R. DEGRAEVE, B. KACZER, G. GROESENEKEN, "Degradation and breakdown of thin oxide layers : mechanisms, models and reliability prediction", Microelectronics and Reliability, No. 39, 1999, pp. 1445-1460.
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [ART187]

Titre : R. DEGRAEVE, B. KACZER, G. GROESENEKEN, Degradation and breakdown of thin oxide layers : mechanisms, models and reliability prediction, Microelectronics and Reliability, No. 39, 1999, pp. 1445-1460.

Cité dans :[REVUE240] Elsevier Science, Microelectronics Reliability, Volume 39, Issue 10, Pages 1423-1518 (October 1999.
Cité dans :[PAP432]
Auteur : R. Degraeve
Auteur : B. Kaczer
Auteur : G. Groeseneken

Vers : Bibliographie
Lien : PAP432.HTM#Bibliographie - référence [8].
Source : Microelectronics and Reliability
Numéro : 39
Date : 1999
Pages : 1445 - 1460
Lien : private/DEGRAEVE2.pdf - 16 pages, 288 Ko

Introduction :
The long list of extraordinary properties of SiO2 has
been and still is beyond any doubt one of the key fac-
tors of the success of MOS-technology. Indeed, SiO2 is
an amorphous insulator with a very high bandgap of
about 9 eV [1], which can be grown easily and in a
well-controlled manner on a Si-substrate. Layers as
thin as 1.5 nm can be obtained and implemented as
gate dielectrics in fully functioning MOSFETs with
gate lengths of only 40 nm [2]. This illustrates the
excellent scaling and process integration capabilities of
SiO2 , which are mainly due to the stability and insensi-
tivity of the insulator to process steps following the



References : 85
[1] : Sze SM. Physics of semiconductor devices. New York: Wiley, 1981.
[2] : Iwai H, Momose HS, Saito M, Ono M, Katsumata Y. The future of ultra-small geometry MOSFETs beyond 0.1 micron. Microelectronic Engineering 1995;28(1-4):147-54.
[3] : Fowler RH, Nordheim L. Electron emission in intense electric yields. Proc R Soc London, Ser A 1928;119:173-81.
[4] : Depas M, Vermeire B, Mertens PW, Van Meirhaeghe RL, Heyns MM. Determination of tunnelling parameters in ultra-thin oxide layer poly-Si/SiO2 /Si structures. Solid State Electron 1995;38:1465.
[5] : Schenk A, Heiser G. Modelling and simulation of tunnelling through ultra-thin gate dielectrics. J Appl Phys 1997;81(12):7900-8.
[6] : Schuegraf KF, Park D, Hu C. Reliability of thin SiO2 at direct-tunnelling voltages. IEDM Tech Dig 1994;609-12.
[7] : Register LF, Rosenbaum E, Yang K. Analytic model for direct tunnelling current in polycrystalline silicon-gate metal-oxide semiconductor devices. Appl Phys Lett 1999;74(3):457-9.
[8] : Khairurrijal, Mizubayashi W, Miyazaki S, Hirose M. Modelling of direct tunnel current through ultra-thin gate oxides. Proc. 4th Workshop on ultra-thin gate oxides, Shizunaka, Japan, 1999.
[9] : Martin A, O'Sullivan P, Mathewson A. Dielectric reliability measurement methods: a review. Microelectron Reliab 1998;38(1):37-72.
[10] : Chen IC, Holland S, Young KK, Chang C, Hu C. Substrate hole current and oxide breakdown. Appl Phys Lett 1986;49(11):669-71.
[11] : Ning TH. Hot-electron emission from silicon into silicon dioxide. Solid State Electronics 1978;21:273-82.
[12] : Van den bosch G, Groeseneken G, Maes HE. Direct and post-injection oxide and interface trap generation resulting from low-temperature hot-electron injection. J Appl Phys 1993;74(9):5582-6.
[13] : Pio F, Ravazzi L, Riva C. In¯uence of series resistance in oxide parameter extraction from accelerated tests data. In: Conference Proc. ESREF'92. 1992. p. 105-8.
[14] : Chiang C-L, Khurana N. Imaging and detection of current conduction in dielectric (r)lms by emission microscopy. IEDM Tech Dig 1986;672-5.
[15] : Cartier E, Tsang JS, Fischetti MV, Buchanan DA. Light emission during direct and Fowler-Nordheim tunnelling in ultra thin MOS tunnel junctions. Microelectronic Engineering 1997;36(1-4):103-6.
[16] : Harari E. Dielectric breakdown in electrically stressed thin (r)lms of thermal SiO2 . J Appl Phys 1978;49(4):2478.
[17] : DiMaria DJ, Cartier E, Arnold D. Impact ionization, trap creation, degradation, and breakdown in silicon dioxide (r)lms on silicon. J Appl Phys 1993;73(7):3367-84.
[18] : DiMaria DJ, Buchanan DA, Stathis JH, Stahlbush RE. Interface states induced by the presence of trapped holes near the silicon-silicon-dioxide interface. J Appl Phys 1995;77(5):2032-40.
[19] : Witters J, Groeseneken G, Maes H. Degradation of tunnel oxide ¯oating gate EEPROM devices and the correlation with high (r)eld-current induced degradation of thin gate oxides. IEEE Trans Electron Devices 1989;36(10):1663-82.
[20] : Nicollian EH, Brews JR. MOS physics and technology. New York: Wiley, 1982.
[21] : Groeseneken G, Maes HE, BeltraÁn N, De Keersmaecker RF. A reliable approach to charge-pumping measurements in MOS transistors. IEEE Trans Electron Devices 1984;31(1):42-53.
[22] : Degraeve R, Groeseneken G, Bellens R, Depas M, Maes HE. A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides. IEDM Tech Dig 1995;863-6.
[23] : Degraeve R, Groeseneken G, Bellens R, Ogier JL, Depas M, Roussel Ph, Maes HE. New insights in the relation between electron trap generation and the statistical properties of oxide breakdown. IEEE Trans Elec Dev 1998;45(4):904-11.
[24] : Stathis JH. Quantitative model of the thickness dependence of breakdown in ultra-thin oxides. Microelectronic Engineering (Proceedings INFOS) 1997;36(1-4):325-8.
[25] : DiMaria DJ. Explanation for the oxide thickness dependence of breakdown characteristics of metal-oxide semi-conductor structures. Appl Phys Lett 1997;70(20):2708-10.
[26] : DiMaria DJ, Arnold D, Cartier E. Impact ionisation and positive charge formation in silicon dioxide (r)lms on silicon. Appl Phys Lett 1992;60(17):2118-20.
[27] : Nigam T, Degraeve R, Groeseneken G, Heyns MM, Maes HE. A fast and simple methodology for lifetime prediction of ultra-thin oxides. Proceedings IRPS 1999;381-8.
[28] : Chen IC, Holland S, Hu C. A quantitative physical model for time-dependent breakdown in SiO2 . Proc IRPS 1985;24-31.
[29] : MonseÂrieÂC, Papadas C, Ghibaudo G, Gounelle C, Mortini P, Pananakakis G. Correlation between negative bulk oxide charge and breakdown, modelling and new criteria for dielectric quality evaluation. Proc IRPS
[30] : Vincent E, Papadas C, Ghibaudo G. Electric (r)eld dependence of charge build-up mechanisms and breakdown phenomena in thin oxides during Fowler-Nordheim injection. Proc ESSDERC 1996;767-70.
[31] : Weinberg ZA, Fischetti MV. SiO2 -induced substrate current and its relation to positive charge in (r)eld-e•ect transitors. J Appl Phys 1986;59(3):824-32.
[32] : DiMaria DJ. Hole trapping, substrate currents, and breakdown in thin silicon dioxide (r)lms. IEEE Electron Device Lett 1995;16(5):184-6.
[33] : Schuegraf KF, Hu C. Metal-oxide semiconductor (r)elde•ect transistor substrate current during Fowler-Nordheim tunnelling stress and silicon dioxide reliability. J Appl Phys 1994;76(6):3695-700.
[34] : Fischetti MV. Model for the generation of positive charge at the Si-SiO2 interface based on hot-hole injection from the anode. Physical Review B 1985;31(4):2099-113.
[35] : DiMaria DJ, Cartier E, Buchanan DA. Anode hole injection and trapping in silicon dioxide. J Appl Phys 1996;80(1):304-17.
[36] : Schuegraf KF, Hu C. Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation. IEEE Trans Electron Devices 1994;41(5):761-7.
[37] : Satake H, Toriumi A. Substrate hole current generation and oxide breakdown in Si MOSFETs under Fowler-Nordheim electron tunnelling injection. IEDM Tech Dig 1993;337-40.
[38] : Degraeve R, Ogier JL, Bellens R, Roussel Ph, Groeseneken G, Maes HE. A new model for the (r)eld dependence of intrinsic and extrinsic time-dependent
dielectric breakdown. IEEE Trans Elec Dev 1998;45(2):472-81.
[39] : Kaczer B, Degraeve R, Pangon N, Nigam T, Groeseneken G. Investigation of temperature acceleration of thin oxide time-to-breakdown, to be presented at INFOS 1999.
[40] : Nissan-Cohen Y, Shappir J, Frohman-Bentchkowsky D. Trap generation and occupation dynamics in SiO2 under charge injection stress. J Appl Phys 1986;60(6):2024-34.
[41] : Degraeve R, Groeseneken G, De Wolf I, Maes HE. Oxide and interface degradation and breakdown under medium and high (r)eld injection conditions: a correlation study. Microelectronic Engineering (Proceedings INFOS) 1995;28(1-4):313-6.
[42] : Apte PP, Saraswat KC. Modelling ultrathin dielectric breakdown on correlation of charge trap-generation to charge-to-breakdown. Proc IRPS 1994;136-42.
[43] : Avni E, Shappir J. A model for silicon-oxide breakdown under high (r)eld and current stress. J Appl Phys 1988;64(2):743-8.
[44] : Dumin DJ, Maddux JR, Scott RS, Subramoniam R. A model relating wearout to breakdown in thin oxides. IEEE Trans Electron Devices 1994;41(9):1570-80.
[45] : SunÄeÂJ, Placencia I, Barniol N, FarreÂs E, MartõÂn F, Aymerich X. On the breakdown statistics of very thin SiO2 (r)lms. Thin Solid Films 1990;185:347-62.
[46] : Moazzami R, Hu C. Stress-induced current in thin silicon dioxide (r)lms. IEDM Tech Dig 1992;139-42.
[47] : De Blauwe J, Van Houdt J, Wellekens D, Degraeve R, Roussel Ph, Haspeslagh L, Deferm L, Groeseneken G, Maes HE. A new quantitative model to predict SILC-related disturb characteristics in Flash E2 PROM devices.
IEDM Tech Dig 1996;343-6.
[48] : Kato M, Myamoto N, Hume H, Satoh A, Adachi T, Ushiyama M, Kimura K. Read-disturb degradation mechanism due to electron trapping in tunnel oxide for low-voltage ¯ash memories. IEDM Tech Dig 1994;45-8.
[49] : Ricco B, Gozzi G, Lanzoni M. Modelling and simulation of stress-induced leakage current in ultrathin SiO2 (r)lms. IEEE Trans Electron Devices 1998;45:1554.
[50] : Wu J, Register LF, Rosenbaum E. Trap-assisted tunnelling current through ultra-thin oxide. IRPS Proc 1999;389-95.
[51] : De Blauwe J, Degraeve R, Bellens R, Van Houdt J, Roussel Ph, Groeseneken G, Maes HE. Study of dc stress-induced leakage current (SILC) and its dependence on oxide nitridation. Proc ESSDERC 1996;361-4.
[52] : Depas M, Heyns MM. Relation between trap creation and breakdown during tunnelling current stressing of sub-3 nm gate oxide. Microelectronic Engineering 1997;36(1-4):21-4.
[53] : Okada K, Kubo H, Ishinaga A, Yoneda K. A new prediction method for oxide lifetime and its application to study dielectric breakdown mechanism. VLSI Proc 1998;158-9.
[54] : Uchida H, Ajika T. Electron trap center generation due to hole trapping in SiO2 under Fowler-Nordheim tunnelling conditions. Appl Phys Letters 1987;51(87):433-5.
[55] : Satake H, Takagi S, Toriumi A. Evidence of electron hole cooperation in SiO2 dielectric breakdown. Proc IRPS 1997;156-63.
[56] : Scott RS, Dumin NA, Hughes TW, Dumin DJ, Moore BT. Properties of high voltage stress generated traps in thin silicon oxides. Proc IRPS 1995;131-41.
[57] : McPherson JW, Baglee DA. Acceleration factors for thin gate oxide stressing. Proc IRPS 1985;1-5.
[58] : Schlund B, Messick C, Suehle JS, Chaparala P. A new physics-based model for time-dependent dielectric-breakdown. Proc IRPS 1996;84-92.
[59] : McPherson JW, Mogul HC. Disturbed bonding states in SiO2 thin (r)lms and their impact on time-dependent dielectric breakdown. Proc IRPS 1998;47-56.
[60] : Kimura M. Field and temperature acceleration model for time-dependent dielectric breakdown. IEEE Trans Electron Devices 1999;46(1):220-9.
[61] : DiMaria DJ, Stasiak JW. Trap creation in silicon dioxide produced by hot electrons. J Appl Phys 1989;65(6):2342-56.
[62] : Cartier E, Stathis JH. Atomic hydrogen-induced degradation of the Si/SiO2 structure. Microelectronic Engineering 1995;28(1-4):3-10.
[63] : Shklovskii BI, Efros AL. Electronic properties of doped semiconductors. Berlin: Springler-Verlag, 1984.
[64] : Massoud HZ, Deaton R. Percolation model for the extreme-value statistics of dielectric breakdown in rapid-thermal oxides. Extended abstracts of the ECS Spring Meeting, 1994, pp. 287-8.
[65] : Paulzen GM. Qbd dependencies of ultrathin gate oxides on large area capacitors. Microelectronic Engineering (Proceedings INFOS) 1997;36(1-4):321-4.
[66] : Nigam T, Degraeve R, Groeseneken G, Heyns MM, Maes HE. Constant current charge-to-breakdown: still a valid tool to study the reliability of MOS structures? Proceedings IRPS 1998;62-9.
[67] : Wolters DR, Verwey JF. In: Instabilities in silicon devices. Amsterdam: Elsevier, 1986. p. 332-5.
[68] : Farmer KR, Saletti R, Buhrman RA. Current ¯uctu-ations and silicon oxide wear-out in metal-oxide semiconductor tunnel diodes. Appl Phys Lett 1989;52:1749.
[69] : Okada K, Kawasaki S, Hirofuji Y. New experimental (r)ndings on stress induced leakage current of ultra thin silicon dioxides. Ext Abst of the 1994 SSDM 1994;565.
[70] : Lee SH, Cho BJ, Kim JC, Choi SH. Quasi-breakdown of ultrathin gate oxide under high (r)eld stress. IEDM Tech Dig 1994;605.
[71] : Depas M, Nigam T, Heyns M. Soft breakdown of ultra-thin gate oxide layers. IEEE Trans Electron Devices 1996;43(9):1499.
[72] : Okada K, Taniguchi K. Electrical stress-induced variable range hopping conduction in ultrathin silicon dioxides. Appl Phys Lett 1997;70:351.
[73] : Cheung KP, Colonell JI, Chang CP, Lai WYC, Liu CT, Liu R, Pai CS. Energy funnels Ð a new oxide break-down model. Symp VLSI Technol Dig 1997;145.
[74] : Weir BE, Silverman PJ, Monroe D, Krisch KS, Alam MA, Alers GB, Sorsch TW, Timp GL, Baumann F, Liu CT, Ma Y, Hwang D. Ultra-thin gate dielectrics: they break down, but do they fail? IEDM Tech Dig 1997;73.
[75] : Crupi F, Degraeve R, Groeseneken G, Nigam T, Maes HE. On the properties of the gate and substrate current after soft breakdown in ultra-thin oxide layers. IEEE Trans Elec Dev 1998;45(11):2329-34.
[76] : Leroux C, Blachier D, Briere O, Reimbold G. Light emission microscopy for thin oxide reliability analysis. Microelectronic Engineering 1997;36(1-4):297-300.
[77] : Briere O, Chroboczek JA, Ghibaudo G. Random telegraph signal in the quasi-breakdown current of MOS capacitors. In: ESSDERC 96. 1996. p. 759.
[78] : Ohata A, Toriumi A, Iwase M, Natori K. Observation of random telegraph signals: anomalous nature of defects at the Si/SiO2 interface. J Appl Phys 1990;68:200.
[79] : Wu E, Nowak E, Aitken J, Abadeer W, Han LK, Lo S. Structural dependence of dielectric breakdown in ultra-thin gate oxides and its relationship to soft breakdown modes and device failure. IEDM Tech Dig 1998;187-90.
[80] : Pompl T, Wurzer H, Kerber M, Wilkins RCW, Eisele I. In¯uence of soft breakdown on nMOSFET device characteristics. Proc IRPS 1999;82-7.
[81] : Suehle JS, Chaparala P, Messick C, Miller WM, Boyko KC. Field and temperature acceleration of time-dependent dielectric breakdown in intrinsic thin SiO2 . Proc IRPS 1994;120-5.
[82] : Shiono N, Itsumi M. A lifetime projection method using series model and acceleration factors for TDDB failures of thin gate oxides. Proc. IRPS 1993;1-6.
[83] : Schuegraf KF, Hu C. Reliability of thin SiO2 . Semicond Sci Technol 1994;9:989-1004.
[84] : DiMaria DJ. Dependence on gate work function of oxide charging, defect generation, and hole currents in metal-oxide semiconductor structures. J Appl Phys 1997;81(7):3220-6.
[85] : Stathis JH, DiMaria DJ. Reliability projection for ultra-thin oxides at low voltage. IEDM Tech Dig 1998;167-70.

Mise à jour le lundi 10 avril 2023 à 18 h 46 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2023 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.