the correct one, associated with the
Arduino UNO board.
The serial port number can be identified using Windows Control Panel > Hardware and Sound > Device
Manager > Ports (COM & LPT) > Arduino UNO.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 19

Alternatively the chip can be also programmed using an Atmel AVRISP MkII USB programmer, connected to
the ISP header of the Arduino UNO board.
In this case the Action: Program the Chip option must be selected:

The following options must be set:

• Programmer: AVRISP MKII
• SCK Freq: 125000 Hz
• Program Fuse Bit(s): enabled
• All fuse bits =0 not programmed state (not checked), except BODLEVEL1=0 which must be in

programmed state (checked).

Note: If the AVRISP MkII is used for programming the Arduino UNO board, the boot loader
preprogrammed by the manufacturer in the ATmega328P chip will be erased.
This will prevent any future uploading using the virtual COM port on the USB bus, unless the boot
loader and fuse bits are reprogrammed correctly again.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 20

The project configuration changes must be confirmed by clicking on the OK button.

6. Building the Project and Programming the Chip
The final step is compiling and linking our program using the Build|Build led demo menu command.
After a successful build the following Information window will be displayed:

Clicking on the Program the chip button will transfer the compiled program to the chip’s FLASH and program
the fuse bits.
Once these operations are performed, the program will start executing.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 21

7. Debugging the Program
Once the program was successfully built, it can be debugged in source level form using the Atmel Studio’s
Simulator.

A debugging session can be started using the Debug|Start Debugging and Break menu command, the
toolbar button or by pressing the Alt+F5 keys.
If the source files were modified since the last Build, a Rebuild will be automatically performed, before the
debugging will be started.
Atmel Studio uses the .cof object file produced by CodeVisionAVR for debugging.

When the debugging session will be started for the first time, the user will be prompted to select the tool that
will be using for tracing the program execution:

For our example, we will select the Simulator and click on the OK button.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 22

After the debugging tool was selected, the debugging session actually starts:

The simulator first executes the low level startup initialization code, which consists of filling all RAM locations
with 0s, initializing the global variables, data and hardware stack pointers.
Once these operations are finished, the program execution is passed to the main function of the program.
The debugger stops the program execution at the first C source line of main, allowing the user to single-step
the program from there.
The AVR chip registers are displayed in the Processor window.
By default the simulator uses a clock frequency of 1.000MHz, but in our example the chip is clocked at
16.000MHz, so this must be modified by clicking on the Frequency field and entering the correct value there:

and pressing Enter.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 23

The next step in debugging our program is to set a breakpoint at the beginning of the Timer 1 output compare
A interrupt service routine timer1_compa_isr.
This is achieved by placing the cursor on the first line of code in the above mentioned function and selecting
the Debug|Toggle Breakpoint menu command or pressing the F9 key:

The line with the breakpoint will be highlighted.
After the breakpoint was set, we can continue single stepping through our program using Debug|Step Into
menu command, the F11 key or the toolbar button.
We can start executing our program, until the breakpoint is reached, by selecting the Debug|Continue menu
command, pressing the F5 key or the toolbar button.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 24

Important Note: The Atmel Studio Simulator executes the program at a much lower speed than the real
AVR chip, so reaching the breakpoint set in the timer1_compa_isr function doesn’t occur in real time after
200 ms.
Depending on the host PC speed the simulator will appear to hang for 1...2 minutes, but finally the program
execution stops at the breakpoint:

As the program execution stopped inside the timer1_compa_isr function, we will note the Stop Watch value
of 200776.44 µs in the Processor window:

This value is slightly larger than the 200 ms which we have specified as the Timer 1 output compare interrupt
period.
The additional 776.44 µs are required by the startup initialization code, after chip reset and the moment the
Timer 1 registers are first initialized and counting is started.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 25

We will press the F5 key again to continue program execution.
The simulator will stop again at the breakpoint in timer1_compa_isr after 1...2 minutes, depending on the
host PC speed.
This time the Stop Watch value in the Processor window will be 400776.38 µs:

So the time interval between two Timer 1 output compare A interrupts will be:

400776.38 µs - 200776.44 µs = 199999.94 µs = 199.99994 ms

which is equal to the required 200 ms with a negligible error.

The following additional commands can be used when debugging:

• Debug|Step Over, F10 key or toolbar button to execute one instruction.
 If the instruction contains a function call, the function is executed as well.

• Debug|Step Out, Shift+F11 keys or toolbar button to continue execution until the current function
has completed

• Debug|Run To Cursor, Ctrl+F10 keys or toolbar button to continue execution until the current
cursor position in the source file or disassembly view is reached

• Debug|Reset, Shift+F5 keys or toolbar button to restart program execution from the beginning
• Debug|Restart or toolbar button to restart the debugger and reload the debugged program
• Debug|Toggle Breakpoint or F9 key to set a breakpoint at the current cursor position in the C

source file or disassembly view
• Debug|New Breakpoint|Break at Function to set a breakpoint at the beginning of a particular

function
• Debug|Delete All Breakpoints or Ctrl+Shift+F9 keys to delete all the breakpoints that were set
• Debug|Disable All Breakpoints to temporarily disable all the breakpoints that were set
• Debug|Enable All Breakpoints to re-enable all the breakpoints that were set
• Debug|Break All, Ctrl+F5 keys or toolbar button to stop program execution
• Debug|Windows allow displaying specific windows for watching variables, processor registers, I/O

and peripheral registers, memory contents, code disassembly, etc.
• Debug|Stop Debugging, Ctrl+Shift+F5 keys or toolbar button stops the debugging session.

To obtain more information about using the debugger, please consult the Atmel Studio Help.

Note: The compiler applies some optimization techniques that may prevent correct debugging of the
executable program.
Therefore it is recommended to select the Project|Configure|C Compiler|Code generation|Optimize for:
Speed option for code debugging.
If the program fits in the chip’s FLASH, this option must be left enabled for Release too, as the program will
execute faster this way.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 26

8. Conclusion
This document provides the necessary starting guidelines for rapid development and debugging of an
application using the CodeVisionAVR extension for Atmel Studio.
CodeVisionAVR is supplied with a comprehensive Help and User Manual, which must be extensively studied
in order to take full advantage of all the features of the C compiler, associated peripheral libraries,
CodeWizardAVR and LCD Vision font/image editor/converter for graphic displays.
The compiler is supplied with a large number of example programs covering:

• Alphanumeric LCD
• Graphic LCD, TFT and OLED displays
• Resistive touch screen
• SD Memory Cards
• USART
• TWI, I2C
• SPI
• ADC
• Boot loaders
• USB
• Web Server
• XMEGA EBI
• XMEGA Quadrature Encoder
• XMEGA DAC
• DS1820, DS18B20, LM75, DS1621 temperature sensors

These programs are located in the \Examples and \Examples ATxmega subdirectories of the
CodeVisionAVR installation directory.

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 27

Appendix A – The Source Code

/***
This program was created by the
CodeWizardAVR V3.03 Standard
Automatic Program Generator
® Copyright 1998-2013 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com

Project : Moving LED demo
Version : 1.0
Date : 14/03/2013
Author : Pavel Haiduc
Company : HP InfoTech
Comments:
This is a simple program

Chip type : ATmega328P
Program type : Application
AVR Core Clock frequency: 16.000000 MHz
Memory model : Small
External RAM size : 0
Data Stack size : 512
***/

#include <mega328p.h>

// Declare your global variables here

// Timer1 output compare A interrupt service routine
interrupt [TIM1_COMPA] void timer1_compa_isr(void)
{
// Place your code here

// If all LEDs are off, light the first one
if (PORTD == 0xFF) PORTD = 0xFE;
// One of the LEDs is already lighted, turn it off and light the next one
else PORTD = (PORTD << 1) | 1;
}

void main(void)
{
// Declare your local variables here

// Crystal Oscillator division factor: 1
#pragma optsize-
CLKPR=(1<<CLKPCE);
CLKPR=(0<<CLKPCE) | (0<<CLKPS3) | (0<<CLKPS2) | (0<<CLKPS1) | (0<<CLKPS0);
#ifdef _OPTIMIZE_SIZE_
#pragma optsize+
#endif

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 28

// Input/Output Ports initialization
// Port B initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | (0<<DDB2) | (0<<DDB1) |
 (0<<DDB0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T
PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | (0<<PORTB3) | (0<<PORTB2) |
 (0<<PORTB1) | (0<<PORTB0);

// Port C initialization
// Function: Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
DDRC=(0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | (0<<DDC2) | (0<<DDC1) | (0<<DDC0);
// State: Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T
PORTC=(0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) |
 (0<<PORTC0);

// Port D initialization
// Function: Bit7=Out Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out Bit0=Out
DDRD=(1<<DDD7) | (1<<DDD6) | (1<<DDD5) | (1<<DDD4) | (1<<DDD3) | (1<<DDD2) | (1<<DDD1) |
 (1<<DDD0);
// State: Bit7=1 Bit6=1 Bit5=1 Bit4=1 Bit3=1 Bit2=1 Bit1=1 Bit0=1
PORTD=(1<<PORTD7) | (1<<PORTD6) | (1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3) | (1<<PORTD2) |
 (1<<PORTD1) | (1<<PORTD0);

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0A output: Disconnected
// OC0B output: Disconnected
TCCR0A=(0<<COM0A1) | (0<<COM0A0) | (0<<COM0B1) | (0<<COM0B0) | (0<<WGM01) | (0<<WGM00);
TCCR0B=(0<<WGM02) | (0<<CS02) | (0<<CS01) | (0<<CS00);
TCNT0=0x00;
OCR0A=0x00;
OCR0B=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: 250.000 kHz
// Mode: CTC top=OCR1A
// OC1A output: Disconnected
// OC1B output: Disconnected
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer Period: 0.2 s
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: On
// Compare B Match Interrupt: Off
TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) | (0<<WGM10);
TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (1<<WGM12) | (0<<CS12) | (1<<CS11) |
 (1<<CS10);
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0xC3;
OCR1AL=0x4F;

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 29

OCR1BH=0x00;
OCR1BL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2A output: Disconnected
// OC2B output: Disconnected
ASSR=(0<<EXCLK) | (0<<AS2);
TCCR2A=(0<<COM2A1) | (0<<COM2A0) | (0<<COM2B1) | (0<<COM2B0) | (0<<WGM21) | (0<<WGM20);
TCCR2B=(0<<WGM22) | (0<<CS22) | (0<<CS21) | (0<<CS20);
TCNT2=0x00;
OCR2A=0x01;
OCR2B=0x00;

// Timer/Counter 0 Interrupt(s) initialization
TIMSK0=(0<<OCIE0B) | (0<<OCIE0A) | (0<<TOIE0);

// Timer/Counter 1 Interrupt(s) initialization
TIMSK1=(0<<ICIE1) | (0<<OCIE1B) | (1<<OCIE1A) | (0<<TOIE1);

// Timer/Counter 2 Interrupt(s) initialization
TIMSK2=(0<<OCIE2B) | (0<<OCIE2A) | (0<<TOIE2);

// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// Interrupt on any change on pins PCINT0-7: Off
// Interrupt on any change on pins PCINT8-14: Off
// Interrupt on any change on pins PCINT16-23: Off
EICRA=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00);
EIMSK=(0<<INT1) | (0<<INT0);
PCICR=(0<<PCIE2) | (0<<PCIE1) | (0<<PCIE0);

// USART initialization
// USART disabled
UCSR0B=(0<<RXCIE0) | (0<<TXCIE0) | (0<<UDRIE0) | (0<<RXEN0) | (0<<TXEN0) | (0<<UCSZ02) |
 (0<<RXB80) | (0<<TXB80);

// Analog Comparator initialization
// Analog Comparator: Off
// The Analog Comparator's positive input is
// connected to the AIN0 pin
// The Analog Comparator's negative input is
// connected to the AIN1 pin
ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | (0<<ACIC) | (0<<ACIS1) |
 (0<<ACIS0);
ADCSRB=(0<<ACME);
// Digital input buffer on AIN0: On
// Digital input buffer on AIN1: On
DIDR1=(0<<AIN0D) | (0<<AIN1D);

// ADC initialization
// ADC disabled
ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (0<<ADPS2) |
 (0<<ADPS1) | (0<<ADPS0);

Getting Started with the CodeVisionAVR Extension for Atmel Studio 6.1

© 2012-2013 HP InfoTech S.R.L. Page 30

// SPI initialization
// SPI disabled
SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) | (0<<SPR1) |
 (0<<SPR0);

// TWI initialization
// TWI disabled
TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);

// Global enable interrupts
#asm("sei")

while (1)
 {
 // Place your code here

 }
}

	1. Introduction
	2. Preparation
	3. Creating a New Project
	4. Editing the Source Code
	5. Configuring the Project
	6. Building the Project and Programming the Chip
	7. Debugging the Program
	8. Conclusion
	Appendix A – The Source Code

