INSTRUMENTS

The Software is the Instrument™

‘7 NATIONAL Application Note 006

Developing a LabVIEW™
Instrument Driver

Noél Adorno

Introduction

LabVIEW, the graphical programming language that pioneered the concept of virtual instrumentation, has been an
enabling technology in the hands of scientists and engineers for over a decade. As LabVIEW has grown in popularity,
so has the proliferation of instrument drivers, the software modules designed to control programmable instruments. To
aid in the development of these drivers, National Instruments has created standards for instrument driver structure,
device management, instrument 1/O, and error reporting. This application note describes these standards, as well as the
purpose of a LabVIEW instrument driver, instrument driver components, and the integration of these components. In
addition, this application note suggests a process for developing useful instrument drivers. While these
recommendations are primarily intended for those developers who intend to submit drivers to the National Instruments
LabVIEW Instrument Library, other users should find this information equally useful. This document presumes that
you understand basic GPIB, Serial and/or VXI concepts and are familiar with the operation of LabVIEW. You should
also be familiar with communication with VISA.

The LabVIEW Instrument Driver

Overview

An instrument driver is a set of software routines that control a programmable instrument. Each routine corresponds
to a programmatic operation such as configuring, reading from, writing to, and triggering the instrument. Instrument
drivers simplify instrument control and reduce test program development time by eliminating the need to learn the
programming protocol for each instrument. The LabVIEW Instrument Library contains instrument drivers for a variety
of programmable instrumentation, including GPIB, VXI, RS-232/422, and CAMAC instruments. Because instrument
driver VIs contain high level functions with intuitive front panels, end users can quickly test and verify the remote
capabilities of their instrument without the knowledge of device-specific syntax. The end user can easily create
instrument control applications and systems by programmatically linking instrument driver VIs in their block diagram.

Common Misconceptions

A LabVIEW instrument driver VI is not a live interactive front panel for the instrument. While instrument driver

VIs can be run interactively, they do not contain continuous loops that read input settings and send instrument
commands in response to real-time dynamic user input. Instead they read the controls of the front panel, format and
send command strings to the instrument, read the responses to instrument queries, and update front panel indicators
onceper VI execution. This is a very important concept; in order for an instrument driver VI to work programmatically,

it must be constructed so that interactive operator inmatisequiredfor it to run to completion. This precludes the

use of file or text dialogs or VI setup options that will pop-up the VI when called in order to prompt for user input.

Product and company names are trademarks or trade names of their respective companies.

340018D-01 © Copyright 1998 National Instruments Corporation. All rights reserved. May 1998

Of course, many applications may require exactly this type of interactive panel. You may want to prompt users to enter
desired instrument settings using a menu-driven interface. How do you get such behavior from a VI not designed to
work this way? With a LabVIEW instrument driver, there are many options for optimizing Vls for interactive use. For
quick testing, you can easily force an instrument driver VI to run in a continuous loop by opening its front panel and
clicking the Continuous Run button, which makes the VI act like a soft front panel that controls the instrument in
real-time. For applications, you can build a higher-level VI that contains the desired interactive interface and calls the
instrument driver VI at the appropriate time (or times) in the diagram. Alternatively, you can modify the instrument
driver VI by enabling th@®pen Front Panel When Calledoption from theVl Setup options and adding loops and

cases in the diagram.

Strict interactive use does not add much value to a VI; after all, users can simply press buttons on many instrument
panels instead of running the VI. Remember, when you are building your LabVIEW instrument driver that it must be
able to workprogrammaticallyas well as interactively. Do not use dialogs or other means that prompt for user input.
Always wire all controls and indicators to the connector pane and pass all data in and out of Vis through these
connectors.

A LabVIEW instrument driver is not limited to controlling a single instrument. Many users want to control sev-

eral identical instruments at the same time using the same instrument driver. Is this possible? Certainly, if the
instrument driver is designed correctly. Instrument driver Vls, like all other LabVIEW VIs, are serially reusable. There-
fore, by calling an initialize VI several times with different addresses and then passing reference handles (or VISA
sessions) between Vls, you can use the instrument driver VIs to control more than one instrument in an application.

For an instrument driver VI to be reusable (or multi-instance), the data contained within it must not be shared between
different uses of the same VI. Normally, this is not a problem due to the LabVIEW dataflow structure; input data is
consumed by the VI and output data is generated with each execution of the VI. It is only when global data is main-
tained by the VI that problems with reuse occur. For example, global Vis by definition are VIs whose data is meant to
be shared. Uninitialized shift registers, between VI executions, also store data that can be shared between multiple uses
of the VI. Instrument drivers using these storage mechanisms cannot be multi-instance drivers because the data stored
in the VI by one instrument can be unintentionally read or overwritten by a second instrument.

The instrument drivers in the National Instruments instrument library are multi-instance drivers. Therefore, if you wish
to submit your drivers to the instrument library, your drivers must also be multi-instance drivers. Make sure your front
panels include the instrument handle control (VISA Sessions), and wire these handles to all I/O subVIs in your dia-
gram. Next, remove all uninitialized shift registers and global VIs from the driver. This will eliminate data storage
within the driver and make it reusable for more than one instrument.

For more details on multi-instance, please refer té\theanced LabVIEW Instrument Driver Development Techniques
application note.

Instrument Driver Architecture

Modern GPIB and VXIbus instruments are characterized by increasingly larger numbers of functions and modes. With
this added complexity, it is necessary to provide a consistent design model that will aid both instrument driver
developers as well as end users who develop instrument control applications. To define a standard for instrument driver
software design and development, it is necessary to use conceptual models around which the design specifications are
written. An external interface model will show how the instrument driver interfaces to other software components in
the system. Similarly, an internal design model will define how an instrument driver software module is organized
internally.

Instrument Driver External Interface Model

An instrument driver consists of software modules, or VIs, that the user can call interactively as well as from a
higher-level software application. The model in Figure 1 illustrates how the instrument driver interacts with the rest of
the system.

Application Program

v

Interactive Programmatic
Developer Interface Developer Interface

Instrument Driver
(Functional Body)

Subroutine 1/0 Interface
Interface (VISA)

Figure 1. LabVIEW Instrument Driver External Design Model

This general model contains the instrument drfuectional bodywhich is the code for the instrument driver. The
details for the functional body are explained in the internal design midaeprogrammatic developer interfaisehe
mechanism for calling the driver from a high-level application program. For example, a manufacturer’s test system
might make instrument driver calls to communicate with a multimeter or an oscilloscope. Therefore, the instrument
driver sub-VIs would be used within a larger application. inkeractive developer interfa@ssists in the understand-

ing of the function of each instrument driver VI. By running the front panels of the instrument driver sub-VIs,
a developer can easily understand how to use the instrument driver in his applicatigiSAf\drtual Instrument
Software ArchitecturelO interfaceis the mechanism through which the driver communicates with the instrument
hardware. VISA is an established standard instrumentation interface for controlling GPIB, VXI, serial, and other types
of instruments from application software such as LabVIEW.sTieoutine interfacés the mechanism through which

the driver can call support Vls that are needed to accomplish a task. For example, cleanup and error messaging Vs are
considered necessary support VIs.

Instrument Driver Internal Design Model

To aid LabVIEW users in building their instrument control applications, National Instruments has developed libraries
of instrument drivers for popular instruments. Each instrument driver has a number of VIs organized into a modular
hierarchy containing not only high-level general-purpose application VIs, but also full-featured instrument driver

component VIs.

The LabVIEW instrument driver internal design model, shown in Figure 2, defines the organization of the LabVIEW
instrument drivefunctionalbody. This model is important to instrument driver developers because it is the foundation
upon which the development guidelines are based. It is also important to end users because all LabVIEW instrument

drivers are organized according to this model. Once you understand the model and how to use one instrument driver,
you can use that knowledge for every LabVIEW instrument driver.

Soft Front Panel Application Program

Functional Body

—I Application Functions ,7
Initialize : Close
) Action & -
Configure Status Data Utility
Component Functions
I I
Support Libraries VISA

Figure 2. LabVIEW Instrument Driver Internal Design Model

The functional body of a LabVIEW instrument driver consists of two main categories of VIs. The first category is a
collection ofcomponent Viswhich are individual software modules that each control a specific area of instrument
functionality. The second category is a collection of higher-lapglication Viswhich combine component Vis to
perform basic test and measurement operations with the instrument.

The internal design model of LabVIEW instrument drivers is built on a proven methodology. With this model, you have
the necessary granularity to control instruments properly in your software applications. You can, for example, initialize
all instruments once at the start, configure multiple instruments, and then trigger several instruments simultaneously.
As another example, you can initialize and configure an instrument once, and then trigger and read from the instrument
several times.

Instrument Driver Application Vls

The Application Vlisare at the highest level of the instrument driver hierarchy. These high-level Vis are written in G
block diagram source code and perform the most commonly used instrument configurations and measurements by
calling the appropriate component-level Vis. They demonstrate high-level test and measurement functionality by
configuring the instrument for a common mode of operation, triggering, and taking measurements. Because the
application Vls are standard VIs with icons and connector panes, they can be called from any higher-level application
requiring a single, measurement-oriented interface to the instrument. For some users, the application VIs are the only
instrument driver VIs needed for instrument control. The HP34401A Application Example VI, shown in Figure 3,

demonstrates an application VI front panel. The HP34401A instrument driver can be foundRaongtion Palette
in Instr»HP34401»Application Vils.

Fil= Edit Operate Project Windows Help |HF3'H°I
EEE | 13pt Application Font =] |3 =] |0 =] S
Hewlett 44014 VISA session dup YISA seszion
Fackard Multimeter WA (T]

E'—' (.000E+0 Source [ntemnal]
o g Internal
eror out
Function [DC) Range/Resolution (T:Auto] S amples [1] status code
lﬂ_g DC Voltage l.-’-‘«uto g 1 E u |
FOLIMCE
.. 1
Manual Res. [1: 5.5 Digits) Manual Range [1.00] Manual Delay [0]
[5 Digis | oo | = | =

-
4 I L] A

Figure 3. HP34401A Application Front Panel.

Instrument Driver Component Vis

The application VIs are built from a lower level set of instrument driver functions calfedonen¥Is. Unlike the
application VI (which presents only a subset of the instrument features), the component VIs are organized into a
modular assortment containing all of the instrument configuration and measurement capabilities. The component Vs
fit into six categories +hitialize, configuration, action/status, data, utility, and close.

Initialize
All LabVIEW instrument drivers should have an initialize VI. It is the first instrument driver VI called and it

establishes communication with the instrument. Optionally, it can perform an instrument identification query and reset
operations. It may also place the instrument either in its default power on state or in some other specific state.

Configuration Vis

The configuration VIs are a collection of software routines that configure the instrument to perform the desired
operation. There are usually a number of configuration VIs depending on the complexity of the instrument. After these
VIs are called, the instrument is ready to take measurements or stimulate a system.

Action/Status Vis

The action/status category contains two types of VIs. Action VIs cause the instrument to initiate or terminate test and
measurement operations. These operations can include arming the triggering system or generating a stimulus. These
VIs are different from the configuration VIs because they do not change the instrument settings; they simply order the
instrument to carry out an action based on its current configuration. The status VIs obtain the current status of the
instrument or the status of pending operations. Although the specific routines in this category and the actual operations
they perform are at the discretion of the developer, they usually are created on a need basis as required by other
functions.

Data Vis

The data Vls include VIs to transfer data to or from the instrument. Examples include VIs for reading a measured value
or waveform from a measurement instrument, VIs for downloading waveforms or digital patterns to a source

instrument, and so on. The specific routines in this category depend on the instrument and are left up to the instrument
driver developer.

Utility Vis

The utility VIs can perform a variety of operations that are auxiliary to the most often used instrument driver VIs. These
VIs include the majority of the template instrument driver VlIs (described below) such as reset, self-test, revision, and
error query, and may include other custom routines such as calibration or storing/recalling instrument configurations.

Close

All LabVIEW instrument drivers should include a close VI. The close VI terminates the software connection to the
instrument and deallocates system resources.

Each of these categories, with the exception of initialize and close, contain several modular VIs. Most of the critical
work in developing an instrument driver lies in the initial design and organization of the instrument driver component
VIs. The specific routines in each category are further categorized as either template VIs or developer-specified Vis.

Template VIs, available from National Instruments, are complete instrument driver VIs that can easily be customized.
These VIs perform common operations such as initialize, close, reset, self-test, and revision query. The template Vs
contain modification instructions for their use in a specific instrument driver for a particular instrument. For more
information, refer to the LabVIEW Instrument Driver Templatestion

The remainder of the VIs, known as developer specified Vls, perform the actual instrument operations as defined by
the instrument driver developer. Although all instruments will have configuration VIs, some instruments can have a
different number of configuration VIs depending on the unique capabilities of the instrument. Although the specific
VIs you develop will depend on the unique capabilities of your instrument, you should adhere to the categories dis-
cussed earlier — configuration, action/status, data and utility.

Using the internal design model as described in Figure 2, you can easily combine instrument driver VIs to create appli-
cation programs. In cases when the included application VI is not optimized for a specific application, users can create
new virtual instruments tailored to suit their needs by combining the component VlIs as necessary. Users can further
optimize the component VIs by adding or removing controls from the panels and modifying the diagrams. Figure 4
shows how instrument driver component Vls for the HP 34401A digital multimeter are used programmatically in the
diagram of the application VI, HP34401A Application Example.

Configure Trigger Measure

Function [0 DC)
tanual Res. (1: 5.5 Digitz]

Source [O:Interal]
Samples [1)

[oEL] | Measurements
WISA session 0 HF TR =] dup¥ISa session
enal in [ho enor] [e : ':I> T - errar out
Ratge/Aezalution [T:Auta) Maruial Delay (1) [25L]
Manual Range [1.00]

[TE B

Figure 4. HP34401A Application Example Diagram.

TRIG:SOUR

Source [0 Intemal)

Delay [F: Auta)

TRIG:DEL:

tanual Delay (0) AITO OM:

TRIG:COUN %3.2E:

Trigger Count [1)

SaMP.COUN 53.2E;

Samples [1)

VIS4 session [CE]l——fwea dup VIS4, zession

abc-,

erar in (no enor) error aut

Figure 5. HP34401A Config Trigger Diagram

In the block diagram of the instrument driver component VIs, built-in LabVIEW primitives as well as VISA Vls are
used to build command strings and send them to the instrument. The VISA Vls perform device management, standard-
ized instrument I/O, and error handling. As shown in Figure 5, the command string is created by cascading formatting
functions and then wiring the resulting string into the VISA Write VI. This VISA Write sends the command string to
the instrument, checks for errors, and updates error cluster appropriately. The VISA Vls are discussed in more detalil
in theVISAsection.

Additional VIs Distributed with the Instrument Driver

In addition to the VIs described by the internal model, an instrument driver should also include a Getting Started VI
and a VI Tree VI.

Getting Started VI

Each instrument driver should contain a Getting Started VI. You can use this VI to interface with the instrument
without wiring a subVI on the block diagram. This VI is usually the first VI the end user runs to verify communication
with the instrument. This VI generally consists of three sub-VIs, the initialize VI, an application VI and the close VI.
The front panel of the Getting Started VI resembles that of the application function it calls. Instead of having the user
provide the VISA resource name, the user should have to provide only his/her GPIB address, VXI logical address, or
communications port. For example, instead of having the user provide the @arBe:4 ", the Getting Started VI

would require the user to supply only a GPIB address of 4. The front panel and block diagram of the Getting Started

VI for the HP34401A are shown in Figures 6 and

7.

=
Hewlett 344014
Packard Multimeter

B0 J|looonE+0

Function [0 DC]

’U_ﬁ DC Yaltage l;_\um

Manual Res. [1: 5.5 Digitg]
= [|

Source [0:ntermnal]

ID_ﬁ Internal

Range/Resolution [T:Autc] Samples [1)

(I

Manual Range [1.00] Manual Delay (0]

El |

[265 Digis |

GPIB Addrezs [4]
&

R
error out

shatug code

[0 Eror I 'D—

SOUMCEe

|7

@ Copyright 1995 Mational Instruments Corporation. ALL RIGHTS RESERVED.

Figure 6. Front Panel of the HP34401A Getting Started VI.

Initialize Application Example Close
Timeout (10000 ms)
Samples (1]

GPIB Addiess (4] : Measuremants
L]
HP CLERRLD
. 23ls
el in [ho error) b B lose feoee{ [Fan]| EMTON OLI

Source [:ntemal)

Function [0:v DC)
Fange/Fezolution [T:4uta)
Manual Res. [1: 5.5 Digits]

tdanual Range [1.00)

tanual Delay [0

Figure 7. Block Diagram of the HP34401A Getting Started VI.

VI Tree VI

End users can view the entire instrument driver hierarchy at once with a VI Tree VI. This VI is a nonexecutable VI
designed to show the functional structure of the instrument driver. If an end user does not install the palette menu files

for the instrument, the VI Tree is the only resource to understanding the structure. An example of a VI tree VI is shown
below in Figure 8.

HEWLETT PACKARD
42844, 4285A PRECISION LCR METERS

Getting Started Application ¥ls
I . I_ HP4zBHA [GEH:EL] HP4ZBHA [:I
nitialize ot Star gl Froc ose
= = =
CLEEE Cp-D Cp-D Cp D ARAZETR
HEEE Llat
[FraHatize Close
Configuration ¥ls Action/Status Vls Data Vis Utility Vs
HP4ZBHA HFJZBHA HFdZBRA HFdZBHA HF4ZBHA HF 42 BRA HP 42 BRA HP4ZBHA
PAETN e I I 4
[270] a it (1T Ny BeEg
Aiperkur, ampar.| Imm Init E:iar Se at EINCrt ERRORS HULTERF:
HF4ZBHA HFdEBHA HF4ZBHA HP 42 BRA HP 42 BRA HPdZBRA
1 | [l = o
e =8 | |+4C A =g
[Carr Ear CarrCall [0pefShao) Futsh Exy Mg Salf-Tast
HF 4zB3RA HF dzBHA HFdZBHA HP4ZBRA [EEHEL] (GEHEL] HPH4ZBHA HP4ZBHA
q o 1th (=) u [
By o I iy | [sSEP| |gener 1| Eﬁ
Lirt Sup a Deute DouRofF| | Dirpla: FSr Mo SrMonD i 2zt
HP4ZBHA HP4ZEHA HF4ZBHA HF42BHA HF 42BHA HF 42BRA
zlal| |3 = | P
Imp-c dan. Trg Set Mem EuF Learn M arkdem| Ur: CarlD)|
HP4ZBHA HF4ZBRA
Fa| (T2
SondTrq Ebart!

Figure 8. Block diagram of the HP428xA VI Tree VI.

LabVIEW Instrument Driver Development

This section describes the procedure for developing a LabVIEW instrument driver. The ideal LabVIEW instrument
driver has full function control of the instrument. Rather than specify the required functionality of all instrument types,
such as multimeters, counter/timers, and so on, this chapter focuses on the architectural guidelines of all drivers. With
this information, driver developers can implement functionality unique to a particular instrument, and still organize,
package and use all drivers in the same way.

The best way to develop a LabVIEW Instrument Driver is to follow a three-step process. In step one, you design the
instrument driver structure. In step two, you modify the instrument driver templates VIs. In step three, you add
developer-defined Vis.

Step 1. Designing the Instrument Driver Structure

The ideal instrument driver does what the user needs — no more and no less. No particular type of driver design is
perfect for everyone, but by carefully studying the instrument and grouping controls into modular VIs, you can satisfy
most users.

When the number of programmable controls in an instrument increases, so does the need for modular instrument driver
design because a single VI cannot access all features. However, when an instrument driver contains hundreds of Vls,
each controlling a single instrument feature, more instrument rules regarding command order and interaction apply.
Modular design simplifies the tasks of controlling the instrument and modifying VIs to meet special requirements.

Ideally, you should devise the overall structure of your instrument driver before you build the individual Vlis. A useful
instrument driver is more than a series of VIs; it is a tool to help users develop application programs. You should design
an instrument driver with the application and end user in mind.

You must create some instrument driver Vs that control unique instrument features. However, you can use template
VIs for common operations. Template VIs are discussed in more detail in the Instrument Driver Template VIs section.

Instrument Driver Structure and VI Hierarchy

When you develop a LabVIEW strument driver, it is important to define clearly the structure and VI hierarchy of the
driver. First, define the primary VIs and develop a modular VI hierarchy. This hierarchy is the design document for a
LabVIEW instrument driver.

Useful instrument drivers come from in-depth knowledge of the operation of the instrument and experience using it in
real applications. The following steps outline one approach to developing the structure for a LabVIEW instrument
drivers:

1. Familiarize yourself with the instrument operation. Read the operating manual thoroughly. Typically the
foundation of the driver hierarchy is in the instrument programming manual. Learn how to use the instrument
interactively before you attempt any programming.

2. Use the instrument in an actual test configuration to get practical experience. (The operating manual may explain
how to set up a simple test.)

3. Study the programming section of the manual. Skim the instruction set to see which controls and functions are
available and how the features are organized. Decide which features are best suited for programmatic use.

4. Examine existing instrument drivers for similar instruments. Often instruments from the same family have similar
programming command sets that you can easily modify for your instrument.

5. Develop a structure for the driver by looking for controls that are used together to perform a single task or function.
The sections of a well organized manual often correspond to the functional groupings of an instrument driver.

Instrument Driver VI Organization

After you have developed your Instrument Driver structure, you can develop a VI hierarchy to organize the VIs for the
driver.

The VI organization of an instrument driver defines the hierarchy and overall relationship of the instrument driver com-
ponent VIs.

You define the majority of instrument driver VIs and design them to access the unique capabilities of a particular instru-
ment. However, many operations are common to all types of instrumentation. These common operations are performed
by the template instrument driver Vis — initialize, close, reset, self-test, revision query, error query, and error message.
You can find the template VIs Examples»instr»insttmpl.llb VI library.

The template VIs for LabVIEW instrument drivers include ready-to-run VIs to perform these common instrument
operations. The default command strings are based on the SCPI-compliant instruments. To include these VIs in your
instrument driver, modify the command strings as required for your instrument. If the instrument is IEEE 488.2 com-
pliant, few or no modifications are needed. If you are developing a driver for a non-IEEE 488.2 compliant or a
register-based device, you will develop equivalent VIs for your instrument.

A class is a group of VIs that perform similar operations. Common classes of VIs are configuration, action/status, data,
and utility.

The following table shows an example instrument driver organization for an oscilloscope. At the highest level of the
hierarchy, you see the template VIs (initialize and close) and the typical classes of VIs.

10

Table 1. Organization Example for an Oscilloscope

VI Hierarchy Type
Initialize VI (Template)
Application VIs
« Autosetup and Read Waveform (Developer Defined)
« Rise-Time/Fall-Time Measurement (Developer Defined)
Configuration Vs
 Configure Vertical (Developer Defined)
 Configure Horizontal (Developer Defined)
« Configure Trigger (Developer Defined)
 Configure Acquisition Mode (Developer Defined)
 Autosetup (Developer Defined)
Action Vs
« Acquire Data (Developer Defined)
Data Vls
* Read Waveform (Developer Defined)
« Voltmeter Measurement (Developer Defined)
« Counter/Timer Measurement (Developer Defined)
Utilities Vs
* Reset (Template)
« Self-Test (Template)
 Revision Query (Template)
« Error Query (Template)
« Error Message (Template)
Close VI (Template)

Guidelines and Recommendations

Design an instrument driver VI front panel that contains all the controls required to perform the VI task.

For example, a configure measurement VI would contain only the necessary controls to configure the instrument
to take the measurement. It would not take the measurement or configure any other features. Other VIs in the
instrument driver will perform these tasks.

Design a modular instrument driver that contains a set of VIs, each performing a logical task or function, such as
configuring the instrument or taking a measurement.

A modular instrument driver is flexible and easy to use. For example, consider a digital multimeter driver design
that uses a single VI both to configure the instrument and to read a measurement. The user cannot read multiple
measurements without reconfiguring the meter each time the VI executes. A better approach is to build two VIs:
one to configure the instrument, and one to read a measurement. Then the user can configure the meter once and
take many measurements in a loop.

Concentrate on the correct level of granularity in driver VIs and how these VIs will be used in a system.

An instrument driver with a few very high-level VIs may not give the user enough control of the instrument oper-
ation. Conversely, an instrument driver with many low-level Vis is difficult for users unfamiliar with instrument
rules regarding command order and interaction. For example, when using a measurement device such as an oscil-
loscope, the user typically configures the instrument once and takes many measurements. In this case, you should
write high-level configuration VIs for the device. On the other hand, when using a stimulus device such as a pulse

11

generator, the user may want to vary individual parameters of the pulse to test the boundary conditions of his sys-
tem, or perform frequency response tests. In this case, you should write lower-level VIs, so that users can access
individual instrument capabilities instead of reconfiguring each time they want to change one component of the
output.

» Consider the relationship of the driver with other instrument drivers in the system.

Typically, test designers want to initialize all of the instruments in a system at once, then configure them, take
measurements, and finally close them at the end of the test. Good driver design includes logical division of
operations.

e Create aninstrument driver design (both in appearance and functional structure) that is similar to other instruments
of the same type.

Instrument drivers across a family of similar instruments should be consistent in appearance, structure, and style.
For example, all oscilloscope drivers should resemble each other, as should all multimeters, scanners, and sources.
If possible, modify a copy of an existing driver of a similar instrument.

« Design an instrument driver that optimizes the programming capability of the instrument.

You can sometimes exclude documented functions that are not well suited for programmatic use. For example,
most message-based devices have both a set and query version of each command. The set version is often needed
for configuration of the instrument, but the query function is not needed. If the calls to set the instrument are suc-
cessful, then the state of the instrument should be known.

» Design each VI to be independent of other VIs.
If two or more VIs must always be used together, consolidate them into one VI.
e Minimize redundant parameters.

For example, the parameters for each channel of a multichannel oscilloscope are similar or identical. Rather than
duplicate the programming controls for each channel, you can include a VI control for selecting which channel to
configure. The user can use this VI to change the settings for an individual channel, rather than configuring every
channel each time the VI is called.

Design Example

Deciding which parameters to include in an instrument driver VI is one of the greatest challenges facing the instrument
driver developer. Fortunately, organizational information is often available in the instrument manuals. In particular,
the programming section of the manual may group the commands into sections such as configuring a measurement,
triggering, reading measurements, and so on. These groupings can serve as a model for the driver hierarchy. Begin to
develop a structure for the driver by looking for controls that are used together to perform a single task or function. A
modular driver will contain individual VlIs for each of the control groups.

A modular driver will also contain individual subVIls for each of the functions. Table 2 shows how the command sum-

mary from the Hewlett-Packard Digital Multimeter Operating Manual relates to developer specified instrument
driver Vls.

12

Table 2. Comparison of Manual Sections with Instrument Driver VIs.

Virtual Instrument Instrument Manual Section
HP34401A Initialize Input/Output Configuration
*IDN?
*RST

HP34401A Config Measuremg Measurement Configuration
AC filter

Autozero

Function

Input resistance
Integration time

Range

Resolution

HP34401A Config Trigger Triggering Operations
Reading hold threshold
Samples per trigger
Trigger delay

Trigger source

HP34401A Config Math Math Operations
Math state, function

Math registers

HP34401A Read Measuremer; Measurement Reading

Using Init and Fetch

HP34401A System Controls System-Related Operations
Beeper modes

Display modes

While the instrument manual can provide a great deal of information about how to structure the instrument driver, you
should not rely on it exclusively. Your knowledge of the instrument and how it is used should be the ultimate guide.
The preceding table shows manual sections that map nicely to Vs found in the instrument driver. There are instances
when it is more appropriate to place commands from several different command groups in your VI.

Conversely, it is often necessary to take one group of commands and divide it into two or more VIs. Consider how an
instrument manual groups the trigger configuration commands with the commands that actually perform the trigger
arming and execution. In this case, you should separate the commands into two VIs; one to configure the trigger, and
one that arms or triggers the instrument.

13

Step 2. Modifying the Instrument Driver Templates

After you design the LabVIEW instrument driver structure, the next step is to modify the template VIs to represent
your instrument. Most of the modifications involve the instrument prefix. The prefix is a unique identifier for the
instrument driver, and is used as the filename for all files associated with the driver and as the prefix to all instrument
VI names. Typically, the prefix is the combination of an abbreviation for the instrument vendor name and the model
number. For example, the instrument prefix for the Tektronix VX4790 instrument dritkex4390 . As a default,

the template instrument drivers use PREFIX as the instrument prefix.

Use the following procedure for modifying the LabVIEW instrument driver template:

1. Open the PREFIX Initialize template in the ft®reDrv.lib found in yourLabVIEW/examples/instr
finsttmpl.llb library.

2. Save the Vlinto a new VIl library file by using the prefix for your instrument as the filenameltf théle. Save
the VI replacing PREFIX in the VI name with the prefix for your instrument.

3. Follow the instructions in the Modification Instructions string control on the Initialize front panel to modify the
VI for your particular instrument.

Edit all Show VI Info... and control and indicator descriptions.

Edit the icon. Create an icon for each of the color modes of the icon: Black and White, 16-Color, and 256-Color.
Delete the Modification Instructions string control after you have completed the modifications.

Resize the front panel and save the VI.

© N o g A~

Repeat steps 1 through 7 for PREFIX Close VI and the remaining template VIs that your instrument uses. All Lab-
VIEW instrument drivers should have initialize, close, reset, revision query, error message, self test and error
qguery and error message (multiple) Vls. If the instrument cannot perform some of the utility functions, the VI
should return a “not supported” warning. Refer toEh®r Reportingsection for proper error and warning codes

to be returned by the Vis.

After completing this procedure, you have a base-level driver that implements all template instrument driver VIs and
is a good framework from which to create the rest of your driver.

In addition toCoreDrv.llb , there is one more instrument driver template lib@oyeDrU.Ilb . This library should

contain support Vis that the instrument driver uses internally, but are not intended for the end user to call. Two exam-
ples of support files, PREFIX Utility Clean Up Initialize and PREFIX Utility Default Instrument Setup, are included

in theCoreDrU.llb file. If you intend the instrument driver to use these files, you should rename and modify them
like those inCoreDrv.llb . For a description of each template VI, refer to the section on Instrument Driver
Template Vis.

Step 3. Adding Instrument Driver Component Vis

The final step in developing a LabVIEW instrument driver is to add the developer-defined component Vls that define
the functionality of the instrument driver and access the unique capabilities of your instrument. The VIs you create will
be added to the source code along with the template Vs in theefilellb , Where prefix refers to your instrument
driver prefix. For design and style details refer to the section on Details for Building Your Instrument Driver VIs.

You can use the following procedure to add your new ViIs:

1. Open either the PREFIX Message-Based or PREFIX Register-Based templateSoxd0Orv.llb . Use the
PREFIX Message-Based template VI for message-based operations. Use the PREFIX Register-Based template VI
for register-based operations.

Edit the VI front panel. Create the controls and indicators for the VI.
3. Edit all control and indicator Help information. Edit tleow VI Info... description.
Edit the icon. Create an icon for each of the color modes of the icon — Black and White, 16-Color, and 256-Color.

14

o

© © N o

Edit the connector pane. Select an appropriate connector pattern and wire all controls and indicators to the
terminals.

Edit the block diagram. Program all operations necessary to carry out the functionality of the instrument driver VI.
Save the VI.
Test the instrument driver VI.

Repeat these steps for every instrument driver component VI and application VI that you define for your
instrument.

. Edit the instrument drivellb by selectingrile»Edit VI Library. .. from the menu. Edit the Functions and

Controls names. Edit the arrangement of icons in the Functions and Controls palstestoyy Edit Controls
and Function Palettes. . from theEdit menu.

Editing the G block diagram source code is the most difficult step in adding a component VI to the instrument driver.
Defining a block diagram structure makes it easier to edit the G source code. You can divide this process into the fol-
lowing steps:

1.
2.

N o g bk~ w

Place the appropriate 1/O routines in the block diagram.

Wire theerror in cluster terminal to the first I/O VI error input connector. Then wire the error-out connector of
that VI to the error-in connector of the next VI. Continue this process for all of the 1/0 Vls. Then wire the error-out
connector of the last VI to the error-out terminal of the icon.

Wire theVISA sessionto every 1/0 VI. This is done in the same way as the error cluster.
Use the LabVIEW string Vs to assemble a command string based on the VI inputs.

Wire the command string to the VISA Write function.

Use the VISA Read function to read the response if the instrument generates a response.
Use the string VIs to parse the response and wire it to the appropriate indicator terminals.

Details for Building Your Instrument Driver Vis

This section differs from the last section in that it focuses on the three components of an instrument driver VI — the
front panel, the block diagram and the icon. Each component will be discussed in detail for layout and style
requirements.

The Front Panel

Once you decide which controls to group together to form an instrument driver subVI, you must decide which control
styles best represent the instrument commands and options. Typically, instrument commands can be categorized into
four types of control styles — Boolean, digital numeric, text ring numeric, or string. For example, any instrument
command that has two options (eIg!/G:MODE:AUTO|NORMA).can be represented on the front panel with a Boolean
switch. In this case, you would label the switch Trigger Mode and add a free label showing the options: Auto or
Normal. For commands that have a discrete number of options (STRGRSOUP:AC|DC|HFREJ), you should use

a text ring rather than a digital numeric because the text ring can label each numeric value with the command it
represents. Any command requiring a numeric parameter whose value varies over a wide range is better represented
using a digital numeric rather than a long text ring. Finally, commands that require ASCII characters (such as a name)
can be represented on a front panel with a string input control. These four control types — Boolean, numeric, text ring,

15

and string input, are all you need to represent most instrument commands on the front panel of your VIs. The Simple
Trigger VI in Figure 9 is an example front panel with the different type of controls.

YISA session dup ¥I5A session
wisa [T]
Irstr Ity
Trigger Coupling is a text ring ————————® Trigger Coupling [0:AC)
o
error out
Trigger Level is a digital numeric ——————# Trigger Level [1.00] T
A0 | o
L L Fi0 Errar 0
Trigger Mode is a Boolean —————» Trigger Mode [T:Auta) SOUIES —
ﬁ Auta

Mormal -

Figure 9. Simple Trigger VI

In addition to the controls required to operate the instrument, your front panel must also have the following required
controls — VISA session, dup VISA session, error in and error-out. The VISA session handles are discussed in the Driv-
ers Support Libraries section. The error clusters are described below:

error in [no erar) error in describes error conditions that occur before this VI executes. The default input

code of this cluster is no error. The error-in cluster contains the following parameters:
o efrar ﬂu | « statusis TRUE if an error occurred. If status is TRUE, this VI does not perform an
J— operation. Instead, it passes the value of the error-in cluster straight to the error-out
cluster.
:” » codeis the error code associated with an error. A value of 0 means there is no error.
Refer to the Error Codes section for a description of the possible error codes.
« sourceis the name of the VI that produced the error.
ermor out error out is a cluster containing error information. If error in contained an error, this is
status code passed directly to error out. If error in did not indicate an error, the VI ran normally and
m |I:|7| error out describes any errors that may have been generated by the VI. This control

should be placed in the lower right corner of your front panel.
FOUCe

i

When designing your front panels, use the following style guidelines to ensure uniformity with other LabVIEW VI
front panels. First, use the default font (application) for all labels because this font is included with LabVIEW and thus
is available to all other users. Also, us#d text to denote important or primary controls, and reserve plain text for
secondary controls. (In most cases, all instrument driver controls are primary and require bold text.) Also, only the first
letter of each word should be capitalized. The only exceptions are dup VISA session, error in, error out and acronyms
which require caps (e.g. ID or GPIB). Enclose default information in parenthesis in the control name so the defaults
can be seen in the help window when wiring into the VI. For example, you should label a function selector ring control
whose default is DC volts at item zdumction (0:DCV), and you should label a Boolean mode switch that defaults to

true indicating automatitigger mode(T:Auto); (Note, the default information is in plain tex®lace the VISA ses-

sion control in the upper left, the dup VISA Session in the upper right and the error-out cluster in the lower right. Since

16

theerror in control is not designed to be used as an interactive input, place it on the left side off screen. Fill in all
control descriptions as specified in the Online Hadption. The Simple Trigger VI shown in Figure 9 is an example
front panel which meets the style guidelines.

The Block Diagram

After designing your front panel, the next step is to create the G diagram that performs the function of the VI. As stated
previously, each type of front panel control has a corresponding block diagram string function that simplifies the task
of building command strings. Rather than wiring a Boolean control tS8dlestnode and choosing a string constant

to pass to &oncatenate Stringsnode, useSelect & Append This node both selects the proper string and
concatenates it to the command string in one step. LikewisEpas@at & Append to format and concatenate simple
numeric values rather than using one ofTeDecimal or To Exponential type conversions with th@oncatenate

Strings node. AgainFormat & Append combines the functionality of the separate conversion and concatenate nodes
and simplifies the block diagram considerably. For text rings,Sedect & Append and for string inputs use
Concatenate Strings You can find complete descriptions of these string functions ihab¥IEW Users Manual.

The diagram in Figure 10 shows the preferred methods of building command strings.

Use this... instead of this.

‘TRIG:COUR:AL;
TRIG:COUP DC;
TRIG:COUP HFR:

Trigger Coupling [1.AC)

HOR:MAIM:POS %I

Pozition [0.000)

Pasition (0.000] |t

:MOD AUTO;
Trigger Mode [F:Norm]

:MOD NORM;

MOD AUTO;
[~ MO0 ORI,

Trigger Made [F:Morm)

Figure 10. Comparison of Techniques for String Building.

Carefully consider the control flow while building your diagrams. LabVIEW does not necessarily execute in a
left-to-right, top-to-bottom fashion. There is a great deal of data dependency that automatically determines execution
order; add artificial data dependency wherever possible. You can use the error-infout clusters to chain 1/O functions
together, thus defining the execution order without using case or sequence structures, as shown in Figure 4, HP34401A
Application Example VI diagram. Although sequence structures also force the flow of execution, you should avoid
them because they hide parts of your diagram, thus making it difficult for users to understand and modify.

Even with proper execution order defined, you may not know how much time is needed for the instrument to respond
to commands. Timing problems can occur if the instrument driver VI attempts to send commands to the instrument
while it is busy executing previously sent commands. Often, the new commands are ignored. Querying the instrument
presents another potential problem. After commanding the device to send data, a period of time can elapse before the
data is available. If you attempt to read during this period, data can be corrupted, a time-out can occur, or the instrument
can malfunction. These internal timing problems can be overcome in a number of ways:

« Use events to signal that the instrument is ready to accept new commands or that data is available. If possible with
your instrument, set bits in a service request mask register to configure specific SRQ events. Then you can use the

17

VISA Wait on Event function to suspend execution of the instrument driver VI until the device indicates that it is
ready to continue. For more details on event handling, please referAdvwhieced LabVIEW Instrument Driver
Development Techniquagplication note

» Use status information to determine if the device is ready. You can query many instruments about their condition,
and decode this information to determine if the desired condition exists before continuing the program.

» Insert appropriate time delays for instruments that cannot generate interrupts indicating that they are ready for new
commands. Because most instruments have input buffers, it is usually possible to send a string containing several
commands to the instrument. The individual commands are processed by the instrument one at a time, serially.
Occasionally, an instrument requires a few moments to finish executing the commands in its buffer before it is
ready to accept new commands or respond to a query. Only use the Wait (ms) function to impose a time delay
when the instrument cannot be configured to generate a service request when ready, and status information is
unavailable.

Along with these internal timing issues, you must also consider the interaction of the component Vls in your driver. If
one component VI leaves the instrument in the wrong state, another component VI may not work properly. Additional
timing problems may occur if one component VI sends commands to the instrument while the instrument is busy exe-
cuting commands sent from another component VI. The techniques mentioned earlier are helpful in overcoming these
problems.

Use proper wiring style to improve the diagram appearance and ease of understanding. Do not crowd the diagram;

leave room for labels and wires. Do not cover wires with loops, case structures, labels, or other diagram objects. Also,

reduce the number of bends in the wires by aligning data terminals whenever possible. You can use the cursor keys to
move objects by single pixels if necessary. Wgn and Distribute in the toolbar to add symmetry and straight lines

to your diagram. Also, add text labels to each frame of Case and Sequence structures. Alternatively, you can use enu-
merated types, which provide meaningful descriptions to cases within a case structure. You can label long wires and

complex operations as necessary to increase clarity. Label control and indicator nodes with normal text, but use bold

text to make your free label comments stand out. The background of your labels should be colored transparent. Refer
to Figure 11 for an example of a block diagram which uses these diagram style techniques.

i+ Simple Trigger.vi Diagram

File Edit Operate Project “Windows Help FEFLE]
o[&]) (2] [wal@2] 130t Anplcation Fort =] [$] [Gm =] Eod
COUP AC, [
‘COUPDC;
:COUP HFR:

Trigger Coupling [1.AC)

Trigger Level [1.00]

MOD .&UTD;I
MOD NDHM;I

Tiigger Made [T Autg] [T |

WIS A session ||EI LJ.'bSA & 1| dup WISA session
abo-, =
enor in [ha ermor] (2= 1] IED ernor aut

0 | ;lﬂ

Figure 11. Simple Trigger Block Diagram Following Style Guidelines.

18

The Icon/Connector

There are a few rules regarding the VIs connector pane and icon. Reserve the upper left terminal for the VISA Session
control, and the upper right terminal for dup VISA Session indicator. Reserve the lower left terminal for the error-in
cluster and the lower right terminal for the error-out cluster to simplify wiring to subsequent error-in terminals. It is
acceptable to choose a connector pattern that has extra terminals in case you have unforeseen control or indicator
additions to your instrument driver VIs. This precaution prevents you from having to change the pattern and replace
all instances of calls to a modified subVI. Place inputs on the left and outputs on the right whenever possible to promote
a left-to-right data flow in the block diagram. Use meaningful icons for every VI. You can borrow icons from similar
functions in other instrument drivers or use the icon librarstricon.llb) found in your LabVIEW/examples

/Instr directory. Be sure to include text in the icon containing the instrument model controlled by the VI. If you are
unable to create an icon to express the function of the VI, you can use text. Examples of icons are shown in Figure 12.

FREF I3 : o : FREFIH | H FREFI®

Exarmpla EITEm Canfig Trigger Canfig AC Current . Self-Calibrate ‘"‘rf

X COHFIG Pl g

FREFIH . ;- |FREFIH . FREFIH H : FREFIH

Autoscale [HE Config Edge Trig : Config AC Yolts Ve Diagnostics W
L CONFIG FHIL 2

=5

kit

CONFIG

Corfig DC Yalts P:'EE Canfig Display
CON-F-l-E DISFLAYT

. FREFIX - H FREFIX
Config Ohm Py Config Disp Color el

CONFIE CHLOk

FREFLE Clear Dizplay Zf:;:”
5FL%: |

Config Channel [55¢ | - Config Delay Trig Gem | Config DC Cunent |5 | S ave-Recall Setup [2504
i e 3

Config Timebase [F07 | Canfig Width Trig [fear” |

£
[TIME EAZE

E

FREFI4

Config Acguizition |ane Canfig State Trig [
2

Zoam

Config Marker [FFERE 1 Config Gliteh Trig g

[MARKER

Read Mark Position [T | Config Pattem Trig [H Save WWavefom [R5
b s i e
Config Measurement |50 | Config Video Trig (s | Fread 'win to Amray (TR
o Elel
Min/tan Meas Config Funt Trig BEFY | Riead wim to Fils 7L
R a

WFHzFIL

Read Measurement [fF Config Math [, | Wiew Saved Wim Eﬁi
i e uu'w'ﬁ"'

Run-Stop Snapshot Setup Print [FFEL

HAP:HOT| PRIMT.

Digitize [fuwdio et [P Prink [ERRE

DIGITI“E.;:I J PR%

Figure 12. Sample Icons.

Important Considerations

Application Vis

The application VIs demonstrate a common use of the instrument and show how the component Vis are used
programmatically to perform a task. For example, an oscilloscope application VI would configure the vertical and
horizontal amplifiers, trigger the instrument, acquire a waveform, and report errors. Don't try to make your example
VIs perform every function found in your instrument driver component VIs. Instead, concentrate on building simple,
quality examples that can serve as a general model for users. Build the top-level examples by calling component Vis;
don’t reproduce their code in the diagram of the application VI. Finally, do not use the instrument driver initialize or
close Vls within the application VI because this will make it less useful in higher-level applications.

19

Online Help Information

To aid the user, you must include help for each instrument driver. LabVIEW has two types of help mechanisms:

General Description help is available from the description box of the information window when a user selects
Show VI Info. . . from theWindows menu (see Figure 13). This dialog box should contain a general description
of the instrument driver VI including any control usage rules or VI interaction that should be brought to the user’s
attention.

Mame: Tek W4730 Config Std Wave.vi [~ Locked
Path: C:\Tek V<4790 Config Std Wawve. vi

Current Rewvizion: 4

Dezcriphion:

This W1 determines the characteniztics of the waveform to be -
output. 1 the waveform iz sine, square, zawtooth or tiangular, the
high and low peak amplitudes must be specified along with the

output frequency. The zample frequency et in the Configure |

will be autornatically reprogrammed in this case.

~Memon Uzage:
Resources: 343K Frant Panel. B.5K
Block Diagram: 7.8K
Code: 8.EK
Data: 1.3K

Total: ~24.2k

ar. | Caticel |

Figure 13. Show VI Info... Option from the Windows Menu.
Control and Indicator help is the information most frequently viewed by the user. Provide a description of the indi-
vidual controls and indicators. Front Panel Object help is obtained by selata@perations»Description. . .
from the object’s pop-up menu (Figure 14). The help information contains the name and description of the param-
eter and its valid range and default value. Be sure to include information showing index numbers and
corresponding settings for all ring and slide controls, settings corresponding to True/False positions on Boolean
controls, and range information for numeric controls. You should also note any pertinent information concerning
control interaction in the description boxes of each control affected by the interaction.

i+ Description E

trigger mode [auta:0) Description

Setz the main tigger mode. Walues are az follows: ;I
0- Auto
1 - Mormal

Auto generates a trigoer if a tigger izn't detected within a specific
time period. Mormal waits for a walid trigger event.

ak. Cancel

Figure 14. Front Panel Object help from the Description... Option.

20

You can also help the user by placing free labels on the front panel and in the block diagram. In the block diagram
especially, you should show all terminal labels (plain text) and color the borders transparent. Place free labels in case
statements and sequence frames using bold text. This makes the comment stand out and makes the program easier to
understand and modify. Also, using enumerated type ring controls rather than standard text rings can provide additional
self-documentation to the block diagram.

Error Reporting

LabVIEW instrument drivers use the National Instruments standard for error reporting based on the use of a cluster to
report all errors (Figure 15). Inside the cluster, a Boolean error indicator, a numeric error code, and an error source
string indicator report if there is an error, the specific error condition, and the source (name) of the VI in which the
error occurred (additional comments may also be included). Each instrument driver VI has an error-in and an error-out
terminal defined on its connector pane in the lower left and lower right terminals respectively. By wiring the error-out
cluster of one VI to the error-in cluster of another VI, you can pass error information throughout your instrument driver
that will propagate to the top level VI in your LabVIEW application.

error in [ho erar) error out
zhatuz code status code

o errar I glﬂ— N0 ennar I e
ZOLIMCE FOLICE

i L

Figure 15. Error I/0 Clusters.

A secondary benefit of error input/output is that data dependency is added to Vls that are not otherwise data dependent.
This gives you a way to specify execution order beyond traditional sequence structures (see Figure 4). After the error
cluster has passed through all of the instrument driver VIs, it can be passed to the Error Message VI (utility function
within the instrument driver), General Error Handler VI or Simple Error Handler VI (found ifirtiee and Dialog

Function Palettein LabVIEW) which interprets the error codes and displays messages to the user.

The VISA functions checks the Boolean state of the error-in cluster to determine if a previously executed VI generated
an error. If an error is detected, the VISA function does not perform its usual operation. Instead it just passes the error
information to the error-out cluster without modification. If no error is detected, the VISA function executes normally
and determines whether it generated an error. If so, the new error information is passed to the error-out cluster, other-
wise the error-in information is passed out. By using this technique, the first error triggers subsequent Vis not to
execute (or some other action defined by the user) and the error code and the source of the error propagates to the
top-level front panel. Additionally, warnings (error codes and source messages with the error Boolean set to false) will
pass through without triggering error actions. For a list of VISA error codes, refer to the LabVIEW online help for error
codes.

In addition to VISA error codes, there are several error and warning codes reserved for instrument drivers. These error
codes are shown in Table 3. These codes should be returned by the instrument driver VIs when the appropriate condi-
tion occurs. You might see error codes {800 for instrument specific errors in older instrument drivers and older
instrument driver templates. In order to be more VXIPnP compliant the new codes should be used.

21

Table 3. Instrument Driver Error Codes

Hex Code Decimal Code Meaning Generated by
0 No error: the call was successful
3FFC0101 1073479937 | WARNING: ID Query not supported Instrument Driver
3FFC0102 1073479938 | WARNING: Reset not supported Instrument Driver
3FFC0103 1073479939 | WARNING: Self-test not supported Instrument Driver
3FFC0104 1073479940 | WARNING: Error Query not supported | Instrument Driver
3FFC0105 1073479941 | WARNING: Revision Query not support{ Instrument Driver
3FFC0800to | 1073481728t WARNING: Instrument specific warning{ Instrument Driver
3FFCOFFF 1073483775
BFFC0001 1074003967 | ERROR: Parameter 1 out of range Instrument Driver
BFFC0002 -1074003966 | ERROR: Parameter 2 out of range Instrument Driver
BFFCO0003 -1074003965 | ERROR: Parameter 3 out of range Instrument Driver
BFFC0004 -1074003964 | ERROR: Parameter 4 out of range Instrument Driver
BFFCO0005 -1074003963 | ERROR: Parameter 5 out of range Instrument Driver
BFFC0006 -1074003962 | ERROR: Parameter 6 out of range Instrument Driver
BFFC0007 -1074003961 | ERROR: Parameter 7 out of range Instrument Driver
BFFCO0008 -1074003960 | ERROR: Parameter 8 out of range Instrument Driver
BFFC0010 -1074003952 | ERROR: Interpreting instrument respon{ Instrument Driver
BFFC0011 -1074003951 | ERROR: Identification query failed Instrument Driver
BFFC0800 -1074001920 | ERROR: Opening the specified file Instrument Driver
BFFC0801 -1074001919 | ERROR: Writing to the specified file Instrument Driver
BFFC0803 -1074001917 | ERROR: Interpreting the instrument's Instrument Driver

response
BFFC0804to| -1073999873 | ERROR: Instrument specific errors Instrument Driver
BFFCOFFF to
-1074001916

22

Prior to the introduction of error 1/O clusters, LabVIEW instrument drivers had no consistent method for reporting
error conditions. Additionally, invalid commands, syntax errors, or out-of-range values often caused early GPIB instru-
ments to lock-up. For these reasons, error handling strategies focused on preventing sending strings to the instrument
that would cause instrument failure. Front panel data coercion and block diagram techniques were often employed to
automatically detect and correct potential error situations, usually without the knowledge of the user, who received no
indication that his inputs were being overridden. Because newer instruments are capable of handling and reporting
these situations, and because LabVIEW instrument drivers now have a consistent error reporting mechanism, the

emphasis is shifting towards minimal error handling routines in the driver VIs, and using the error handling capabilities
of the instrument to find and report errors. Earlier error handling methods have not been invalidated; however, you must
determine the appropriate amount of error handling required by your VIs, based on the need for speed,
user-friendliness, and the features and behavior of the instrument. As developers, you are not relieved of your duties
of providing error handling; rather, you have greater responsibilities for providing good information to users about their
inputs, and you have more tools to choose from to accomplish the task. Since most instrument drivers developed today
use the query method to report errors, it is discussed in detail below.

Query the Instrument

As defined by the SCPI standard, many newer instruments have an error/event queue, which stores errors and events
as they are detected. This queue is first in, first out, with a minimum length of two messages. In the event of overflows,
the least recent errors/events are retained, while the most recent error/event is replaced with a queue overflow message.
The SCPI standard defines common error types, including command errors, execution errors, device-specific errors,
and query errors. Each error is stored in the queue, with a unique error/event number, optional descriptor, and optional
device-dependent information. By issuing tB#ST:ERR? command, SCPI instruments return one entry from the
gueue, which may be an error, an overflow warning, or the message, ‘0, “No error™. In your instrument driver
application VIs, you can use this queue to detect and report instrument errors by querying the instrument after
commands are sent. Obviously, querying the instrument for errors adds to the execution time of the VI, but this
technique is beneficial as a “catch-all” mechanism for detecting instrument-specific errors. The only downside to this
method is it requires the end user to use the Error Query VI within his application. Some end users do not implement
error checking in their applications.

The Instrument Driver Templates VI library contains two versions of SCPI error reader Vls, which you can copy into
your instrument drivers. The PREFIX Error Query (multiple) VI is the most useful with SCPI instruments since it
flushes the instrument’s error buffer and detects the presence of any error messages. If errors are detected, the PREFIX
Error Query (multiple) VI updates the error cluster with error cade@4001916 (HexBFFC0804) , and places into

the source message the name of the VI performing the error query, as well as the error information returned from the
instrument. The LabVIEW error handler Vls identify error cetlé74001916 as an instrument-specific error and
generates an appropriate error message. The front panel of the Error Query (Multiple) VI is shown in Figure 16.

EE YKDL1500 Error Query [multiple]_vi =

File Edit Qperate Project Windows Help IlcoC
&I@, Lf@%ﬂ | 13pt Application Fart =] 5 =] |0 =] 'm,ﬁm
YISA session dup ¥I5A zession

1454 Error 154
Irstr ﬂﬂ_ Iristr

Emor Message

}

error in [ho e error out

shatus code zhatuz code
no eror I§|ID o errar I 0

zoUrce ZOLIMCE

| [

B | ;ljf

Figure 16. Example of the Error Query (multiple).vi.

To use the VI in your application, place it wherever you wish to query the instrument for errors. During initial devel-
opment, you may want to place this VI in every instrument driver component VI to determine if your VI is generating

23

instrument errors that could be prevented with a better algorithm. Remove them from the final version of the instrument
driver to optimize the driver. In your application VI, call the Error Query VI after the component VIs have executed.
Since SCPI instruments buffer the errors in a queue, the error query VI will be able to report all errors that were created
throughout the application. If the error information returned from the instrument is detailed enough to determine
exactly what went wrong in the instrument driver, you do not need to add extra programmatic error checking into your
diagrams; use the capabilities of the instrument for this. If, on the other hand, the returned error information is cryptic
or too general to be of any practical value, you must add more error checking in your VIs to detect and/or correct the
errors before they reach the instrument. You want to inform end users of instrument error conditions; the error query
VI is another tool in your arsenal that you can employ to meet that goal.

While error querying is a very effective method for detecting and reporting errors, it has some limitations. First, not all
instruments have SCPI-defined error queues. For these instruments, you will have to modify (or replace) the error
qguery VI with one of your own design to accommodate the capabilities of your instrument. Second, some of the instru-
ment messages may not be specific enough to be of any practical value. For example, the instrument may report only
a generic ‘parameter error’ when it detects a value out of range; this is not especially helpful if your VI has 10 numeric
controls on it. Finally, you must be careful about using the information in an instrument error queue. Is the information
current, or is it stale information from some previous instrument operation? By flushing the buffer completely, as with
the PREFIX Error Query (multiple).VI, you can be certain that no old information remains queued up which might be
read at a later time and misinterpreted as occurring after when it actually happened.

Additional Style Tips

End users generally appreciate consistency between instrument drivers. Similarly, if the front panel and block diagram
are simple with an easy-to-understand layout, they are less intimidated about modifying the code. Some users will want
to modify the code to optimize it for their special needs. The following items are listed to benefit the end user:

« Except for error in and error out, avoid using cluster controls and indicators in your Vls. Passing cluster informa-
tion between VIs makes the application more complex for the user, who will need to bundle and unbundle the
information in the clusters. Even if the number of inputs is large, as in some configuration Vls that exceed the
number of input terminals on the left, top, and bottom of the icon connector, one should still try to avoid using
clusters. You should either reevaluate the grouping of the inputs for the VI or use some terminals on the right side
of the icon connector. Clusters should be used only when there is a logical grouping of controls, such as the error
cluster, which will be passed and used by several Vis.

* Use color sparingly in your instrument driver design. Although your development machine might have lots of
color, the end users might be using the instrument driver in an industrial environment on a black and white monitor
or VGA monitor with just 16 colors. Similarly, while the development machine might have a high resolution mon-
itor, the application machine might only have a resolution of 640x480. During development you want to make
sure your front panels and block diagrams are readable and fit on various platforms.

e Use hitmaps sparingly on your front panels of your instrument driver VIs. Remember that these VIs will be later

used as subVls in a final application. The user generally will not popup or display instrument driver panels in his
application. Rather, he will create his own panels to be seen by the application operators.

* Setthe panel order with interactive users in mind. When using the instrument driver VIs interactively, users might
prefer to use the keyboard to tab between the input controls rather than using the mouse. Make sure the panel order
is set with a logical tab order in mind.

24

« Use enumerated types instead of standard text ring controls. It is preferable to use enumerated types since selec-
tions for case structures are self-documenting when wired directly to a enumerated-type control or constant. When
end-users are creating their higher level applications and use the “Create Constant” or “Create Control” feature
introduced in LabVIEW 4.0, their applications will be more understandable with a enumerated type rather than a
numeric constant. The example in Figure 17 illustrates the difference.

Text Ring

Orly Enumerated Type

IiFI.
o acvoltage)

Text Ring Only Enumerated Type

g ac woltage |1_ ﬁ ac woltage |'|_

Case is not self Casze contains enum
documenting type description

Figure 17. Comparison Between Using a Text Ring and an Enumerated Type Ring Gontrol.

Do not crowd the diagram. Crowded diagrams and front panels are more difficult to understand than a simple and
neatly organized VI. You will also want to give extra space around items with labels in order to account for font
sizing differences when different printers or systems are used. You should also select “Size to Text” for all labels.

Creating Menus

In order to make it easier for customers to install, access, and use instrument drivers using LabVIEW version 4.0 and
later, palette menus should be created and used. For consistency, instrument drivers should appear in the instrument
library submenu of the function palette. Within the subpalette of the instrument VIs should have the same organization
as the internal design model as shown in Figure 18. The initialize and close Vs should appear on each side of the
application subpalette. The subpalettes for the component groups, configuration, action/status, data and utility should
be on the second row of icons.

! TKTDS 2nx]|
T

T
ETDS 23 Imtialize. vi

THTE=RY [

Z = Z
l': Applk kL Df:
Initialize] Erample |[Clo=e

A\ft ;“Ef,'fu"sh Dok k| Uriliey
) | e |constnl 5555
Confrgure ﬁ ';g?

Figure 18. Example Subpalette for the HP34401A.

To achieve the same palette structure for all instrument drivers, it is best to start with the template menu files. Place the
template menu files and your instrument driver files in a new folder withilalivéew/instr.lib directory. Re-launch
LabVIEW — you should see the template VIs show up within the instrument drivers paletteESiI€cintrols and

Function Palettes. . from theFile menu in LabVIEW. From the subpalette icon popup menu, you can make selections

to edit the icon and change the name. Bring up the instrument driver subpalette window to view the hierarchy of the
driver. For each subpalette, insert the VIs that correspond to that categanstrument drivers with many sub-Vls,

it might be easier to create a temporary subpalette that links to a complete VI library. Then, instead of inserting each
VI in the subpalette, you can drag/copy the VIs from the temporary palette onto each component group subpalette.

Testing the Operation

It is a good idea to test your instrument driver as you develop it. Although most users will follow the online help to
determine the inputs to the VIs, some will be confused and pass invalid data to the VI. Therefore, you should also test
your Vls with invalid data, boundary conditions/ranges, and unusual combinations of inputs. Similarly, if string or
array information is needed by a subVI, an empty array or empty string should be tested.

25

Driver Support Libraries

Overview

LabVIEW includes tools to aid in your instrument driver development. These tools include a library of template VIs
that serve as a starting point for creating your own drivers, VISA functions to perform the instrument I/O, icon libraries
to aid you in creating meaningful icons, and support files/functions. The main items of interest are the VISA functions
and the Instrument Driver Template VIs.

VISA

The VISA functions, found in younstrument I/0->VISA functions subpalette, contain the 1/O interface used by
instrument drivers to communicate with programmable instruments. VISA is a single interface library for controlling
VXI, GPIB, serial, and other types of instruments.

Following are descriptions of the most commonly used VISA functions and controls. For more information, refer to
the LabVIEW Function and VI Reference Manual.

On the front panel of most instrument driver Vis I8A sessioncontrol and alup VISA sessionindicator. These
controls and indicators provide a means of passing session information between sul¥8k sAssionis a unique

logical identifier to a session. It is used to identify the resource being operated on by the VI. It is also used to differen-
tiate between different sessions of the instrument driver applies.

VISA Session(except for the initialize VI) input is a unique identifier reference to a device 1/10
session. It identifies the device with which the VI communicates and passes all necessary
configuration information required to perform the I/O. This control should be placed in the upper
left corner of your front panel.

dup VISA sessionoutput contains the same identifier information as VISA session, but it passes

. |
the reference out of the VI and onto other subsequent Vs that will access the same instrument.
Data dependencies are established when the VISA sessions are chained together. This control
should be placed in the upper right corner of your front panel.

The VISA sessioncontrols are passed into and out of VISA function in the block diagram.

VISA Open
- Establishes a communication session with a
VISA session [f:IJTi:DI;tsE]] - VISA session remote instrument based on the resource name.
resource name [™] ~] gl VISA Open creates a VISA session that is used
i oo arror qut by other VISA functions to perform operations on

acceszs mode f
erar in [no erar] that session. Table 4 shows the syntax for the
resource name. Optional string segments are
shown in the square brackets ([]). Default values
for optional parameters are as follows: board is 0;
secondary address is none; GPIB-VXI primary

address is 1.

26

Table 4. Instrument Description Syntax

Interface Syntax
GPIB GPIB[board]::primary address[::secondary address][::INSTR]
VXI VXIl[board]::VXI logical address[::INSTR]
Serial ASRL[board][::INSTR]
GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

To interactively operate instrument drivers, you must first run this VI to generate the VISA session. Interactively you
can access the VISA session in another VI by popping up the menu on the VISA session control and selecting an avail-
able session from th@pen Sessions. .sub menu. You can then run the instrument driver VI. Programmatically,
simply pass a wire from the dup VISA Session indicator of the initialize VI to the VISA session control of the instru-
ment driver VI you wish to run.

VISA Close

YISA zession

LA

&Irar in [no ermor)

VISA Write

YISA session

write buffer [=
1707 in [no error] ===

Closes the specified communication session
with a device and deallocates system resources
allocated to the instrument defined by the VISA

Writes data to a device. The data to be written is
placed in the buffer representedvasite buffer .
The operation returns only when the transfer

&rmar out session.
whs.a | dup W54 zeszion
0T return count
w(E error out .
terminates.

VISA Read

¥ISA zession

byte count [0] -
EITar in [fo error] ===

'..r.'t.'f.'.a dup %54 sezsion
abs =, read buffer
return caunt

errar aut

VISA Property Node

error in (no error)

referance I:;. F clazs

narme 1 y— attribute 1

o] dup reference
[H atror aut

attribute 2—r name 2

27

Reads data from a device. The data read is stored
in the buffer represented byad buffer. The
operation returns when the transfer terminates.

Gets and/or sets the named properties
(attributes) for a given VISA session. Properties
include such parameters as time-out settings,
termination characters and manufacturer 1D
values.

VISA Read STB

- . Reads the status byte from a message-based
YISA zession _ués_;:ﬂ dup V154 sezsion device
shatusz)
&Irar in [ho ermar] e [errar auk

VISA Move Out 16

Writes a 16-bit word to a VXI device at the

addm“ﬁféf [418: 1) i dup VISA sessi specified address space and offset. This
et 0] 16 MR ia sEsEEn operation assumes supervisory data access and
0-11 enmor out Motorola byte ordering.

walue [0] S
error in [no error) ====Hm

VISA In 16
Reads a 16-bit word from a VXI device at the
addressﬁféﬁ‘a A6 1) i o VISA sessi specified address space and offset. This operation
iﬁﬁ;ﬁﬁ']_. 16 il ._\,:EJE Fessan assumes supervisory data access and Motorola
BT ih [Ernor) === I+ errar ouk byte ordering.

Instrument Driver Template Vis

The LabVIEW instrument driver templates, located in t@ereDrv.llb and CoreDrU.llb in your
LabVIEW/examples/instr directory, contains a set of VIs common to most instruments. Since this template is updated
periodically, you should download the Ilatest version from National Instruments FTP site
(ftp://ftp.natinst.com/support/labview/instruments/windows/current/cores/). You can use these Vls as a starting point
for your instrument driver development. The templates have a simple, flexible structure and they establish a standard
format for all LabVIEW drivers.

The front panels of the template VlIs contain modification instructions on how to modify the Vs for a particular instru-
ment. The template Vs are for use with both message-based instruments (GPIB, VXI and serial) as well as VXI
register-based instruments. The instrument drivers can be used with IEEE 488.2 compatible instruments with minimal
modification. For other instruments, you should use the template VIs as a shell or pattern for your VIs by substituting
your instrument specific commands where applicable.

Following is a brief description of the instrument driver template VIs. For more information, consult the LabVIEW
Function and VI reference manual.

PREFIX Initialize

A template for creating an initialize VI for

[nztrument Descriptar [GRIB::] FREFIT-H W54, seszion) : :
ID Query [T: Check] - BEE) message-based instruments. It establishes

error aut communication with a remote instrument, and
optionally performs ID query and/or reset
operations@oreDrv.llb).

Reset [T: Reset]
ermar in [ho errar)

28

PREFIX Initialize (VXI, reg-based)

Instrument Descrptor (W]
D Quemy [T: Check]

eror in [no error)

FReset [T: Reset] -

WISA zession

errar aut

PREFIX Close

WS4 session FREFIT
£A]
Cloze

ermor in [no emor|

error out

PREFIX Revision Query

WS4, seszion FREF

dup W54 sezsion
e |mztr Driver Flevision
-

&Iar in (o ermor) "““‘“M"“Lﬂ [nztr Firmware Fevizion
efrar oLt

PREFIX Self Test

W54 zegsion

FREFI%
_ .---im'— Self-Test Emor
&rmor in (o errar) mﬁl Sel-Test Response

dup 154 seszion

errar out

PREFIX Reset

WISA zegzion FREFIT dup %154 session
_ g
2rrar in [ho ermar] {Rresat | errar oLt

PREFIX Error Query

FREFIH

W54 zegsion

erar in (o errar)

FEEETIE] L Erraor
E % Error Meszage

dup 154 seszion

errar ouk

PREFIX Error Query (multiple)

FREFIZ

W54 zession

error in [no ermor)

—1
“PE-.--L“ Erar

dup VIS4 zezzion

“'ﬂ Error Meszage
efrar ouk

29

Similar to PREFIX Initialize, but used for VXI
register-based instruments. It substitutes register
reads for the string search when performing an
ID query CoreDrv.llb).

Terminates communication with the instrument
and deallocates system resources
(CoreDrv.lib).

Returns the revision of the instrument driver and
the firmware revision of the instrument
(CoreDrv.lib).

Instructs the instrument to perform a self-test
and returns the resultéreDrv.Ib).

The Reset VI places the instrument in a default
state CoreDrv.lb).

Queries the instrument once and returns
instrument-specific error information. If an
instrument error is detected, it is placed in the
error-out clusterGoreDrv.llb).

Similar to PREFIX Error Query, but continues
to query in a loop until the error queue in the
instrument has been cleared of all errors
(CoreDrv.lib).

PREFIX Error Message

W58 sezsion ;
Type of Dialog [1: OK Msq) ﬂﬂ—l—
error in [no emor) Erx

ghs

Status

dup %154, seszion
Error Code [0]

Error Meszage [empty]
error aut

PREFIX Message-Based Template

W54 seszion FREFTE
1P

]
&rrar in [hia errar] 'ﬂﬂ'a-

efrar ouk

dup 154 seszion

PREFIX Register-Based Template

W54 session nirlx

| E
eror in [no error) ee g

errar out

dup VIS4 sezsion

PREFIX Utility Clean Up Initialize

WS4 session [FRer |

error in [no emor) {ELERHUP |

errar out

dup W54 seszion

PREFIX Utility Default Instrument Setup

WIS A zegzion [FREFT]

2Irar in [hio erar] {DEFAULT

errar out

dup 154, seszion

PREFIX VI Tree

30

Calls the built-in error handler in
LabVIEW to translate error status to a
user-readable string6reDrv.lb).

A template for creating a message-based
component VI for your particular instrument.
Calls the I/O VIs needed for message-based
communicationCoreDrv.llb).

Similar to PREFIX Message-Based Template,
but calls the low-level 1/0 functions required for
high-speed communication with a VXI

register-based devic€greDrv.llb).

This Utility VI closes an open VISA session in
the event that there is an error during
initialization. This VI is designed to be called
only from the PREFIX Initialize VI
(CoreDru.llb).

This Utility VI sends a default command string
to the instrument whenever a new VISA session
is opened, or the instrument is reset. This VI is
intended to be used as a subVI for the Initialize
and Reset VIsQoreDrU.llb).

The VI Tree VI is a nonexecutable VI that is

designed to show the functional structure of the
instrument driver. It contains the Getting Started
VI, application VIs and all of component Vis

(CoreDru.llb).

Final Comments

For the developer, defining the structure and constructing the VIs are the most important and time-consuming
processes in the development of an instrument driver. The best instrument drivers group related instrument controls
into modular Vls, each of which performs a task analogous to the way the instrument would actually be used. Ideally,
with this type of structure, users will have on each individual panel exactly what they need to perform the particular
instrument operation — no more and no less. The greatest challenge in developing instrument drivers lies in determining
which controls belong on each particular VI.

For the user, the logical structure, help facilities, and error reporting are the most important features of the instrument
driver. You must include appropriate comments in all description boxes, and you should document your code with com-
ments in the diagrams. Build useful error reporting into your VIs by using the techniques described in this document.
Thoroughly test all your Vls to ensure that they work properly.

Proper instrument driver development requires more than simply building and sending strings to instruments. Fortu-
nately, the Instrument Library contains many fine examples of instrument drivers for a variety of instruments. Whether
you are modifying an existing driver or developing a new driver from scratch, begin with the instrument driver template
VIs. Not only do the templates contain VIs common to most instruments, but they also demonstrate the desired style
and structure. From there, follow the internal design model and keep in mind the categories of component Vls as you
build your functions. These proven tools will help you design instrument drivers that are acceptable to a wide range of
users.

Additional and related references:
1. LabVIEW Instrument Driver Checklist and Submittal FprApplication Note 115, available on National

Instruments FTP or web sitew.natinst.com/idnet).
2. LabVIEW Instrument Driver Standard&pplication Note 111, available on National Instruments FTP or web site
(www.natinst.com/idnet).

Advanced LabVIEW Instrument Driver Techniquasplication note to be available by mid-1998,
NI-VISA Programmer Reference Man@al/N 321073A-01) anll-VISA User Manua{P/N 321074A-01)
LabVIEW Function and VI Reference Man(stlipped with LabVIEW).

LabVIEW Style Guideavailable on FTP
(ftp.natinst.com/support/labview/documents/style-guide).

o oMW

7. Instrument Driver Template V(€oreDrv.lb andCoreDrU.llb), available on National Instruments FTP or
web site www.natinst.com/idnet).

VXIPnP Specificationsavailable orwww.vxipnp.org
9. Other instrument drivers, available www.natinst.com/idnet

31

340018D-01 May98

