Dual common source MOSFET Power Module

- **Symbol**
 - **V_DSS**: Drain - Source Breakdown Voltage
 - **I_D**: Continuous Drain Current
 - **I_{DM}**: Pulsed Drain current
 - **V_{GS}**: Gate - Source Voltage
 - **R_{DSon}**: Drain - Source ON Resistance
 - **P_D**: Maximum Power Dissipation
 - **I_{AR}**: Avalanche current (repetitive and non repetitive)
 - **E_{AR}**: Repetitive Avalanche Energy
 - **E_{AS}**: Single Pulse Avalanche Energy

- **Parameter**
 - **Max ratings**:
 - **Unit**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Max ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DSS}</td>
<td>Drain - Source Breakdown Voltage</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>I_D</td>
<td>Continuous Drain Current</td>
<td>372</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>T_c = 25°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DM}</td>
<td>Pulsed Drain current</td>
<td>1488</td>
<td>A</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate - Source Voltage</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>R_{DSon}</td>
<td>Drain - Source ON Resistance</td>
<td>4</td>
<td>mΩ</td>
</tr>
<tr>
<td>P_D</td>
<td>Maximum Power Dissipation</td>
<td>1250</td>
<td>W</td>
</tr>
<tr>
<td>I_{AR}</td>
<td>Avalanche current (repetitive and non repetitive)</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>E_{AR}</td>
<td>Repetitive Avalanche Energy</td>
<td>50</td>
<td>mJ</td>
</tr>
<tr>
<td>E_{AS}</td>
<td>Single Pulse Avalanche Energy</td>
<td>3000</td>
<td>mJ</td>
</tr>
</tbody>
</table>

- **CAUTION**: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed.

Application
- AC Switches
- Switched Mode Power Supplies
- Uninterruptible Power Supplies

Features
- Power MOS 7® MOSFETs
 - Low R_{DSon}
 - Low input and Miller capacitance
 - Low gate charge
 - Avalanche energy rated
 - Very rugged
- Kelvin source for easy drive
- Very low stray inductance
 - Symmetrical design
 - M5 power connectors
- High level of integration

Benefits
- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Low profile
Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_DSS</td>
<td>Drain - Source Breakdown Voltage</td>
<td>V GS = 0V, I D = 500µA</td>
<td>200</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_DSS</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V GS = 0V, V DS = 200V</td>
<td>200</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>R_D(on)</td>
<td>Drain – Source on Resistance</td>
<td>V GS = 10V, I D = 186A</td>
<td>4</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>V_GS(th)</td>
<td>Gate Threshold Voltage</td>
<td>V GS = V DS, I D = 10mA</td>
<td>3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_GS</td>
<td>Gate – Source Leakage Current</td>
<td>V GS = ±30 V, V DS = 0V</td>
<td>±200</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_iss</td>
<td>Input Capacitance</td>
<td>V GS = 0V</td>
<td>28.9</td>
<td></td>
<td></td>
<td>nF</td>
</tr>
<tr>
<td>C_os</td>
<td>Output Capacitance</td>
<td>V DS = 25V</td>
<td>9.32</td>
<td></td>
<td></td>
<td>nF</td>
</tr>
<tr>
<td>Crss</td>
<td>Reverse Transfer Capacitance</td>
<td>f = 1MHz</td>
<td>0.58</td>
<td></td>
<td></td>
<td>nF</td>
</tr>
<tr>
<td>Q_g</td>
<td>Total gate Charge</td>
<td>V GS = 10V</td>
<td>560</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Q_gs</td>
<td>Gate – Source Charge</td>
<td>V Bus = 100V</td>
<td>212</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Q_gd</td>
<td>Gate – Drain Charge</td>
<td>I D = 372A</td>
<td>268</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>T_d(on)</td>
<td>Turn-on Delay Time</td>
<td>Inductive switching @ 125°C</td>
<td>32</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_r</td>
<td>Rise Time</td>
<td>V GS = 15V, V Bus = 133V</td>
<td>64</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_d(off)</td>
<td>Turn-off Delay Time</td>
<td>I D = 372A</td>
<td>88</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_f</td>
<td>Fall Time</td>
<td>R G = 1.2Ω</td>
<td>116</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>E_on</td>
<td>Turn-on Switching Energy</td>
<td>Inductive switching @ 25°C</td>
<td>3396</td>
<td></td>
<td></td>
<td>µJ</td>
</tr>
<tr>
<td>E_off</td>
<td>Turn-off Switching Energy</td>
<td>Inductive switching @ 125°C</td>
<td>3716</td>
<td></td>
<td></td>
<td>µJ</td>
</tr>
<tr>
<td>E_on</td>
<td>Turn-on Switching Energy</td>
<td>Inductive switching @ 25°C</td>
<td>3744</td>
<td></td>
<td></td>
<td>µJ</td>
</tr>
<tr>
<td>E_off</td>
<td>Turn-off Switching Energy</td>
<td>Inductive switching @ 125°C</td>
<td>3944</td>
<td></td>
<td></td>
<td>µJ</td>
</tr>
</tbody>
</table>

Source - Drain diode ratings and characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_S</td>
<td>Continuous Source current (Body diode)</td>
<td>Tc = 25°C</td>
<td>372</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tc = 80°C</td>
<td>278</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>V_SD</td>
<td>Diode Forward Voltage</td>
<td>V GS = 0V, I S = - 372A</td>
<td>1.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>dv/dt</td>
<td>Peak Diode Recovery</td>
<td>I S = -372A</td>
<td>5</td>
<td></td>
<td></td>
<td>V/ns</td>
</tr>
<tr>
<td>t_r</td>
<td>Reverse Recovery Time</td>
<td>I S = -372A</td>
<td>360</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Q_r</td>
<td>Reverse Recovery Charge</td>
<td>I S = -372A</td>
<td>26.8</td>
<td></td>
<td></td>
<td>µC</td>
</tr>
</tbody>
</table>

1. E_on includes diode reverse recovery.
2. In accordance with JEDEC standard JESD24-1.
3. dv/dt numbers reflect the limitations of the circuit rather than the device itself.

I_S ≤ -372A \hspace{1em} \text{di/dt} ≤ 700A/µs \hspace{1em} V_R ≤ V_DSS \hspace{1em} T_j ≤ 150°C
Thermal and package characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{thJC}</td>
<td>Junction to Case</td>
<td></td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>V_{ISOL}</td>
<td>RMS Isolation Voltage, any terminal to case $t = 1 \text{ min}$, $I_{isol} < 1 \text{ mA}, 50/60\text{Hz}$</td>
<td></td>
<td></td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating junction temperature range</td>
<td>-40</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>-40</td>
<td></td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>T_C</td>
<td>Operating Case Temperature</td>
<td>-40</td>
<td></td>
<td>100</td>
<td>°C</td>
</tr>
<tr>
<td>Torque</td>
<td>Mounting torque</td>
<td></td>
<td></td>
<td></td>
<td>N.m</td>
</tr>
<tr>
<td>Wt</td>
<td>Package Weight</td>
<td></td>
<td></td>
<td>280</td>
<td>g</td>
</tr>
</tbody>
</table>

Package outline

![Package Outline Diagram](image-url)
Typical Performance Curve

Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration

Thermal Impedance (°C/W)

rectangular Pulse Duration (Seconds)

Single Pulse

Low Voltage Output Characteristics

VGS=15V

VGS=10V

VGS=9V

VGS=6.5V

VGS=8V

VGS=7V

VGS=6.5V

ID, Drain Current (A)

VDS, Drain to Source Voltage (V)

Transfert Characteristics

VGS > VDS(on) x RDS(on) MAX

250μs pulse test @ < 0.5 duty cycle

RDS(on) vs Drain Current

Normalized to VGS=10V @ 186A

RDS(on) Drain to Source ON Resistance

I_D, Drain Current (A)

DC Drain Current vs Case Temperature

I_D, DC Drain Current (A)

T_C, Case Temperature (°C)
Breakdown Voltage vs Temperature
- **BV_{oss}, Drain to Source Breakdown Voltage (Normalized)**

![Graph showing Breakdown Voltage vs Temperature](image)

- **T_J, Junction Temperature (°C)**
- **BV_{oss}**

ON resistance vs Temperature
- **RDS(on), Drain to Source ON resistance (Normalized)**

![Graph showing ON resistance vs Temperature](image)

- **T_J, Junction Temperature (°C)**
- **RDS(on)**

Threshold Voltage vs Temperature
- **V_{G}(TH), Threshold Voltage (Normalized)**

![Graph showing Threshold Voltage vs Temperature](image)

- **T_C, Case Temperature (°C)**
- **V_{G}(TH)**

Maximum Safe Operating Area
- **V_{DSS}, Drain to Source Voltage (V)**
- **I_D, Drain Current (A)**
- **T_J=150°C**

![Graph showing Maximum Safe Operating Area](image)

- **V_{DSS}**
- **I_D**

Capacitance vs Drain to Source Voltage
- **C_{iss}, C_{iss}, C_{oss}, C_{oss,iss}**

![Graph showing Capacitance vs Drain to Source Voltage](image)

- **V_{DSS}, Drain to Source Voltage (V)**
- **C_{iss}, C_{oss,iss}, C_{oss}**

Gate Charge vs Gate to Source Voltage
- **V_{G}, Gate to Source Voltage (V)**
- **V_{DSS}=40V, V_{DSS}=100V, V_{DSS}=160V**

![Graph showing Gate Charge vs Gate to Source Voltage](image)

- **V_{G}, Gate to Source Voltage (V)**
- **V_{DSS}**
Delay Times vs Current

- \(V_{DS} = 133 \text{V} \)
- \(R_{G} = 1.2 \Omega \)
- \(T_J = 125^\circ \text{C} \)
- \(L = 100 \mu\text{H} \)

Rise and Fall times vs Current

- \(V_{DS} = 133 \text{V} \)
- \(R_{G} = 1.2 \Omega \)
- \(T_J = 125^\circ \text{C} \)
- \(L = 100 \mu\text{H} \)

Switching Energy vs Current

- \(V_{DS} = 133 \text{V} \)
- \(R_{G} = 1.2 \Omega \)
- \(T_J = 125^\circ \text{C} \)
- \(L = 100 \mu\text{H} \)

Switching Energy vs Gate Resistance

- \(V_{DS} = 133 \text{V} \)
- \(L = 100 \mu\text{H} \)

Operating Frequency vs Drain Current

- \(V_{DS} = 133 \text{V} \)
- \(D = 50\% \)
- \(R_{G} = 1.2 \Omega \)
- \(T_J = 125^\circ \text{C} \)

Source to Drain Diode Forward Voltage

- \(V_{SD} \) vs Reverse Drain Current
- \(V_{SD} \) vs Source to Drain Voltage

APT reserves the right to change, without notice, the specifications and information contained herein.

APT's products are covered by one or more of U.S. patents 4,895,810, 5,045,903, 5,089,434, 5,182,234, 5,019,522, 5,262,336, 6,503,786, 5,256,583, 4,748,103, 5,283,202, 5,231,474, 5,434,095, 5,528,058 and foreign patents. U.S. and foreign patents pending. All Rights Reserved.