STATIC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic / Test Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>Forward Voltage</td>
<td>$.80</td>
<td>$.85</td>
<td></td>
<td>Volts</td>
</tr>
<tr>
<td>I_F</td>
<td>Maximum Average Forward Current</td>
<td></td>
<td></td>
<td></td>
<td>Amps</td>
</tr>
<tr>
<td>I_{RHM}</td>
<td>RMS Forward Current (Square wave, 50% duty)</td>
<td></td>
<td></td>
<td></td>
<td>Amps</td>
</tr>
<tr>
<td>I_{RSM}</td>
<td>Non-Repetitive Forward Surge Current</td>
<td></td>
<td></td>
<td></td>
<td>Amps</td>
</tr>
<tr>
<td>E_{AVL}</td>
<td>Avalanche Energy (2A, 15mH)</td>
<td></td>
<td></td>
<td></td>
<td>mJ</td>
</tr>
</tbody>
</table>

APT Website - http://www.advancedpower.com
Dynamic Characteristics

THERMAL AND MECHANICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic / Test Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{θ}_{JC}}$</td>
<td>Junction-to-Case Thermal Resistance</td>
<td>1.04</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>$R_{\text{θ}_{JA}}$</td>
<td>Junction-to-Ambient Thermal Resistance</td>
<td>20</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>W_T</td>
<td>Package Weight</td>
<td>1.03</td>
<td></td>
<td>oz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>29.2</td>
<td></td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>Maximum Terminal & Mounting Torque</td>
<td>10</td>
<td></td>
<td>lb•in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
<td>N•m</td>
<td></td>
</tr>
</tbody>
</table>

APT Reserves the right to change, without notice, the specifications and information contained herein.

FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION

FIGURE 1b. TRANSIENT THERMAL IMPEDANCE MODEL
TYPICAL PERFORMANCE CURVES

Figure 2. Forward Current vs. Forward Voltage

Figure 3. Reverse Recovery Time vs. Current Rate of Change

Figure 4. Reverse Recovery Charge vs. Current Rate of Change

Figure 5. Reverse Recovery Current vs. Current Rate of Change

Figure 6. Dynamic Parameters vs. Junction Temperature

Figure 7. Maximum Average Forward Current vs. Case Temperature

Figure 8. Junction Capacitance vs. Reverse Voltage

APT2X31S20J

- **TJ = 125°C**
 - VR = 133V
- **TJ = 150°C**
 - VR = 133V
- **TJ = -55°C**
 - VR = 133V

CJ, JUNCTION CAPACITANCE

- **Kf, DYNAMIC PARAMETERS**
 - Normalized to 700A/μs

- **IF(AV), FORWARD VOLTAGE**
- **VF, ANODE-TO-CATHODE VOLTAGE (V)**
- **-diF /dt, CURRENT RATE OF CHANGE (A/μs)**

- **Grr, REVERSE RECOVERY CHARGE**
- **Qrr, REVERSE RECOVERY CURRENT**
- **t rr, REVERSE RECOVERY TIME**
- **trr, REVERSE RECOVERY CHARGE**

- **TJ, JUNCTION TEMPERATURE (°C)**
- **Case Temperature (°C)**

- **VR, REVERSE VOLTAGE (V)**

- **Duty cycle = 0.5**

- **0 0.2 0.4 0.6 0.8 1 1.2**
 - 0 200 400 600 800

- **100 90 80 70 60 50 40 30 20 10**
 - 0 200 400 600 800 0 200 400 600 800

- **1200 1000 800 600 400 200 0**
 - 1800 1600 1400 1200 1000 800 600 400 200 0

- **1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0**
 - 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

- **0 25 50 75 100 125 150 25 50 75 100 125 150**
 - 1 10 100 200

- **0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600**
 - 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

- **0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100**
 - 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
1. I_F - Forward Conduction Current
2. $\frac{di_F}{dt}$ - Rate of Diode Current Change Through Zero Crossing.
3. I_{RRM} - Maximum Reverse Recovery Current.
4. t_{rr} - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I_{RRM} and $0.25 \cdot I_{RRM}$ passes through zero.
5. Q_{rr} - Area Under the Curve Defined by I_{RRM} and t_{rr}.

Figure 9. Diode Test Circuit

Figure 10. Diode Reverse Recovery Waveform and Definitions

SOT-227 Package Outline

ISOTOP® is a Registered Trademark of SGS Thomson. APT's products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.