N. Y. A. SHAMMAS, " Present problems of power module packaging technology", Microelectronics Reliability, Volume 43, Issues 4, pp. 519-527.
Copyright - [Précédente] [Premičre page] [Suivante] - Home

Article : [ART415]

Titre : N. Y. A. SHAMMAS, Present problems of power module packaging technology, Microelectronics Reliability, Volume 43, Issues 4, pp. 519-527.

Cité dans :[REVUE417] Elsevier Science, Microelectronics Reliability, Volume 43, Issue 4, Pages 517-684, April 2003.
Cité dans : [DATA197] Les revues Microelectronics Reliability et Microelectronics Journal, ELSEVIER, décembre 2004.
Auteur : N.Y.A. Shammas

Vers : Bibliographie
Adresse : School of Engineering and Advanced Technology, Staffordshire University, Beaconside, P.O. Box 333, Stafford ST18 0DF, UK
Tel. : +44-01785-353265
Fax. : +44-01785-35355
Source : Microelectronics Reliability
Volume : 43
Issues : 4
Date :
Pages : 519 - 527
DOI :
PII :
Lien : private/SHAMMAS2.pdf - 262 Ko, 9 pages.
Switches :
Puissance :
Logiciel :
Stockage :

Abstract :
An overview of the problems encountered concerning power module performance and
reliability is given and the main failure mechanisms are discussed. Experimental
and simulation methods for the transient thermal characterisation of
semiconductor packages are presented. An identification procedure that allows
establishing the physical correspondence between the RC cells of the thermal
model and the layers that constitute the electronic package is proposed. The
results of tests on a number of commercial Smartpack® modules provide useful
information about the influence of materials properties and geometry on the step
response. These could be used for package quality control and reliability
investigations.

Article Outline
1. Introduction
2. Failure mechanisms
2.1. Failure mechanisms relating to the silicon chip
2.2. Oxide defects
2.3. Ion migration
2.4. Current crowding/filamentation
2.5. Back metal delamination
2.6. External impacts
2.7. Operating conditions
2.7.1. Operating temperature
2.7.2. Operating frequency
2.7.3. Short circuit conditions
2.8. The encapsulation
2.8.1. Cracking of wire bond
2.8.2. Partial discharge and insulation failure
2.8.3. Delamination
2.8.4. Solder fatigue
2.8.5. Current sharing
3. Identification procedure
3.1. Description of the samples
3.2. Results and discussion
4. Study of structural degradation
4.1. Simulation model
4.2. Results and discussion
5. Conclusions
Acknowledgements


Bibliographie

TOP

Références : 30
[1] : Smartpack is a registered trademark of SMARTPACK TECKNOLOGIA S.A. under Patent No. P9302702
[2] : S. Haque, W.A. Stinnit, D.J. Nelson and G.Q. Lu, Thermal management of power electronics modules packaged by a stacked plate technique. Microelectron. [Reliab] : 39 9 (1999), pp. 1343–1349.
[3] : Hoban PT, Rahimo MT, Shammas NYA. Low temperature electrical transients of Snubber Diodes in GTO Circuits. In: Proceedings of the 28th International Universities Power Engineering Conference (UPEC 1993). Stafford, UK: Staffordshire University; September 1993. p. 622–5
[4] : N.Y.A. Shammas, N.T. Rahimo and P.T. Hoban, Effects of external operating conditions on the reverse receovery behaviour of fast power diodes. Eur. Power [Electron] : Drives J. 8 1–2 (1999), pp. 11–18.
[5] : N.Y.A. Shammas and M.C. Southall, Semiconductor devices efficiency comparison based on resistive swtiching of the MOSFET, BJT and IGBT. In: 20th International Conference on Microelectronics, IEEE, Nis, Serbia (1995).
[6] : N.Y.A. Shammas, M.P. Rodrigues, A.T. Plumpton and D. Newecomb, Finite element modelling of thermal fatigue effects in IGBT modules. IEE Proc. Circ. Dev. Syst. 148 2 (2001), pp. 95–100.
[7] : D. Chamund, B. Findlay, K. Birked and N.Y.A. Shammas, Parallel Operation of IGBT Modules using De-Rating Factors. In: Proceeding of the 37th International Universities Power Engineering Conference (UPEC 2002), Staffordshire University, Stafford, UK (2002), pp. 262–266.
[8] : J.W. Sofia, Analysis of thermal transient data with synthesised dynamic models for semiconductor devices. IEEE Trans. Compon. Pack. Manuf. Technol. Part A 18 1 (1995).
[9] : V. Székely, A new evaluation method of thermal transient measurement results. [Microelectron] : J. 28 (1997), pp. 277–292.
[10] : P.E. Bagnoli, C. Casarosa et al., Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices. Thermal characterisation––Part I: Fundamental and theory. IEEE Trans. Power Electron. 13 6 (1998), pp. 1208–1219.
[11] : N.Y.A. Shammas, M.P. Rodrigues and F. Masana, A simple method for evaluating the transient thermal response of semiconductor devices. Microelectron. Reliab. 42 (2002), pp. 109–117.
[12] : B. Christiaens, E. Vandevelde et al., Evaluation of structural degradation in packaged semiconductor components using a transient thermal characterisation [technique] : Microelectron. J. 25 (1996), pp. 1807–1810.
[13] : Bagnoli PE, Casarosa C, et al. Thermal resistance analysis by induced transient method (TRAIT) applied to power electronic device packaging. In: EPE'95 Conference Proceedings, Seville, vol. 3. 1995. p. 322–7
[14] : C.G.M. Van Kessel, S.A. Gee et al., The quality of die attachment and its relationship to stresses and vertical die-cracking. IEEE Trans. Compon. Hybrids [Manuf] : Technol. CHMT-6 4 (1983), pp. 414–420.
[15] : J. Evans and J.Y. Evans, Packaging factors affecting the fatigue life of power transistor die bonds. IEEE Trans. Compon. Pack. Manuf. Technol. Part A 21 3 (1998), pp. 459–467.
[16] : W.T. Chen and C.W. Nelson, Thermal stress in bonded joints. IBM J. Res. Dev. 23 2 (1979), pp. 179–188. Abstract-INSPEC | Abstract-Compendex
[17] : R.R. Tummala and E.J. Rymaszewski, Microelectronics packaging handbook. (2nd edition ed.),, Van Nostrand Reinhold, New York (1988).
[18] : Hofer P et al. Paralleling intelligent IGBT power modules with active gate controlled current balancing. In: IEEE Power Electronics Specialists Conference Pesc 96 in Baveno, Italia, vol. 2. p. 1312–6
[19] : Palmer PR, Start BH, Joyce JCP. Non-invasive measurement of chip currents in IGBT modules. In: Power Electronics Specialists' Conference, St Louis, 1997
[20] : Palmer PR, Joyce JC, Stark BH. Measurement of chip currents in IGBT modules. In: 7th European Conference on Power Electronics and Applications, Trondheim, 1997
[21] : Palmer PR, Joyce JC. Current redistribution in multi-chip IGBT modules under various gate drive conditions. In: Seventh International Conference on Power Electronics and Variable Speed Drives, London, 1998
[22] : C. Mayoux, Partial discharge phenomena and the effect of their constituents on polyethylene. IEEE Trans. Electrical Insulation 11 4 (1976), pp. 139–149.
[23] : C. Mayoux, Corona discharges and ageing process of an insulation. IEEE [Trans] : Electrical Insulation 12 2 (1977), pp. 153–158.
[24] : Engel K, Peier D. The influence of dielectric material n partial discharges in flat cavities. In: International Conference on Dielectrics and Insulation, Budapest, Hungary, 1997. p. 229–32
[25] : Engel K, Peier D. Physically based interpretation of partial discharge in flat cavities. In: 10th International Symposium on High Voltage Engineering, Montreal, Canada. p. 189–92
[26] : Voss P et al. Irradiation experiments with high-voltage power devices as a possible means to predict failure rates due to cosmic rays. In: ISPSD 97, Weimar, 1997
[27] : H.R. Zeller, Cosmic ray induced failures in high power semi-conductor [devices] : Microelectron. Reliab. 37 10/11 (1997), pp. 1711-1718.
[28] : H.H.K. Tang, Nuclear physics of cosmic ray interaction with semi-conductor materials: Particle induced soft errors from a physicist's perspective. IBM J. [Res] : Dev. 40 1 (1996).
[29] : G. Deboy, G. Sölkner, E. Wolfgang and W. Claeys, Absolute measurement of transient carrier concentration and temperature gradients in power semi-conductor devices by internal IR laser deflection. Microelectron. Eng. 31 (1996), p. 299.
[30] : Simmnacher B, Deboy G, Ruff M, Schultze H-J, Kolbesen B. Analysis of the carrier and temperature distributions in gate turn-off thyristors by internal laser deflection. In: ISPSD 1997, Weimar, 1997. p. 177

  [1] :  [ART575]  P.E. BAGNOLI, C. CASAROSA, M. CIAMPI, E. DALLAGO, Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization - Part I: Fundamentals and theory, IEEE Transactions on Power Electronics, Vol. 13, N
  [2] :  [ART238]  N. Y. A. SHAMMAS, M. P. RODRIGUEZ, F. MASANA, A simple method for evaluating the transient thermal response of semiconductor devices, Microelectronics Reliability, Volume 42, Issues 1, January 2002, pp. 109-117.


Mise ŕ jour le lundi 25 février 2019 ŕ 15 h 31 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2019 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.