BYT230PIV-1000 BYT231PIV-1000

FAST RECOVERY RECTIFIER DIODES

FEATURES

- VERY LOW REVERSE RECOVERY TIME
- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING
- INSULATED PACKAGE :

Insulating voltage $=2500 \mathrm{~V}_{\text {RMS }}$
Capacitance $=45 \mathrm{pF}$

DESCRIPTION

Dual high voltage rectifiers suited for Switch Mode
Power Supplies and other power converters.
The devices are packaged in ISOTOP.

ISOTOP ${ }^{\text {TM }}$
(Plastic)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter			Value	Unit
$V_{\text {RRM }}$	Repetitive peak reverse voltage			1000	V
IFRM	Repetitive peak forward current	$\mathrm{tp} \leq 10 \mu \mathrm{~s}$		375	A
$\mathrm{IF}_{\text {(RMS }}$	RMS forward current		Per diode	70	A
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Average forward current	$\begin{gathered} \mathrm{Tc}=55^{\circ} \mathrm{C} \\ \delta=0.5 \end{gathered}$	Per diode	30	A
IFSM	Surge non repetitive forward current	$\begin{array}{\|l} \mathrm{tp}=10 \mathrm{~ms} \\ \text { sinusoidal } \\ \hline \end{array}$	Per diode	200	A
Tstg Tj	Storage and junction temperature range			$\begin{aligned} & -40 \text { to }+150 \\ & -40 \text { to }+150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

TM : ISOTOP is a trademark of SGS-THOMSON Microelectronics.

THERMAL RESISTANCE

Symbol	Parameter		Value	Unit
Rth (j-c)	Junction to case	Per diode	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Total	0.8	
Rth (c)	Coupling	0.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

When the diodes 1 and 2 are used simultaneously :
$\Delta \mathrm{Tj}$ (diode 1) $=\mathrm{P}$ (diode) $\times \operatorname{Rth}($ Per diode $)+\mathrm{P}($ diode 2) $\times \operatorname{Rth}(\mathrm{c})$
ELECTRICAL CHARACTERISTICS (Per diode)
STATIC CHARACTERISTICS

Symbol	Test Conditions		Min.	Typ.	Max.	Unit
V_{F} *	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\mathrm{IF}=30 \mathrm{~A}$			1.9	V
	$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$				1.8	
$\mathrm{I}_{\mathrm{R}}{ }^{* *}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}}$			100	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$				5	mA

Pulse test : *tp $=380 \mu \mathrm{~s}$, duty cycle $<2 \%$
** tp $=5 \mathrm{~ms}$, duty cycle $<2 \%$
RECOVERY CHARACTERISTICS

Symbol	Test Conditions			Min.	Typ.	Max.	Unit
trr	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~A} \\ & I_{R}=1 \mathrm{~A} \end{aligned}$	$\mathrm{Irr}=0.25 \mathrm{~A}$			70	ns
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-15 \mathrm{~A} / \mu \mathrm{s}$			165	

TURN-OFF SWITCHING CHARACTERISTICS (Without serie inductance)

Symbol	Test Conditions			Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {IRM }}$	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-120 \mathrm{~A} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{VCC}=200 \mathrm{~V} \\ & \mathrm{Lp} \leq 0.05 \mu \mathrm{H} \\ & \text { see fig. } 11 \end{aligned}$	$\begin{aligned} & I_{F}=30 A \\ & T_{j}=100^{\circ} \mathrm{C} \end{aligned}$			200	ns
	$\mathrm{dl}_{\mathrm{F} / \mathrm{dt}}=-240 \mathrm{~A} / \mu \mathrm{s}$				120		
IRM	$\mathrm{dl}_{\mathrm{F} / \mathrm{dt}}=-120 \mathrm{~A} / \mu \mathrm{s}$					19.5	A
	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-240 \mathrm{~A} / \mu \mathrm{s}$				22		

TURN-OFF OVERVOLTAGE COEFFICIENT (With serie inductance)

Symbol	Test Conditions			Min.	Typ.	Max.	Unit
$C=\frac{V_{R P}}{V_{C C}}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \quad \mathrm{~V} \\ & \mathrm{dlF} / \mathrm{dt}=-30 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & V C C=200 \mathrm{~V} \\ & \mathrm{~S} \quad \mathrm{Lp}=5 \mu \mathrm{H} \end{aligned}$	$\begin{aligned} & I_{F}=I_{F(A V)} \\ & \text { see fig. } 12 \end{aligned}$			4.5	1

To evaluate the conduction losses use the following equation :
$\mathrm{P}=1.47 \times \mathrm{IF}(\mathrm{AV})+0.010 \times \mathrm{IF}^{2}$ (RMS)

Fig. 1 : Low frequency power losses versus average current.

Fig. 3 : Non repetitive peak surge current versus overload duration.

Fig. 5 : Voltage drop versus forward current.

Fig. 2 : Peak current versus form factor.

Fig. 4 : Relative variation of thermal impedance junction to case versus pulse duration.

Fig. 6 : Recovery charge versus dif/dt.

Fig. 7 : Recovery time versus dlf/dt.

Fig. 9 : Peak forward voltage versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$.

Fig. 11 : TURN-OFF SWITCHING CHARACTERISTICS (Without serie inductance)

Fig. 8 : Peak reverse current versus dIF/dt.

Fig. 10 : Dynamic parameters versus junction temperature.

Fig. 12 : TURN-OFF SWITCHING CHARACTERISTICS (With serie inductance)

PACKAGE MECHANICAL DATA
ISOTOP Screw version

REF.	DIMENSIONS			
	Millimeters		Inches	
	Min.	Max.	Min.	Max.
A	11.80	12.20	0.465	0.480
B	8.90	9.10	0.350	0.358
C	1.95	2.05	0.077	0.081
D	0.75	0.85	0.029	0.034
E	12.60	12.80	0.496	0.504
F	25.10	25.50	0.988	1.004
G	31.50	31.70	1.240	1.248
H	4.00		0.157	
I	4.10	4.30	0.161	0.169
J	4.10	4.30	0.161	0.169
K	14.90	15.10	0.586	0.595
L	30.10	30.30	1.185	1.193
M	37.80	38.20	1.488	1.504
O	7.80	8.20	0.307	0.323
P	5.50		0.216	

Cooling method: C
Marking : Type number
Weight: 28 g (without screws)
Electrical isolation : $2500 \mathrm{~V}_{(\mathrm{RMS})}$
Capitance : < 45 pF
Inductance : <5 nH

- Recommended torque value : 1.3 N.m (MAX 1.5 N.m) for the $6 \times \mathrm{M} 4$ screws. ($2 \times \mathrm{M} 4$ screws recommended for mounting the package on the heatsink and the 4 screws given with the screw version).
- The screws supplied with the package are adapted for mounting on a board (or other types of terminals) with a thickness of 0.6 mm min and 2.2 mm max.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1996 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

