Chokes for Data and Signal Lines
B82799
CAN Bus Choke, EIA 1812

Rated voltage 42 Vac/80 Vdc
Rated current 100 to 300 mA
Rated inductance 11 to 470 µH

Construction
- Current-compensated ring core double choke with ferrite core
- Bifilar winding (B82799-C...)
- Sector winding (B82799-S...)

Features
- High performance
- Case flame-retardant as per UL 94 V-0
- Suitable for reflow soldering and conductive adhesion
- Operation up to 150°C (for $L_R < 500 \mu H$)

Applications
- B82799-C: Suppression of asymmetrical interference coupled in on lines, whereas data signals up to some MHz can pass unaffectedly
- B82799-S: Suppression of asymmetrical (by L_R) and symmetrical interference (by L_S) coupled in on lines. The high-frequency portions of the symmetrical data signal are decreased so far that EMC problems can be significantly reduced

Terminals
Gold plated

Marking
Manufacturer, inductance value (coded), date code

Delivery mode
Blister tape, reel packing.
For details on taping, packing and packing units see data book 2000 “Chokes and Inductors”, page 302.
Chokes for Data and Signal Lines
CAN Bus Choke, EIA 1812

Dimensional drawing

1.2±0.1
1.2
0.75±0.15

52 max
4.5±0.2

Marking

Layout recommendation

2.2
5.9
0.25
4.0
General technical data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage V_R</td>
<td>$42 \text{ Vac (50/60 Hz)}$</td>
</tr>
<tr>
<td></td>
<td>80 Vdc</td>
</tr>
<tr>
<td>Rated current I_R referred to 50 Hz</td>
<td>$42 \text{ Vac (50/60 Hz)}$</td>
</tr>
<tr>
<td></td>
<td>80 Vdc</td>
</tr>
<tr>
<td>Rated current I_R for high</td>
<td>min. 100 mA referred to 50 Hz and 150 °C ambient temperature</td>
</tr>
<tr>
<td>temperature applications</td>
<td></td>
</tr>
<tr>
<td>Rated inductance L_R</td>
<td>measured with HP 4275A at 100 kHz and 0,1 mA</td>
</tr>
<tr>
<td>Inductance tolerance</td>
<td>± 30 % for $L_R \leq 51 \mu H$</td>
</tr>
<tr>
<td></td>
<td>−30/+50 % for $L_R > 51 \mu H$</td>
</tr>
<tr>
<td>Inductance decrease $\Delta L/L_0$</td>
<td>< 10 % at dc magnetic bias with I_R</td>
</tr>
<tr>
<td>DC resistance R_{typ}</td>
<td>measured at 20 °C ambient temperature</td>
</tr>
<tr>
<td>Solderability</td>
<td>$(235 \pm 3) ^\circ \text{C}, (2 \pm 0,3) \text{ s}$</td>
</tr>
<tr>
<td></td>
<td>wetting of soldering area ≥ 95 %</td>
</tr>
<tr>
<td></td>
<td>in accordance with IEC 60068-2-58</td>
</tr>
<tr>
<td>Climatic category</td>
<td>55/150/56 (−55 °C/+150 °C/56 days damp heat test)</td>
</tr>
<tr>
<td></td>
<td>in accordance with EN 60068-1</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 0,1 g</td>
</tr>
</tbody>
</table>

Characteristics and ordering codes

<table>
<thead>
<tr>
<th>L_R (^1)</th>
<th>L_S, (\text{typ})</th>
<th>I_R</th>
<th>R_{typ}</th>
<th>V_T</th>
<th>Ordering code</th>
</tr>
</thead>
<tbody>
<tr>
<td>μH</td>
<td>μH</td>
<td>mA</td>
<td>mΩ</td>
<td>Vdc</td>
<td>2 s</td>
</tr>
<tr>
<td>11</td>
<td>0,045</td>
<td>300</td>
<td>160</td>
<td>250</td>
<td>B82799C0113N001</td>
</tr>
<tr>
<td>22</td>
<td>1,30</td>
<td>250</td>
<td>220</td>
<td>250</td>
<td>B82799S0223N001</td>
</tr>
<tr>
<td>33</td>
<td>1,80</td>
<td>200</td>
<td>270</td>
<td>250</td>
<td>B82799S0333N001</td>
</tr>
<tr>
<td>51</td>
<td>2,70</td>
<td>200</td>
<td>310</td>
<td>250</td>
<td>B82799S0513N001</td>
</tr>
<tr>
<td>100</td>
<td>0,15</td>
<td>300</td>
<td>180</td>
<td>750</td>
<td>B82799C0104N001</td>
</tr>
<tr>
<td>220</td>
<td>0,20</td>
<td>200</td>
<td>250</td>
<td>750</td>
<td>B82799C0224N001</td>
</tr>
<tr>
<td>470</td>
<td>0,35</td>
<td>200</td>
<td>410</td>
<td>750</td>
<td>B82799C0474N001</td>
</tr>
</tbody>
</table>

\(^1\) Types up to 2200 μH upon request.
Chokes for Data and Signal Lines

B82799

CAN Bus Choke, EIA 1812

Current derating $\frac{I_{op}}{I_{R}}$ versus ambient temperature T_A

![Graph showing current derating versus ambient temperature]

Rated temperature $T_R = 60 \, ^\circ C$

Insertion loss α_f (typical values at $Z = 50 \, \Omega$)

- asymmetrical, all branches in parallel (common mode)
- symmetrical (differential mode)

B82799C0113N001 B82799S0223N001

![Graph showing insertion loss versus frequency for asymmetrical and symmetrical modes]
Insertion loss α_e (typical values at $Z = 50 \, \Omega$)

- - - - - symmetrical, all branches in parallel (common mode)
- - - - - symmetrical (differential mode)

B82799S0333N001 \hspace{1cm} B82799S0513N001

B82799C0104N001 \hspace{1cm} B82799C0224N001

B82799C0104N001 \hspace{1cm} B82799C0224N001
Insertion loss α_e (typical values at $Z = 50 \, \Omega$)

- asymmetrical, all branches in parallel (common mode)
- symmetrical (differential mode)

B82799C0474N001

Published by EPCOS AG
Corporate Communications, P.O. Box 80 17 09, 81617 Munich, GERMANY
☎ ++49 89 636 09, FAX (0 89) 636-2 26 89

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS’ prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers’ Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.