
TMS320C5x to TMS320C54x
Translation Utility

Literature Number: BPRA075
Texas Instruments Europe

February 1998

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the
specifications applicable at the time of sale in accordance with TI's standard warranty. Testing
and other quality control techniques are utilized to the extent TI deems necessary to support this
warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer's applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be or
are used.

Copyright 1998, Texas Instruments Incorporated

Contents

TMS320C5x to TMS320C54x Translation Utility i

Contents

1. Introduction.. 1

2. Translation Methods .. 1

3. Architecture Mapping... 2
3.1 CPU register Mapping... 3
3.2 Peripheral Register Mapping .. 4
3.3 CPU Bit Field Mapping.. 5
3.4 Data, Program, and I/O Addressing Modes .. 7
3.5 Conditional Code Mapping.. 8
3.6 Assembly Directive Mapping... 8

4. Instruction Mapping ... 9
4.1 Accumulator Source Instructions .. 10
4.2 Accumulator and Memory Source Instructions ... 12
4.3 Auxiliary Register and Data Page Pointer Instructions 13
4.4 Parallel Logic Unit Instructions.. 14
4.5 T Register, P Register, and Multiply Instructions .. 14
4.6 Branch, Call, Return Instructions .. 16
4.7 Program Control Instructions .. 17
4.8 I/O and Data Memory Operations ... 17
4.9 Miscellaneous Control Instructions ... 18

5. Translation Specifics.. 19
5.1 Arithmetic and Logical Differences ... 19

5.1.1 Accumulators... 19
5.2 Addressing.. 19

5.2.1 Data Addressing.. 19
5.2.2 Discontinuities with AR modification.. 19
5.2.3 BANZ... 21

5.3 Instruction Combinations .. 22
5.3.1 NORM instruction .. 22
5.3.2 MPY and Accumulation combinations 22
5.3.3 POP... 23
5.3.4 Execute conditional (XC) ... 23
5.3.5 ACC and ACCB logical instructions... 23
5.3.6 ACC and ACCB arithmetic instructions 24
5.3.7 ACC and ACCB shift instructions .. 24

Contents

TMS320C5x to TMS320C54x Translation Utility ii

5.4 Structures ... 25
5.4.1 Macros... 25
5.4.2 Conditional codes sequences.. 25
5.4.3 Interrupt Vectors.. 26

6. Translation Flow .. 27
6.1 Recommended Procedure for Translation .. 27
6.2 Translator Invocation .. 27

6.2.1 Errors vs. Warnings vs. Hints .. 29
6.2.2 Information File (LEADT.INF) .. 30

7. Conclusion... 31

Appendix: 'C5x to 'C54x translator revision ... 32

Contents

TMS320C5x to TMS320C54x Translation Utility iii

List of Tables

Table 1: CPU Register Mapping ... 3

Table 2: Unused 'C54x CPU Registers ... 3

Table 3: Peripheral Register Mapping... 4

Table 4: Unused 'C54x Peripheral Registers .. 4

Table 5: CPU Bit-field Mapping... 5

Table 6: User-defined fields in 'C5x assembly .. 6

Table 7: Unused 'C54x Bit Fields .. 6

Table 8: Data, Program, and I/O addressing modes mapping .. 7

Table 9: Unused 'C54x Data and Program Addressing modes... 7

Table 10: Conditional Code Mapping.. 8

Table 11: Unused 'C54x Conditional Codes ... 8

Table 12: Assembly Directive Mapping... 8

Table 13: Operand Acronyms ... 9

Table 14: Accumulator Source Instructions... 10

Table 15: Unused 'C54x Accumulator Source Instructions ... 11

Table 16: Accumulator and Memory Source Instructions.. 12

Table 17: Unused 'C54x Accumulator and Memory Source Instructions 13

Table 18: Auxiliary Register and Data Page Pointer Instructions.................................... 13

Table 19: Parallel Logic Unit Instructions.. 14

Table 20: T Register, P Register, and Multiply Instructions... 14

Table 21: Unused 'C54x T Register, P Register, and Multiply Instructions 15

Table 22: Branch, Call, Return Instructions... 16

Table 23: Unused 'C54x Branch, Call, Return Instructions ... 16

Table 24: Program Control Instructions... 17

Table 25: Unused 'C54x Program Control Instructions ... 17

Table 26: I/O and Data Memory Operations ... 17

Table 27: Unused 'C54x I/O and Data Memory Operations .. 18

Table 28: Miscellaneous Control Instructions.. 18

Table 29: Summary of 'C5x and 'C54x MPY/Accumulate mappings............................... 22

Table 30: Interrupt k value mapping.. 26

Table 31: LEADT Error Descriptions... 29

Contents

TMS320C5x to TMS320C54x Translation Utility iv

Table 32: LEADT Warning Descriptions.. 29

Table 33: LEADT HINT Descriptions .. 30

Contents

TMS320C5x to TMS320C54x Translation Utility v

TMS320C5x to TMS320C54x Translation Utility 1

TMS320C5x to TMS320C54x Translation Utility

1. Introduction
This document describes the utility 'LEADT.EXE' (or ‘LEADT’ for UNIX) for translating
'C5x assembly source files to 'C54x. The translator is not designed to be an automatic
translation from one processor to another. There are differences in the architectures that
can not be handled by the ‘intellect’ of this software utility but it does give the necessary
warnings and errors to prompt the user in the correct direction.

A brief summary of the translator capability is as follows :

• LEADT only works at assembly (mnemonic) level and will translate instructions,
operands, and directives.

• Will pass through comments, labels, and other untranslated assembly time structures.
• Assumes that the 'C5x input code passes through the 'C5x assembly without error.

There is no (little) 'C5x syntax checking done.
• Output of LEADT should pass through the 'C54x assembler without error but will not

necessarily be functional.
• Errors, warnings, and hints are output as a result of the translation process and can be

found embedded in the translated output as well as the information file.
• An information file, LEADT.INF, is produced to give auxiliary information about the

translation process.
• LEADT will translate from other fixed point family members such as 'C1x, 'C2x, and

'C2xx. However, these device translations have not been tested as has been the 'C5x
process. Default supported translation is for the 'C5x only.

• LEADT is available for PC’s (DOS) and Sun’s (SUN-OS).

2. Translation Methods
There are a number of different approaches that can be adopted when translating from
one architecture to another. The main types that can be deployed are :

• Direct Instruction Mapping : This is the method used by the LEADT utility. Original
code sequences are analysed at the instruction level and categorised into instruction
types. The target architecture is also mapped into the same categories and the closest
functional match is found. This is not the optimum form of translation for the following
reasons :
• Unsupported instructions on the original architecture either map to a number of

target instructions or will not be translated at all. Often, more instructions are
required on the target to emulate the original processor.

• Architectural enhancements on the target cannot be fully utilised. Increased
efficiency on the target can then be achieved only by a faster cycle time or
increased memory resource which are almost unrelated to the translation process.

TMS320C5x to TMS320C54x Translation Utility 2

• High-Level Language : This method involves the up-conversion to a high-level or
algebraic language which is normally common to both architectures. If we take the ‘C’
language as an example, then the translation would involve the generation of ‘C’
source that describes that original assembler source in a bit-exact nature. Target code
would then be generated through the target’s ‘C’ compiler. An indirect benefit of this
approach is the portability of the code for any future processor; however the
disadvantages are :
• Reliance on the efficiency of the target ‘C’ compiler in terms of code size and cycle

optimisation. Fixed point processors are generally not known for having efficient
compilers ('C6x being exception to the rule).

• Inefficiencies of the ‘C’ language in being able to describe fixed-point arithmetic and
other processor specific bit-exact operations and structures.

• Operation analysis : This method is the most efficient method but also the most
complex to implement. In its purest form it requires an operational analysis of the
original code such that a primitive description can be produced. Mapping is then
performed by grouping the primitives into the target instructions. This enables the
usage of the target architecture’s enhancements leading to decreased instruction
counts as well as cycles. This process is most easily performed when the target
instruction set is closely matched to the primitive set, i.e. such as the 'C6x. The
process of translating from either the 'C5x or 'C54x processors to the 'C6x could be
done quite efficiently by the generation of linear assembly. The assembly optimiser
would then be used for register and resource allocation, software pipelining and
general architecture optimisations. It would be expected that the translator in this
instance would offer a more automatic flow than LEADT.

3. Architecture Mapping
This section describes the architecture mapping used when performing the translation
between the 'C5x and 'C54x. The mapping tables show the original 'C5x object with the
'C54x equivalent. The LEADT treatment column details how the translator processes the
objects. Caveats are marked with superscript and commented at the bottom of the table.
«Direct Translation» generally means that LEADT will map as per the original and target
objects listed in the table.

Another table is included within section detailing the 'C54x architectural features that
LEADT cannot or does not use. This is useful information in the translation process for
the user when understanding the 'C54x resources available for optimising the ode further.

TMS320C5x to TMS320C54x Translation Utility 3

3.1 CPU register Mapping

 Table 1: CPU Register Mapping

'C5x 'C54x 'C5x Field Description LEADT Treatment
ACC A Accumulator Direct Translation (2)

ACCB B Accumulator Buffer Direct Translation (2)

AR0 AR0 Auxiliary Register 0 Direct Translation
AR1-AR7 AR1-AR7 Auxiliary Register 1-7 Direct Translation
ARCR - Auxiliary Register Compare Reg. Invalid Register
BMAR - Block-move Address Reg. Invalid Register
BRCR BRC Block Repeat Counter Reg. Direct Translation
CBER1 - Circular Buffer End Address 1 Invalid Register
CBER2 - Circular Buffer End Address 2 Invalid Register
CBSR1 - Circular Buffer Start Address 1 Invalid Register
CBSR2 - Circular Buffer Start Address 2 Invalid Register
DBMR - Dynamic Bit Manipulation Reg. Invalid Register
GREG - Global Memory Allocation Reg. Invalid Register
IFR IFR Interrupt Flag Register Direct Translation (1)

IMR IMR Interrupt Mask Register Direct Translation (1)

INDX - Indirect Addressing index Reg. Invalid Register
PAER REA Block Repeat End Address Direct Translation
PASR RSA Block Repeat Start Address Direct Translation
PMST PMST Processor-Mode-status Reg. Direct Translation (1)

PREG - Product Register Invalid Register (2)

RPTC - Repeat-counter Reg. Invalid Register (2)

ST0 ST0 Status Register 0 Direct Translation (1) (2)

ST1 ST1 Status Register 1 Direct Translation (1) (2)

TREG0 T Temporary Register 0 Direct Translation
TREG1 - Temporary Register 1 Invalid Register
TREG2 - Temporary Register 2 Invalid Register

(1) Bit positions and/or functionality change between 'C5x and 'C54x
(2) Register not referenced directly in assembler but is implicit for specific instruction

 Table 2: Unused 'C54x CPU Registers

'C54x 'C54x Register Description
AG A Register Guard Band
BG B Register Guard Band
BK Block Size Register
SP Stack Pointer
TRN Transition Register
XPC Extended Addressing Reg. (548/549 only)

TMS320C5x to TMS320C54x Translation Utility 4

3.2 Peripheral Register Mapping

Peripheral registers differ according to the original and target processor family members.
No single processor will contain all registers in the following table.

 Table 3: Peripheral Register Mapping

'C5x 'C54x 'C5x Field Description LEADT Treatment
ARR ARR Address Receive Register(BSP) Direct Translation
AXR AXR Address Transmit Register(BSP) Direct Translation
BKR BKR Receive Buffer-size Register(BSP) Direct Translation
BKX BKX Transmit Buffer-size Register(BSP) Direct Translation
BDXR BDXR Transmit Register(BSP) Direct Translation
BDRR BDRR Receive Register(BSP) Direct Translation
BSPC BSPC Serial Port Control (BSP) Direct Translation
CWSR - WaitState Control Register Invalid Register
DRR DRR Transmit Register(SP) Direct Translation
DXR DXR Receive Register(SP) Direct Translation
IOWSR IOWSR IO Waitstate Register Direct Translation (1)

HPIC HPIC Host Port Control Register Direct Translation
PA[0-15] - Memory mapped ports Invalid Register (2)

PA[0-15] [0x50-0x5F] IN or OUT operand Direct Translation (2)

PDWSR SWWSR Software Wait-state control Reg. Direct Translation (1)

PRD PRD Timer Period Register Direct Translation
SPC SPC Serial Port Control (SP) Direct Translation
SPCE SPCE Serial Port Control Extension(BSP) Direct Translation
TCSR TCSR Channel Select Register (TDM-SP) Direct Translation
TCR TCR Timer Control Register Direct Translation
TDXR TDXR Transmit Data Register (TDM-SP) Direct Translation
TIM TIM Timer Counter Register Direct Translation
TRAD TRAD Received Address Register (TDM-SP) Direct Translation
TRCV TRCV Receive Data Register (TDM-SP) Direct Translation
TRTA TRTA RX/TX Address Register (TDM-SP) Direct Translation
TSPC TSPC Serial Port Control (TDM-SP) Direct Translation

(1) Bit positions and/or functionality change between 'C5x and 'C54x
(2) Not translated if used with memory mapped access, only with IN or OUT instructions

 Table 4: Unused 'C54x Peripheral Registers

'C54x 'C54x Register Description
ARR[0,1] Address Receive Register(BSP)
AXR[0,1] Address Transmit Register(BSP)
BSCR Bank Switch Control Register
BDXR[0,1] Transmit Register(BSP)
BDRR[0,1] Receive Register(BSP)
BKR[0,1] Receive Buffer-size Register(BSP)
BKX[0,1] Transmit Buffer-size Register(BSP)
BSPC[0,1] Serial Port Control (BSP)
SPCE[0,1] Serial Port Control Extension(BSP)
CLKMOD Clockmode Register

TMS320C5x to TMS320C54x Translation Utility 5

3.3 CPU Bit Field Mapping

The assembler and instruction sets allow for some bit fields to be accessed and modified
explicitly as well as implicitly. The following table shows how the translation of these bit
fields are handled by LEADT.

 Table 5: CPU Bit-field Mapping

'C5x 'C54x 'C5x Field Description LEADT Treatment
ARB - Auxiliary Register Pointer Buffer Invalid Field (2)

ARP ARP Auxiliary Register Pointer (2) (3)

AVIS AVIS Address Visibility Direct Translation (3)

BRAF BRAF Block Repeat Active Flag Direct Translation (3)

C C Carry Direct Translation
CAR1 - Circular Buffer Aux. Register 1 Invalid Field (3)

CAR2 - Circular Buffer Aux. Register 2 Invalid Field (3)

CENB1 - Circular Buffer Enable 1 Invalid Field (3)

CENB2 - Circular Buffer Enable 2 Invalid Field (3)

CNF - On-chip RAM configuration Invalid Field
DP DP Data Page pointer Direct Translation (2) (3)

HM HM Hold Mode bit Direct Translation
INTM INTM Global Interrupt Mask bit Direct Translation
IPTR IPTR Interrupt vector table pointer Direct Translation (1) (3)

MPNMC MPNMC Microprocessor/Microcontroller Direct Translation (3)

NDX - Enable INDX register Invalid Field (3)

OV OVA Overflow flag (2)

OVLY OVLY Internal RAM Overlay Direct Translation (3)

OVM OVM Overflow mode Direct Translation
PM FRCT Product Mode PM = 0,1 only
RAM - Program RAM enable Invalid Field (3)

SXM SXM Sign Extension Mode Direct Translation
TC TC Test Control Bit Direct Translation
TRM - Enable Multiple T registers Invalid Field (3)

XF XF External Flag Direct Translation

(1) Bit positions and/or functionality change between 'C5x and 'C54x
(2) Register not referenced directly in assembler but is implicit for specific instructions
(3) User defined field in assembly (using .set or .equ).

TMS320C5x to TMS320C54x Translation Utility 6

 Table 6: User-defined fields in 'C5x assembly

'C5x name 'C5x Field Assembly Descriptor
AVIS .set (PMST >> 7)&1
BRAF .set (PMST >> 0)&1
CAR1 .set (CBCR >> 0)&7
CAR2 .set (CBCR >> 4)&7
CENB1 .set (CBCR >> 3)&1
CENB2 .equ (CBCR >> 7)&1
IPTR .set (PMST >> 11)&1fh
MPNMC .set (PMST >> 3)&1
NDX .set (PMST >> 2)&1
OVLY .set (PMST >> 5)&1
RAM .set (PMST >> 4)&1
TRM .set (PMST >> 1)&1

LEADT will NOT replace 'C5x shift values with the correct 'C54x equivalents in
expressions such as shown above. It will however scan expressions for invalid registers
(i.e. CBCR) and flag the expression as an error.

 Table 7: Unused 'C54x Bit Fields

'C54x 'C54x Field Description
ASM Accumulator shift mode
C16 Dual 16bit ALU arithmetic mode
CLKOFF Disable CLKOUT bit
CMPT ARP compatibility
CPL Compiler Mode
DROM Data ROM enable
OVB Overflow Flag for B Accumulator
SMUL Saturation on multiplication
SST Saturation on Store

TMS320C5x to TMS320C54x Translation Utility 7

3.4 Data, Program, and I/O Addressing Modes

 Table 8: Data, Program, and I/O addressing modes mapping

'C5x 'C54x 'C5x Addressing Mode LEADT Treatment
dma dma Direct Direct Translation (1)

dma,shift dma,shift Direct with shift Direct Translation (1)

* *AR[ARP] Indirect Direct Translation (4)

*+ *AR[ARP]+ Indirect with increment modify Direct Translation (4)

*- *AR[ARP]- Indirect with decrement modify Direct Translation (4)

*0+ *AR[ARP]+0 Indirect with index modify Direct Translation (4) (6)

*0- *AR[ARP]-0 Indirect with index modify Direct Translation (4) (6)

*BR0+ *AR[ARP]+0B Indirect with bit-reverse modify Direct Translation (4) (6)

*BR0- *AR[ARP]-0B Indirect with bit reverse modify Direct Translation (4) (6)

*,shift *AR[ARP],shift Indirect with shift Direct Translation (4)

*,ARP *AR[ARP] Indirect with ARP modify Direct Translation (4) (5)

*,shift,ARP *AR[ARP],shift Indirect with shift and ARP modify Direct Translation (4) (5)

#k #k Short Immediate (8,9,13bit) Direct Translation
#lk #lk Long Immediate (16bit) Direct Translation
MMR MMR Memory mapped register Direct Translation (7)

Dmad Dmad Data Memory address Direct Translation
[ACC] [A] Accumulator Program addressing Direct Translation (3)

Pmad Pmad Program Memory address Direct Translation
PAx. PA Port Address Direct Translation (2)

(1) Direct addressing using DP only (CPL=0)
(2) Not translated if used with memory mapped access, only with IN or OUT instructions
(3) Using instructions such as TBLR/TBLW/BACC/CALA.
(4) CMPT = 0 assumed always
(5) ARP change is recorded and used by LEADT for next in-line indirect addressing operand.
(6) Uses AR0 only as index register.
(7) Provided Memory mapped register exists on target.

 Table 9: Unused 'C54x Data and Program Addressing modes

'C54x 'C54x Addressing Description
*SP() Stack pointer relative
*+ARx. Indirect with Pre-incrementation
*ARx-% Indirect with modulo circular addressing
*ARx+% Indirect with modulo circular addressing
*ARx-0% Indirect with modulo circular addressing and offset
*ARx+0% Indirect with modulo circular addressing and offset
*ARx(lk) Indirect with long immediate offset and no modify
*+ARx(lk) Indirect with long immediate offset and pre-modify
*+ARx(lk)% Indirect with long immediate offset, pre-modify, and circular
Xmem,Ymem 1 or 2 indirect operands per instruction
*(lk) Absolute addressing
[XPC] Far program addressing (i.e. 23bit)

TMS320C5x to TMS320C54x Translation Utility 8

3.5 Conditional Code Mapping

The combinations of conditional codes that can be used on the 'C5x are more flexible
than that of the 'C54x (i.e. mixing control and signed conditions). If this 'C54x criteria is
breached. then LEADT will flag it with an error.

 Table 10: Conditional Code Mapping

'C5x 'C54x 'C5x Condition Description LEADT Treatment
EQ AEQ ACC = 0 Direct Translation
NEQ ANEQ ACC <> 0 Direct Translation
LT ALT ACC < 0 Direct Translation
LEQ ALEQ ACC <= 0 Direct Translation
GT AGT ACC > 0 Direct Translation
GEQ AGEQ ACC => 0 Direct Translation
C C Carry = 1 Direct Translation
NC NC Carry = 0 Direct Translation
OV AOV Overflow detected Direct Translation
NOV ANOV No Overflow detected Direct Translation
BIO BIO BIO signal Low Direct Translation
TC TC Test Control = 1 Direct Translation
NTC NTC Test Control = 0 Direct Translation
UNC UNC Unconditional Direct Translation

 Table 11: Unused 'C54x Conditional Codes

'C54x 'C54x Condition Description
BOV Overflow detected (B)
BNOV No Overflow detected (B)
BEQ B = 0
BNEQ B <> 0
BLT B < 0
BLEQ B <= 0
BGT B > 0
BGEQ B => 0
NBIO BIO signal High

3.6 Assembly Directive Mapping

For directives that are not mentioned, Direct Translation with no change applies.

 Table 12: Assembly Directive Mapping

'C5x 'C54x 'C5x Condition Description LEADT Treatment
.version [50-57] .version 540 Device version specifier Direct Translation
.mmregs .mmregs Memory mapped register definition Direct Translation (1)

.macro .macro Macro definition Direct Translation (2)

.set, .equ .set, .equ Set directive Direct Translation (3)

[default] [default] All other directives Direct Translation

(1) If .mmregs is not found in 'C5x source, it is added by LEADT
(2) If .macro is found then macro name is treated as instruction and copied without change to output.
(3) Expressions are scanned for invalid registers or fields.

TMS320C5x to TMS320C54x Translation Utility 9

4. Instruction Mapping
This section describes the instruction or mnemonic mapping used when performing the
translation between the 'C5x and 'C54x. The process is similar to the architecture
mapping where caveats are marked with superscript and «Direct Translation» means that
LEADT will map as per the original and target objects listed in the table.

To achieve bit accuracy with the 'C5x it is sometimes necessary to translate one 'C5x
instruction to two or three for the 'C54x. This is called an «Instruction Combination» and
is marked accordingly in the mapping tables. A description of the instruction combinations
that are used is given in chapter 5. In all cases, a maximum of 3 instructions is all that is
necessary; when more are required then that instruction is deemed to be untranslatable
(3 instructions does not include NOP’s). It is possible that all 'C5x instructions could be
emulated with 'C54x equivalents by saving and restoring program context. LEADT does
not do this.

Another table is included within section detailing the 'C54x instructions and descriptions
that LEADT cannot or does not use. This is useful information in the translation process
for the user when understanding the 'C54x resources available for optimising the code
further.

Acronyms that are used in the following tables are described below.

 Table 13: Operand Acronyms

Operand Description
A C54x A register
ACC 'C5x Accumulator
ACCB 'C5x Accumulator Buffer
ARP Auxiliary Register Pointer
ARx Auxiliary Register 0-7
addr Address constant
B 'C54x B register
conds Conditional codes
dma Direct or Indirect data memory addressing
k Short Immediate
lk Long Immediate
mmr Memory mapped register (i.e. DP = 0)
pma Program memory address
shift Long Constant shift operand
shf Short Constant shift operand

TMS320C5x to TMS320C54x Translation Utility 10

4.1 Accumulator Source Instructions

Instructions that do not use Data or Program memory as the source of the operation. The
accumulators are the only source.

 Table 14: Accumulator Source Instructions

'C5x 'C54x 'C5x Instruction Description LEADT Treatment
ABS ABS A Absolute value of ACC Direct Translation
ADCB ADDC/ADD ACC = ACC + ACCB + C Direct Translation (2)

ADDB ADD A,B,A ACC = ACC + ACCB Direct Translation
ANDB AND A,B,A ACC = ACCB & ACC Direct Translation
BSAR k (k=1...16) LD A,-k, A ACC >> k (barrel shift) Direct Translation (2)

CMPL CMPL A Complement ACC Direct Translation
CRGT MAX A ACC = Max(ACC,ACCB), set C Direct Translation (2)

CRLT MIN A ACC = min(ACC,ACCB), set C Direct Translation (2)

EXAR - Exchange ACCB and ACC (3)

LACB LD B,A ACC = ACCB Direct Translation
NEG NEG A Negate ACC Direct Translation
NORM *[+/-] EXP A,NORM A Normalise ACC Direct Translation (2)

ORB OR A,B,A OR ACCB with ACC Direct Translation
ROL ROL A Rotate ACC << 1 Direct Translation
ROLB ROL, ROL Rotate ACCB and ACC << 1 Direct Translation (2)

ROR ROR A Rotate ACC >> 1 Direct Translation
RORB ROR, ROR Rotate [ACCB | ACC] >> 1 Direct Translation (2)

SACB LD A,B ACCB = ACC Direct Translation
SATH - ACC >> 16 if T[4:4] = 1 (4) (5)

SATL - ACCL >> T[3:0] (4) (5)

SBB SUB B,A ACC = ACC - ACCB Direct Translation
SBBB SUBB/SUB ACC = ACC - ACCB -B Direct Translation (2)

SFL SFTL A,1 ACC << 1 Direct Translation
SFLB SFTL, ROL [ACC | ACCB] << 1 Direct Translation (2)

SFR SFTA, SFTA ACC >> 1 Direct Translation (2)

SFRB SFTA,SFTA,ROL [ACC | ACCB] >> 1 Direct Translation (2)

XORB XOR B,A ACC = ACCB XOR ACC Direct Translation
ZAP LD #0, A ACC = P = 0 Direct Translation (1)

(1) PREG is invalid register for target.
(2) Instruction combination - See chapter 5
(3) Swap register names (A and B) explicitly in assembly.
(4) Need to negate TREG, and use NORM A
(5) TREG1 not available on target, T used instead.

TMS320C5x to TMS320C54x Translation Utility 11

 Table 15: Unused 'C54x Accumulator Source Instructions

'C54x 'C54x Instruction Description
ADD [ASM] Add with fixed shift or using ASM register
AND AND with fixed shift
LD [ASM] Load with fixed shift or using ASM register
OR OR with fixed shift
RND Round accumulator (2 15)
ROLTC Rotate register left with TC shifted into LSB
SAT Saturate accumulator
SFTC Shift Register left if 2 sign bits
SUB [ASM] Sub with fixed shift or using ASM register
XOR XOR with fixed shift

TMS320C5x to TMS320C54x Translation Utility 12

4.2 Accumulator and Memory Source Instructions

Instructions that use Accumulators, Program and Data memory as sources.

 Table 16: Accumulator and Memory Source Instructions

'C5x 'C54x 'C5x Instruction Description LEADT Treatment
ADD dma[,shift] ADD dma[,shift],A ACC +=dma [<< shift] Direct Translation
ADD #k ADD #lk,A ACC +=lk Direct Translation
ADD #lk[,shift] ADD #lk[,shift],A ACC +=lk [<< shift] Direct Translation
ADD dma,16 ADD dma,16,A ACC +=dma << 16 Direct Translation
ADDC dma ADDC dma,A ACC +=(dma + C) Direct Translation
ADDS dma ADDS dma,A ACC +=(unsigned)dma Direct Translation
ADDT dma ADDT dma,TS,A ACC +=dma << T Direct Translation (2)

AND dma AND dma,A ACC =dma & ACC Direct Translation
AND #lk[,shift] AND #lk[,shift],A ACC =lk[,<<shift] & ACC Direct Translation
AND #lk,16 AND #lk,16,A ACC =lk<<16 | ACC Direct Translation
LACC dma[,shift] LD dma[,shift],A ACC =dma [<< shift] Direct Translation
LACC #lk[,shift] LD #lk[,shift],A ACC =lk [<< shift] Direct Translation
LACC dma,16 LD dma,16,A ACC =dma << 16 Direct Translation
LACL #k LD #k, A ACCL =k Direct Translation (1)

LACL dma LDU dma,A ACCL =(dma + C) Direct Translation
LACT dma LD dma,TS,A ACC =dma << T Direct Translation (2)

LAMM mmr LDM mmr,A ACC =mmr Direct Translation
OR dma OR dma,A ACC =dma | ACC Direct Translation
OR #lk[,shift] OR #lk[,shift],A ACC =lk[,<<shift] | ACC Direct Translation
OR #lk,16 OR #lk,16 ACC =lk<<16 | ACC Direct Translation
SACH dma[,shf] STH A,dma[,shift] dma = ACCH<<shf Direct Translation
SACL dma[,shf] STL A,dma[,shift] dma = ACCL<<shf Direct Translation
SAMM mmr STLM A,mmr mmr = ACCL Direct Translation
SUB dma[,shift] SUB dma[,shift],A ACC -=dma [<< shift] Direct Translation
SUB #k SUB #lk,A ACC -=lk Direct Translation
SUB #lk[,shift] SUB #lk[,shift],A ACC -=lk [<< shift] Direct Translation
SUB dma,16 SUB dma,16,A ACC -=dma << 16 Direct Translation
SUBB dma SUBB dma,A ACC -=(dma + !C) Direct Translation
SUBC dma SUBC dma,A ACC -=dma (conditional) Direct Translation
SUBS dma SUBS dma,A ACC -=(unsigned)dma Direct Translation
SUBT dma SUB dma,TS,A ACC -=dma << T Direct Translation (2)

XOR dma XOR dma,A ACC =dma XOR ACC Direct Translation
XOR #lk[,shift] XOR #lk[,shift],A ACC =lk[,<<shift] XOR ACC Direct Translation
XOR #lk,16 XOR #lk,16,A ACC =lk<<16 XOR ACC Direct Translation
ZALR dma LDR dma, A ACC=0, ACCH=dma Direct Translation

(1) LD will not sign extend for range of k (-1 < k < 256)
(2) TREG1 not available on target, T used instead.

TMS320C5x to TMS320C54x Translation Utility 13

 Table 17: Unused 'C54x Accumulator and Memory Source Instructions

'C54x 'C54x Instruction Description
ABDST Xmem,Ymem ABS distance of 2 memory values
ADD Xmem,Ymem Add 2 data memory operands
BIT Test bit in memory location
CMPS Compare, Select, Store
DADD 32bit add with memory
DADST 32bit add/sub with T
DLD Load 32bit value
DRSUB 32bit reverse sub with memory
DSADT 32bit sub/add with T
DST 32bit store to memory
DSUB 32bit sub with memory
DSUBT 32bit sub with T
LD (ASM) Load with ASM shift
SACCD Conditional store of accumulator
SRCCD Conditional store of BRC
ST || LD Parallel store, load
ST || ADD Parallel store, add
ST || SUB Parallel store, sub
STH/L (ASM) Store with ASM shift
STRCD Conditional store of T
SUB Xmem,Ymem Sub 2 data memory operands

4.3 Auxiliary Register and Data Page Pointer Instructions

 Table 18: Auxiliary Register and Data Page Pointer Instructions

'C5x 'C54x 'C5x Instruction Description LEADT Treatment
ADRK k MAR *+AR[ARP](+k) Add short immediate to AR[ARP] Direct Translation
CMPR [0,1,2,3] CMPR #[0,1,2,3],AR[ARP] Compare AR[ARP] with ARCR Direct Translation (1)

LAR ARx,dma MVDK dma,ARx Load ARx. from memory Direct Translation (3)

LAR ARx,#k STM #k, ARx Load ARx. With short immed. Direct Translation
LAR ARx,#lk STM #lk, ARx Load ARx. With long immed. Direct Translation
LDP dma LD dma, DP Load DP from memory Direct Translation
LDP #k LD #k, DP Load DP with 9bit immediate Direct Translation
MAR *,ARP - Modify ARP Direct Translation (2)

MAR *[+/-][,ARP] MAR *AR[ARP][+/-] Modify auxiliary register Direct Translation
SAR ARx,dma MVKD ARx,dma Store Auxiliary register to mem. Direct Translation
SBRK k MAR *+AR[ARP](-k) Sub short immediate from AR[ARP] Direct Translation

(1) AR0 is used as compare register for 'C54x. User must initialise manually.
(2) Instruction deleted but ARP kept for future use.
(3) MVDK used instead of MVDM to avoid latency problems.

TMS320C5x to TMS320C54x Translation Utility 14

4.4 Parallel Logic Unit Instructions

 Table 19: Parallel Logic Unit Instructions

'C5x 'C54x 'C5x Instruction Description LEADT Treatment
APL dma - AND DBMR with dma (1)

APL #lk,dma ANDM #lk,dma AND Long Immediate with dma Direct Translation (2)

CPL dma - Compare DBMR with dma (1)

CPL #lk,dma CMPM #lk,dma Compare Long Immediate with dma Direct Translation (2)

OPL dma - OR DBMR with dma (1)

OPL #lk,dma ORM #lk,dma OR Long Immediate with dma Direct Translation (2)

SPLK #lk, dma ST #lk, dma Store Long Immediate to dma Direct Translation
XPL dma - EXOR DBMR with dma (1)

XPL #lk,dma XORM #lk,dma EXOR Long Immediate with dma Direct Translation (2)

(1) DBMR is invalid register for target.
(2) TC bit is not affected by this instruction on target

4.5 T Register, P Register, and Multiply Instructions

 Table 20: T Register, P Register, and Multiply Instructions

'C5x 'C54x 'C5x Instruction Description LEADT Treatment
APAC - Add PREG to ACC (1) (2)

LPH dma - Load PREG from data mem (1)

LT dma LD dma, T Load T from data mem Direct Translation
LTA dma LD dma, T Load T from data mem & ACC +=P Direct Translation (1) (2)

LTD dma LD dma, T Load T from data mem & ACC +=P & dmov Direct Translation (1) (2)

LTP dma LD dma, T Load T from data mem & ACC=P Direct Translation (1) (2)

LTS dma LD dma, T Load T from data mem & ACC-=P Direct Translation (1) (2)

MAC pma, dma MACP dma,pma,A Multiply & accumulate Direct Translation (3)

MACD pma,dma MACD dma,pma,A Multiply & accumulate & dmov Direct Translation (3)

MADD dma - Multiply & accumulate & dmov using BMAR (4)

MADS dma - Multiply & accumulate & dmov using BMAR (4)

MPY dma MPY dma,A Multiply signed Direct Translation (2) (3)

MPY #k MPY #lk,A Multiply signed with short immed. Direct Translation (2) (3)

MPY #lk MPY #lk,A Multiply signed with long immed. Direct Translation (2) (3)

MPYA dma MPY dma,A Multiply & accumulate Direct Translation (3)

MPYS dma MPY dma,A Multiply & accumulate Direct Translation (3)

MPYU dma MPYU dma ,A Multiply unsigned Direct Translation (2) (3)

PAC - ACC = PREG (1) (2)

SPAC - ACC -=PREG (1) (2)

SPH dma - Store PREG hi to data mem. (1)

SPL dma - Store PREG lo to data mem. (1)

SPM 0 RSBX FRCT PREG shift count = 0 Direct Translation (1)

SPM 1 SSBX FRCT PREG shift count = 1 Direct Translation (1)

SPM [2,3] - PREG shift count = 4,-6 (5)

SQRA dma SQUR dma,A Square & accumulate Direct Translation (3)

SQRS dma SQUR dma,A Square & accumulate Direct Translation (3)

ZPR - Zero PREG (1)

(1) PREG is invalid register for target.
(2) Instruction combination - See chapter 5
(3) Non-pipelined multiply on target
(4) BMAR is invalid register for target.
(5) Use guard bands (AG/BG) on target instead

TMS320C5x to TMS320C54x Translation Utility 15

 Table 21: Unused 'C54x T Register, P Register, and Multiply Instructions

'C54x 'C54x Instruction Description
FIRS Symmetrical filter operation
LD || MAC Load and MAC
LD || MACR Load and MACR
LD || MAS Load and MAS
LD || MASR Load and MASR
LMS Least mean squares filter
MACR Multiply/accumulate with rounding
MACA[R] Multiply/accumulate with AH as input [& rounding]
MACSU Multiply/accumulate signed/unsigned
MASR Multiply/accumulate with rounding
MASA[R] Multiply/accumulate with AH as input [& rounding]
MPYA Multiply with AH as input
MPYR Multiply & rounding
POLY Polynomial operation
SQDST Square distance
SQUR Square with A register input
SQUR[A,S] Square with Accumulate
ST || MAC Store and MAC
ST || MACR Store and MACR
ST || MAS Store and MAS
ST || MASR Store and MASR
ST || MPY Store and MPY

TMS320C5x to TMS320C54x Translation Utility 16

4.6 Branch, Call, Return Instructions

 Table 22: Branch, Call, Return Instructions

'C5x 'C54x 'C5x Instruction Description LEADT Treatment
B pma B pma Branch Direct Translation
B pma, *[+/-][,ARP] BD pma Branch with AR update Direct Translation (2)

BACC BACC Branch on ACC Direct Translation
BACCD BACCD Delayed Branch on ACC Direct Translation
BANZ pma BANZ pma,*ARx- ARx Conditional Branch Direct Translation
BANZ pma,*[+/-],ARP BANZ pma,*ARx[+/-] ARx Conditional Branch Direct Translation
BANZD pma BANZ pma,*ARx- ARx Conditional delayed Branch Direct Translation
BANZD pma,*[+/-],ARP BANZ pma,*ARx[+/-] ARx Conditional delayed Branch Direct Translation
BCND pma,conds BC pma,conds Conditional Branch Direct Translation (4)

BCNDD pma,conds BCD pma,conds Conditional delayed Branch Direct Translation (4)

BD pma BD pma Delayed Branch Direct Translation
BD pma[,*,ARP] BD pma Delayed Branch with AR update Direct Translation (2)

CALA CALA A Call on ACC Direct Translation (1)

CALAD CALAD A Delayed Call on ACC Direct Translation (1)

CALL pma CALL pma Call Direct Translation (1)

CALL pma*[+/-][,ARP] CALLD pma Call with AR update Direct Translation (1) (2)

CALLD pma CALLD pma Delayed Call Direct Translation (1)

CALLD pma[,*,ARP] CALLD pma Delayed Call with AR update Direct Translation (1) (2)

CC pma,conds CC pma,conds Conditional Call Direct Translation (1) (4)

CCD pma,conds CCD pma,conds Conditional Delayed Call Direct Translation (1) (4)

INTR k INTR k+15 Software Interrupt Direct Translation (1) (5)

NMI INTR 1 Non-maskable Interrupt Direct Translation (1)

RET RET Return Direct Translation (1)

RETC conds RC conds Conditional Return Direct Translation (1) (4)

RETD RETD Delayed return Direct Translation (1)

RETE RETE Return from interrupt with
enable

Direct Translation (1) (6)

RETI RET Return from interrupt Direct Translation (1) (6)

TRAP TRAP 2 Software TRAP Direct Translation (1)

(1) Stack for 'C54x is software and must have SP initialised
(2) Requires Instruction combination - see chapter 5
(4) Conditional checking is performed.
(5) Interrupt vector changes - see chapter 5
(6) No shadow registers on target

 Table 23: Unused 'C54x Branch, Call, Return Instructions

'C54x 'C54x Instruction Description
FB[D] Far Branch (548/9)
FBACC[D] Far Branch on ACC(548/9)
FCALA[D] Far Call on ACC(548/9)
FCALL[D] Far Call (548/9)
FRET[D] Far Return (548/9)
FRETE[D] Far Return with INTM enable (548/9)
RESET Software Reset
RETF[D] Fast Return

TMS320C5x to TMS320C54x Translation Utility 17

4.7 Program Control Instructions

Instructions that modify the Program Counter in a non-consecutive manner, not including
Branch instructions

 Table 24: Program Control Instructions

'C5x 'C54x 'C5x Instruction Description LEADT Treatment
POP POPM AL Pop low ACC from stack Instruction Combo (1) (2)

POPD dma POPD dma Pop Data memory from stack Direct Translation (1)

PSHD dma PSHD dma Push Data memory to stack Direct Translation (1)

PUSH PUSHM AL Push Low ACC to stack Direct Translation (1)

RPT #k RPT #k Single Repeat(short Imm.) Direct Translation
RPT #lk RPT #lk Single Repeat(long Imm.) Direct Translation
RPT dma RPT dma Single Repeat(dma) Direct Translation
RPTB RPTB Block Repeat Direct Translation
RPTZ #lk RPTZ A,#lk Single Repeat with ACC clear Direct Translation
XC 1,conds XC 1,conds Execute conditional 1 Direct Translation (2) (3)

XC 2,conds XC 2,conds Execute conditional 2 Direct Translation (2) (3)

(1) Stack for 'C54x is RAM based and must have SP initialised
(2) Requires Instruction combination - see chapter 5
(3) Conditional checking is performed.

 Table 25: Unused 'C54x Program Control Instructions

'C54x 'C54x Instruction Description
FRAME Modify stack pointer by immediate

4.8 I/O and Data Memory Operations

 Table 26: I/O and Data Memory Operations

'C5x 'C54x 'C5x Instruction Description LEADT Treatment
BLDD #addr,dma MVKD #addr, dma Data to data Direct Translation
BLDD dma,#addr MVDK dma, #addr Data to data reversed Direct Translation
BLDD BMAR,dma - Data to data using BMAR (1)

BLDD dma,BMAR - Data to data using BMAR reversed (1)

BLDP dma - Data to program using BMAR (1)

BLPD #pma, dma MVPD pma, dma Program to data Direct Translation
BLPD BMAR,dma - Program to data using BMAR (1)

DMOV dma DELAY dma Data move Direct Translation
IN dma, PA PORTR PA,dma I/O port to data Direct Translation
LMMR mmr,#addr MVDM #addr,mmr Data to memory-mapped register Direct Translation
LMMR *,#addr MVDM #addr,*AR[ARP] Data to memory-mapped register Direct Translation
OUT dma,PA PORTW dma, PA Data to I/O port Direct Translation
SMMR mmr,#addr MVMD mmr,#addr Memory-mapped register to data Direct Translation
SMMR *,#addr MVMD AR[ARP],#addr Memory-mapped register to data Direct Translation
TBLR dma READA dma Program to data using ACC Direct Translation
TBLW dma WRITA dma Data to program using ACC Direct Translation

(1) BMAR is invalid register for target.

TMS320C5x to TMS320C54x Translation Utility 18

 Table 27: Unused 'C54x I/O and Data Memory Operations

'C54x 'C54x Instruction Description
ADDM Add long immediate to data mem
MVDD Move Xmem to Ymem
MVMM Move Mmr to Mmr

4.9 Miscellaneous Control Instructions

 Table 28: Miscellaneous Control Instructions

'C5x 'C54x 'C5x Instruction Description LEADT Treatment
BIT dma,bit BITF dma,#1<<(15-

bit)
Test Bit (immediate) Direct Translation

BITT dma BITT dma Test Bit (TREG) Direct Translation (3)

CLRC bit RSBX bit Clear Bit Direct Translation
IDLE IDLE 1 Idle Direct Translation
IDLE2 IDLE 2 Idle 2 (low-power mode) Direct Translation
LST #0, dma MVDM dma, ST0 Load Status Register Direct Translation (1)

LST #1, dma MVDM dma, ST1 Load Status Register Direct Translation (1)

LST #0, *[+/- ...] MVDK *ARx[+/-], ST0 Load Status Register Direct Translation (2)

LST #1, *[+/- ...] MVDK *ARx[+/-], ST1 Load Status Register Direct Translation (2)

NOP NOP No operation Direct Translation
SETC bit SSBX bit Set bit Direct Translation
SST #0,dma MVMD ST0, dma Store Status Register Direct Translation (1)

SST #1,dma MVMD ST1, dma Store Status Register Direct Translation (1)

SST #0,*[+/- ...] MVKD ST0,*ARx[+/- ..] Store Status Register Direct Translation (2)

SST #1,*[+/- ...] MVKD ST1,*ARx[+/- ..] Store Status Register Direct Translation (2)

(1) Direct Memory Addressing Only
(2) Indirect Memory Addressing Only
(3) TREG2 not available on target, T used instead.

TMS320C5x to TMS320C54x Translation Utility 19

5. Translation Specifics

5.1 Arithmetic and Logical Differences

5.1.1 Accumulators

'C5x instructions that implicitly use the main Accumulator are translated to the 'C54x with
the A Accumulator as the operand.

The 8bit guard band of 'C54x is ignored and only 32bit ACC's are considered. This is
demonstrated in the shifting operations where sfl -> sftl (i.e. guard band is cleared). For
the sfr translation to sfta a,-1 the sxm bit must be taken into account and it is assumed
that the correct arithmetic state of the accumulator has been maintained to this point with
SXM = 1.

It is not possible for the translator to assume that a soft guard band is being used by the
'C5x code.

5.2 Addressing

5.2.1 Data Addressing

Direct memory addressing is translated one-to-one, keeping the variable names intact.
Indirect addressing is simplified in that all explicit LARP's and MAR's that do not modify
the current ARx are deleted with the current ARP value passed onto the next inline
instruction that uses indirect addressing. The 'C54x uses this value in its explicit usage of
the ARx registers. This passing of the ARP can cause problems if a discontinuity is
encountered and therefore a comment before each branch and label is needed for the
user to complete the translation.

Example :

'C5xx
; Current ARP = 1
com1 B mar1 ; before each branch

; Inline ARP = 2, Disc ARP unknown
mar2: ; before each label

; Inline ARP = 3, Disc ARP unknown
.endif ; before a directive that may change

; the inline nature of the code.

; Inline ARP = Undefined, Disc ARP unknown
loop ; if ARP has not been defined yet

5.2.2 Discontinuities with AR modification

B and Call instructions with AR modifications are coded into the equivalent delay slot
version to protect the modification from interrupts and to cut down on the cycle count. On

TMS320C5x to TMS320C54x Translation Utility 20

a 'C5x this modification comes with zero overhead using the ARP modification. For 'C54x
this modification needs to be explicit.

TMS320C5x to TMS320C54x Translation Utility 21

Example :

'C5x 'C5xx
; Current ARP = 3 ; Current ARP = 3

b temp,*+ BD temp
MAR *AR3+
NOP

For just a change on the ARP value, then a normal branch is used with appropriate
comments annotated indicating a change on the ARP. The translator will use the new
ARP for subsequent ARP references.

Example :

'C5x 'C5xx
; Current ARP = 3 ; Current ARP = 3

b temp,AR4 B temp
; Current ARP = 4

For CALLD and BD, where the modification needs to be done and the slots are already
full, then the translation is performed as in the following example. One cycle is added and
the modification is performed one cycle before it should be. This should not affect the
code functionality but does add a cycle and could behave differently in the presence of
interrupts.

Example :

'C5x 'C5xx
; Current ARP = 5 ; Current ARP = 5

calld temp,*+,AR1 MAR *AR5+
nop CALLD temp
nop ; Current ARP = 1

NOP
NOP

5.2.3 BANZ

BANZ has to be translated slightly differently due to the implicit nature of the 'C5x BANZ.
For 'C5xx the aux. register modification needs to be done explicitly.

Example 1:

'C5x 'C5xx
; arp = 0 ; arp = 0

BANZ temp BANZ temp,*AR0-

Example 2:

'C5x 'C5xx
; arp = 1 ; arp = 1

BANZ temp,AR2 BANZ temp,*AR1-
; arp = 2

TMS320C5x to TMS320C54x Translation Utility 22

5.3 Instruction Combinations

5.3.1 NORM instruction

The NORM instruction following a RPT (Normalisation procedure for 'C5x) is translated to
EXP,ST,NORM combination without the RPT. The T register needs to be unused before
the EXP instruction (or saved) and the ST fills the T register latency required as well as
storing T to the original AR[ARP]. The RPT instruction will not appear in the output.

Example: RPTed NORM

'C5x 'C5xx
mar *,AR5 ; save T before
rpt #16 exp A
norm *+ st T, *(AR5)

norm A

Example : non-RPTed NORM

'C5x 'C5xx
; ARP = 5 ; ARP = 5

norm *+ SFTC A
NOP ;latency
NOP ;latency
XC 1,NTC
MAR *AR5+

5.3.2 MPY and Accumulation combinations

The instruction sequence of MPY followed by an accumulation instruction (i.e.
LTA,LTD,MPYA etc.), is translated to MAC and the 'C54x equivalent to the next
instruction without the Accumulation operation.

Example : MPY, LTD

'C5x 'C5xx
lacl #0 ;Acc=0 ld #0,A ;A=0
lt d0 ;t=d0 ld d0,T ;t=d0
mpy c0 ;P=co.d0 mac c0,A ;A+=co.d0
ltd d1 ;t=d1 ltd d1 ;t=d1

;d0=d1 ;d0=d1
;Acc+=P

 Table 29: Summary of 'C5x and 'C54x MPY/Accumulate mappings

'C5x 'C54x Equivalent
MPY,APAC MAC
MPY,SPAC MAS
MPY,PAC MPY

TMS320C5x to TMS320C54x Translation Utility 23

MPY,LTA MAC,LD(T)
MPY,LTD MAC,LTD
MPY,LTS MAS,LD(T)
MPY,LTP MAC,LD(T)
MPYU,PAC MPYU
MPYU,LTP MPYU,LD(T)

5.3.3 POP

For the 'C54x, the POPM instruction is used for restoring the ACC value (A register) by
accessing its lower half via the memory mapped register file. Therefore the rest of the
ACC will not be changed as a result of the POP, so the extra load instruction is used to
reset the A register to zero before the POP occurs.

Example :

'C5x 'C5xx
pop ld #0, A

popm AL

5.3.4 Execute conditional (XC)

For the 'C54x, the XC instruction requires one more delay slot between the cycle that
sets the condition and the XC instruction. This is due to an additional phase in the
pipeline. LEADT adds the NOP automatically as below.

Example : XC

'C5x 'C5xx
NOP ; latency nop

XC 1,TC,C XC 1,TC,C
 <ins1> <ins1>

5.3.5 ACC and ACCB logical instructions

The 'C5x comparison instructions can be emulated with 3 instructions each. For the MAX
instruction however, when A = B, the carry will be cleared as opposed to the 'C5x CRGT
instruction. Therefore the user needs to change the subsequent test.

Example : CRLT
'C5x 'C5xx

crlt MIN A ; do compare
XORM #800h,*(ST0); toggle carry
LD A, B ; A = B

Example : CRGT
'C5x 'C5xx

crgt MAX A ; do compare
XORM #800h,*(ST0); toggle carry
LD A, B ; A = B
;********* WARNING - CARRY=0 IF A=B
;('C5X: CARRY=1)

TMS320C5x to TMS320C54x Translation Utility 24

5.3.6 ACC and ACCB arithmetic instructions

The 'C5x has a number of instructions involving the ACC and ACCB intended for both
32bit and 64bit arithmetic operations. These instructions need to use the A and B
registers on the 'C54x which do not have the same relationship as ACC/ACCB. Memory
type instructions need to be used here that do not interfere with the context of the device.
So absolute addressing is used.

Example : ADCB
'C5x 'C5xx

adcb ADDC *(BL), A
ADD *(BH),16,A

Example : SBBB
'C5x 'C5xx

SBBB SUBB *(BL), A
SUB *(BH),16,A

Please note that in some circumstances where OVM is not set, then the arithmetic
behaviour of the 'C54x may not align to the 'C5x due to the A and B register guard bands.
If a result is expected to wrap-round (i.e. 0x7fff ffff -> 0x8000 0000) on the 'C5x then a
check will need to be done on the 'C54x guard band values and the register contents
adjusted accordingly.

5.3.7 ACC and ACCB shift instructions

Shifting operations are also subject to the same care-abouts as the arithmetic
instructions. For 'C5x arithmetic shifts, b[31:31] of the accumulator should represent the
sign. However for the 'C54x it is b[39:39] that is the sign bit. So the guard band needs to
be cleared and b[31:31] should be sign-extended to b[39:39] of the 'C54x guard band.

Example : BSAR
'C5x 'C5xx
;assume SXM=1 always ;assume SXM=1 always

BSAR 16 SFTA A,8 ; b[39:39] = sign
SFTA A,-8 ; guard band is sign extended
LD A,-16 ;bsar shift (LD doesn’t affect carry)

Rotate instructions using the combined ACC and ACCB can be emulated using 2 rotate
instructions as shown in the following examples.

Example : RORB
'C5x 'C5xx
rorb ROR A ; Rotate A

ROR B ; Rotate B

Example : ROLB
'C5x 'C5xx
rolb ROL B ; Rotate B

ROL A ; Rotate A

TMS320C5x to TMS320C54x Translation Utility 25

The 'C5x SFR uses sign extension if SXM=1. Therefore the 'C54x sign bit (b[39:39]] and
guard band needs to be initialised with the 'C5x b[31:31] sign value. An additional shift is
used for that purpose.

Example : SFR
'C5x 'C5xx
sfr SFTA A,8 ; b[39:39] = sign

SFTA A,-9 ; A >> 1 with sign extension

Shift instructions using the combined ACC and ACCB can be emulated with the single
register shift followed by a rotate.

Example : SFLB
'C5x 'C5xx
sflb SFTL B,1 ; Shift B

ROL A ; Rotate A

Example : SFRB
'C5x 'C5xx
sfrb SFTA A,8 ; b[39:39] = sign

SFTA A,-9 ; A >> 1 with sign extension
ROR B ; Rotate B

5.4 Structures

5.4.1 Macros

User macros are identified by their definition (i.e. .macro) and translated accordingly per
the definition. Every instance of the macro that is uncovered is then replicated in the
output file. The macro name is added to the instruction list as a 'special instruction'.

For macro's that are not defined in the source but are referenced with .include or .mlib,
then the translator will see it as an undefined instruction. It will automatically be
considered to be a macro (i.e. original source is considered to be correctly compilable)
and therefore included untranslated.

5.4.2 Conditional codes sequences

For the 'C5x, the specifying of conditional codes is more liberal that the 'C54x. For
example, the 'C54x will only allow either max of 3 control conditions or 2 signed (test the
accumulator sign and overflow flag). The translator will check if there is a mixed ‘control’
and ‘signed’ sequence and flag this as an error.

Example :

'C5x
RETC GT,TC

'C5xx
;0058 RETC GT,TC
; ********* ERROR - CANNOT MIX CONTROL AND SIGNED CONDITIONS ON TARGET

TMS320C5x to TMS320C54x Translation Utility 26

5.4.3 Interrupt Vectors

The 'C54x has a different interrupt vector table format which does affect some
instructions such as INTR and TRAP. Below is a table showing differences between the
'C5x and 'C54x operand ‘k’ for the above mentioned instructions.

 Table 30: Interrupt k value mapping

'C5x k value 'C54x k value 'C5x k Description LEADT Treatment
0 0 Reset Direct Translation

1 ... 9 16 ... 24 Core and Peripheral
interrupts

Direct Translation(+15)

10 ... 16 25 ... 31 Peripheral Interrupts Direct Translation(+15)
17 2 TRAP Direct Translation(-15)
18 1 NMI Direct Translation(-17)
19 3 Peripheral Interrupt Direct Translation(-16)

20 ... 31 4 ... 15 User-Defined. Direct Translation(-16)

TMS320C5x to TMS320C54x Translation Utility 27

6. Translation Flow

6.1 Recommended Procedure for Translation

The recommended 10 step process is as follows :
1. The original 'C5x code should pass through DSPA -v50 with no errors (essential)
2. Application Test Vectors should pass through original 'C5x code without errors
3. Run source code through LEADT
4. Check for errors and change 'C5x code to minimise errors but still pass Application

Test Vectors.
5. FREEZE translator output.
6. Modify application memory map to match 'C54x target device (linker and simulator

command files)
7. Modify 'C54x output code to secure final architecture mapping.
8. Run original Application Test Vectors through new 'C54x code and modify code

manually till no errors.
9. Analyse performance and check if application criteria are met (i.e. cycle count,

memory size ...). LEADT.INF gives a brief summary of amount of code size
increase/decrease to gauge the efficiency of the translation.

10. If criteria are not met then attempt to implement 'C54x special features. The
instructions, registers, and modes that are unused by LEADT are summarised in the
respective sections of this document.

Please note that any anomalies in the LEADT translator that you find should be reported
back to Texas Instruments through either the local sales office or Product Information
Centre (PIC/EPIC).

6.2 Translator Invocation

Please use leadt -? for command line options.

TMS320C5x to 'C54x Source Code Translator Version 0.91-960703
Copyright (c) 1993-94 Texas Instruments Incorporated

Syntax: LEADT [-ehinqswv?] asm_file [tran_file]

Where: Options are one or more characters preceded by '-'
-?: This help list
-e: Turn off errors
-h: Turn off hints
-i: Generate Info file
-o: Keep original code in translated file
-n: Suppress TI file header in .TRN file
-q: Suppress the on-screen banner
-s: Insert original code in comment field
-w: Turn off warnings
-v: Specifies a version

-v10:TMS32010 -v20:TMS32020 -v25:TMS320c25

TMS320C5x to TMS320C54x Translation Utility 28

-v50:TMS32050 [default]

TMS320C5x to TMS320C54x Translation Utility 29

Or file names can be entered interactively.

TMS320C5x to 'C54x Source Code Translator Version 0.91-960703
Copyright (c) 1993-94 Texas Instruments Incorporated

Source file [.asm]:

6.2.1 Errors vs. Warnings vs. Hints

LEADT prints error and warning messages to both the output file and STDOUT. The
output file (*.TRN) also contains additional warnings (alongside errors) and hints to help
the user determine and remedy the problem. Below is a description of the messages
produced by LEADT.

An ERROR, meaning that the instruction did not have a translation, may have a
WARNING or HINT associated with it to help the user understand the nature of the error.
A WARNING signifies that the instruction was translatable but there may be a difference
in the resultant code that may change the outcome of the operation. A HINT is inserted to
assist the user in fixing an ERROR or in optimising the code further for the target.

 Table 31: LEADT Error Descriptions

Error # Error String and Description
01 THIS INSTRUCTION HAS NO TRANSLATION
02 CAN NOT TRANSLATE, PLEASE REWRITE
03 OPERAND AMBIGUOUS FOR TRANSLATOR
04 INVALID VERSION NUMBER
05 MORE THAN 3 CONDITIONS NOT ALLOWED
06 CANNOT MIX CONTROL AND SIGNED CONDITIONS ON TARGET
07 DBMR REGISTER NOT VALID ON TARGET
08 BMAR REGISTER NOT VALID ON TARGET
09 INVALID REGISTER FOR TARGET: <register name>
10 INVALID BIT FIELD FOR TARGET: <register name>

 Table 32: LEADT Warning Descriptions

Warning # Warning String and Description
01 UNSUPPORTED MNEMONIC, MACRO ASSUMED
02 AR REGISTER MIGHT BE CHANGED
03 OPERAND NOT TRANSLATED
04 LINE TRUNCATED
05 NARP IN RPT NOT SUPPORTED
06 SUBSTITUTION SYMBOL MIGHT NOT BE EVALUATED
07 TC IS NOT AFFECTED BY THIS INSTRUCTION
08 POSSIBLE LATENCY NEEDED HERE
09 CHECK THAT RPT IS OK !
10 T IS OVERWRITTEN BY EXP, SAVE BEFORE
11 NO PIPELINE IN MULTIPLY
12 T USED INSTEAD OF TREG1
13 CARRY=0 IF A=B (C5X: CARRY=1)

TMS320C5x to TMS320C54x Translation Utility 30

14 T USED INSTEAD OF TREG2
15 NO SHADOW REGISTERS AVAILABLE ON TARGET FOR RETI
16 P REGISTER NOT AVAILABLE ON TARGET

 Table 33: LEADT HINT Descriptions

HINT # HINT String and Description
01
02
03
04
05

Use AG/BG instead
A and B can be operated upon in the same manner
Use NORM instead with T value negated
T value needs to be negated before following is used for right shift
Use A Accumulator instead

6.2.2 Information File (LEADT.INF)

Example Output :

Information file for LEADT **** Tue Aug 19 19:26:34 1997

'C5x -> 'C54x translation : LEADT version - Version 1.00-970808

Input File : validate\c5xins.asm
Output File : validate\c5xins.trn

 36 Errors
 51 Warnings
 9 Hints

 Number of Lines not requiring translation: 60

 Number of instructions:
 Input: 344 Output: 400 Percent Increase: 16

 Number of directives: 15

 Number of macros: 0

 Invalid Registers Used: BMAR PREG

 Invalid Fields Used:

TMS320C5x to TMS320C54x Translation Utility 31

7. Conclusion
LEADT has been designed as a tool to assist in the translation of 'C5x to 'C54x assembly
code. The differences in the architectures between the processors prohibits a ‘one-to-
one’ translation process. Therefore there will be an expansion of code and accordingly
cycles in the 'C54x code output from LEADT which are unavoidable until optimisation can
take place.

Project teams that have worked with this utility have said that “it was invaluable in that it
saved a lot of time in the beginning of the translation process. It was useful as a training
aid for the 'C54x processor and the translated code did not require much effort in making
the code run bit exact as per the 'C5x. Of course the optimisation stage was necessary to
achieve the project’s final goals.” <Satisfied Customer>

Appendix

TMS320C5x to TMS320C54x Translation Utility 32

Appendix: 'C5x to 'C54x translator revision

This file denotes revision changes only. User documentation is still being completed.
NOTE:
This utility is definitely NOT free of bugs so any feedback that you may have on existing bugs or new features
that would improve its productivity would be appreciated.

Release Information

19/8/97
========
Rls1.00-970819 :

- version 1.00
- translates .version directive
- included GREG,RPTC,CWSR as invalid registers
- fixed lst and sst intructions for both direct and indirect addressing
- included CAR[1,2], CENB[1,2], NDX, TRM as invalid bit fields
- scan .equ and .set expressions for invalid registers and fields
- changed PA0-PA15 to correct I/O addresses (50h-5fh)
- made PA0-PA15 invalid if not being used by IN or OUT instruction
- added translation for BACCD, INTR, NMI, RETI,ADCB,SBBB,RORB ,ROLB,SFRB, SFLB
- change TRAP to TRAP 2 instead of 3
- add offset of 15 to INTR operand for C54x vector table starting at 1
- check conditional code combinations so that they do not violate C54x rules
- fixed SBRK, ADRK for operand immediate operand
- Fixed bad translation of BLDD dma,BMAR
- Added mpy/acc combinations for more variety
- Changed MPYA to MPY
- Changed MPYS to MPY
- Changed SQRA to SQUR
- Changed SQRS to SQUR
- Fixed BSAR instruction combinations
- Changed SFR translation to be correct
- Fixed translation for AND/OR/EXOR with immediate and shift operands
- Added more to information file
- Change translation of single NORM.

1/8/97
========
Rls0.91-970801 :

- fix banz instruction translation - used *ARP instead of *ARx
- added banzd translation
- added translator version to output file
- removed addition of .end directive
- ARP comments for Calls and Branches aligned correctly

Appendix

TMS320C5x to TMS320C54x Translation Utility 33

20/6/97
========
Rls0.91-970620 :

- restore label for deleted LARP's and MAR's
- aligned directives and macros with instructions
- removed 1 ARP inline comment from near directives (.if)
- change .macro label from uppercase to lowercase
- added calad instruction.
- all undefined instructions considered to be macros and left untranslated
- if ARP=undefined then print ARP = undefined
- correct translation of addk, subk
- translate mpy,ltd -> mac,ltd
- made sure all labels had ARP comment
- removed .version 500 from translated file
- tested with Rls1.16 of C54x tools
- readme.1st -> update.txt
- readme.1st = uncomplete user's guide
- distributed both SUN and PC versions.

05/9/96
========
Rls0.91-960905 :

- fix bug: sbrk/adrk immediate problem
- keep macros in source even if detected as macro
- translate PASR/PAER to RSA/REA
- translate TREG0 to T
- fix bug: got rid of ARP load after narp=AR0

Rls0.91-960806 :
- fix bug : add #lk translated to ld #lk
- added RETD, RETE, RETI
- added RETC, RETCD
- added NOV translation
- fix bug : RPT instr comments where deleted

Rls0.91-960726 :
- LARP's are treated like MAR's
- At each label the INLINE ARP is stated
- No LD of ARP for BD's and CALLD's (translated from B and CALL)
- At each B/CALL/BD/CALLD/BC/BCD/CC/CCD the ARP is stated even if changed by that

instruction

Rls0.91-960716 :
- Fixed bug: BBNZ and BBZ were reversed.

Appendix

TMS320C5x to TMS320C54x Translation Utility 34

Rls0.91-960703 :
- Fixed bug: with sacl/sach using shift operand
- Removed loading of ARP before each label. Added comment instead.
- Removed clearing of ARP after each label so normal AUX reg tracking is maintained.

Rls0.91-960525 :
- Release changed to 0.91
- Fixed Bug: Macd/Mac Indirect operand
- Add warnings and toggle C for MIN/MAX compatibility
- Warnings and Errors can be turned on separately.

Rls0.90-960424 :
- add .version and .title directives into output
- conditional include of .mmregs and .end directives
- change -i switch to -o for original code inclusion
- add information file output (*.inf)
- include warnings and hints count
- Fixed bug : for lacl use ldu except immediate op's.
- Delete 'mar's that don’t modify.

Rls0.90-960419 :
- add date into version number
- C5x is default translator source
- take CMPT bit compatibility out
- add -? option to command line
- add bad command line handler
- take serial port registers out of invalid reg list

Rls0.90-941101 :
- Original

