Utilisation de DVTC pour les variateurs SEVCON GEN4.

Note d'Application AN-EK016-FR – Août 2024

Thierry LEQUEU & Sébastien JACQUES

E-mail : <u>thierry.lequeu@gmail.com</u> – Tel : +33 6 89 73 80 58 – Chez KIT ELEC SHOP 1 rue Georges CHARPAK – Box 15 – 37510 BALLAN-MIRÉ – France

Historique des révisions :

- 14/11/2019 Version 6 Cette version a été traduite en anglais.
- 29/09/2019 Version 7 Modifications mineures MAJ des versions de SOFTWARE Vérification des liens internet.
- 11/08/2024 Version 8 Modifications mineures MAJ des versions de SOFTWARE Vérification des liens internet.
- 13/08/2024 Menu limitation du courant de la batterie
- 14/08/2024 Correction macro EXCEL Paramétrage d'une pompe de refroidissement en fonction de la température Calibration PT1000.
- 17/08/2024 Capture d'écran Send DCF to Unit La fenêtre du script « Vehicle Interface »

Table des matières :

1	Int	troduction	. 5
	1.1	Présentation	. 5
	1.2	Vérification avant lancement de « DVTC »	5
	13	Lancement du logiciel « DVTC »	5
	1.5	Choix de la vitesse de transmission du bus CAN	6
	1.4	La fanôtra « Information »	.0
	1.5	La fenêtre de commende en liene	. /
	1.0	La renetre de commande en ligne	. /
	1./	Les autres modules logiciels de DVIC	. 8
2	Le	e script « Helper » – Prise en main du variateur BorgWarner GEN4	.9
	2.1	Présentation	. 9
	2.2	Création du fichier EDS au lancement du « Helper »	.9
	2.3	L'écran d'accueil du variateur GEN4	.9
	2.4	L'onglet « Input/Output » – Définition des entrées/sorties	11
	2.5	L'onglet « Tree » – Paramétrage des fonctions	13
	2.5.	1 Le bouton « Search »	13
	2.5.2	2 Paramétrage du contacteur de ligne	13
	2.5.3	3 Note sur la réduction de tension	15
	2.5.4	4 Paramétrage de la pédale d'accélérateur	16
	2.5.5	5 Paramétrage automatique de la pédale d'accélérateur	17
	2.5.0	6 Paramétrage du capteur de température du moteur	18
	2.5.	7 Paramétrage du capteur de température de type PT1000	19
	2.5.8	8 Limites de tensions de la batterie	20
	2.	.5.8.1 Les limites de la batterie « app_cutback »	20
	2.	.5.8.2 Les tensions limites de l'application « motor_cutback »	21
	2.	.5.8.3 Les tensions limites du variateur SEVCON GEN4	22
	2.5.9	9 Les différentes limitations du couple	23
	2.5.	10 Caractéristique Couple–Vitesse du moteur	24
	2.	5.10.1 Paramétrage des limites du moteur : les « Profils »	24
	2.	5.10.2 « Iraction baseline profile »	25
	2.	5 10.4 "Driveability Select 2 Profile »	20
	2.	5.10.5 « Driveability Select 2 Profile ».	27
	2.5.	11 Paramétrage du refroidissement en fonction de la température	28
	2.6	Gestion des fichiers de configuration DCF	29
	2.6.	1 Le menu « Save DCF from unit »	29
	2.6.2	2 Le nommage des fichiers	29

	2.6.3	Le menu « Send DCF to unit »	
3	Le scr	ipt « Helper » – Fonctions avancées	
	3.1 Cha	ngement du niveau d'accès	
	3.2 Cha	ngement des valeurs nominales de tension et de courant	
	3.3 Cha	rgement d'un fichier « software DLD » dans le variateur	
	3.3.1	Sauvegarde de la configuration du variateur	
	3.3.2	Le menu « Reprogram Unit Firmware »	
	3.3.3	Passage en mode « Bootloader »	
	3.3.4	La programmation d'un nouveau « Software »	
	3.3.5	Sortir du mode « Bootloader »	
	3.3.6	En cas de problème	
	3.3./	Apres la mise a jour d'un nouveau « Firmtware »	
	3.4 L 0	ngiet « IPDO/RPDO »	
	3.4.1 3.4.2	Configuration des « PPDO »	
	3 4 3	Configuration des « TPDO »	
	35 Lei	nenu « Change Baud Rate »	40
	36 La	léfinition des caractéristiques du moteur	42
4	J.O Lux		
4	Le scr	ipt « venicle interface »	
	4.1 Prés	sentation	
	4.2 Aff	chage des données	
	4.2.1	Le fichier de sortie	
	4.2.2	Les boutons de controle	
	4.3 Exp	nonation des données dans EACEL	
5	Le scr	ipt « DCF Editor »	47
	5.1 Prés	sentation	
6	Biblio	graphie	
7	Annes	ye 1 – Vérifications avant le lancement de DVTC	49
/		x^{2} blage du verieteur - Section puissence	
	7.1 Let	cablage du variateur – Section puissance	
	7.2 Le (if action do l'interface (LISD to CAN)	
_	7.5 Ver	inication de l'internace « USB-lo-CAN »	
8	Anney	te 2 – Numérotation des variateurs SEVCON GEN4	
	8.1 Etic	uette d'identification du produit	
	8.2 Nur	nérotation des variateurs SEVCON GEN4	
	8.3 Glo	ssaire	
9	Anney	xe 3 – Les commandes en ligne	
-	9.1 Let	principe des commandes Tcl/Tk	54
	9.1.1	Affichage d'un texte	
	9.1.2	Commentaires	
	9.1.3	Les variables	54
	9.1.4	Les calculs	
	9.1.5	Les boucles de calcul	54
	9.1.6	Déclaration des procédures	54
	9.2 Cor	nmandes CANopen des variateurs SEVCON GEN4	
	9.2.1	Chargement manuel d'un fichier de configuration DCF	
	9.2.2	Liste des « Active Faults »	
	9.2.3	Chargement manuel d'un tichier « Software » DLD	
1() Anney	xe 4 – Les variables du moteur	57
	10.1 L	a commande « Save Partial DCF » dans « DVTC Helper »	

10.2	Liste des variables fournies par « Add PMAC Motor Items »	
10.2.1	1 Variable 0x4611 – Motor power limit map	
10.2.2	2 Variable 0x4615 – Motor power limit map 2	59
10.2.3	3 Variable 0x4617 – Programmable User Data	59
10.2.4	4 Variable 0x4620 – Motor Temperature 1 (Measured - T1)	59
10.2.5	5 Variable 0x4621 – Motor Temperature Setup	59
10.2.6	6 Variable 0x4620 – Encoder Configuration	59
10.2.7	7 Variable 0x4640 – Motor Nameplate Data	60
10.2.8	8 Variable 0x4041 – AC Motor data (manufacturer specific)	60
10.2.9	9 Variable 0x4650 – Miscellaneous DSP configuration (Gen4)	61
10.2.1	10 Variable 0x6072, 0x6075 et 0x6076	61
10.2.1	11 Variable 0x6090 – Encoder resolution	61
11 Anr	nexe 5 – Des pistes pour le réglage des correcteurs	
11.1	Boucle de vitesse	
11.2	Boucle de courant	

1 Introduction

1.1 Présentation

Cette note d'application explique comment utiliser le logiciel BorgWarner DVTC pour paramétrer les variateurs SEVCON GEN4 et BorgWarner GEN4. L'installation du logiciel DVTC a été traitée dans la note d'application AN-EK015 [1]. Il est vivement recommandé de lire la documentation des variateurs GEN4 [4] et la note d'application AN-EK005 [5].

La version du logiciel BorgWarner DVTC utilisée dans ce rapport est la version 2024.06a, valide en juin 2024.

1.2 Vérification avant lancement de « DVTC »

L'interface USB-to-CAN de IXXAT comporte deux voyants, un pour le bus USB et l'autre pour le bus CAN. Ces voyants renseignent sur l'état de la communication [[6].

Fig. 1. Interface USB-to-CAN compact [6].

Si le voyant USB est vert, la communication avec l'interface via le port USB est possible. Par contre si le voyant USB est rouge, la communication n'est pas possible.

Dans ce cas, il faudra vérifier si vous avez bien installé les derniers drivers pour votre système d'exploitation (VCI version 4).

En cas de soucis, les dernières versions des drivers de l'interface USB-to-CAN sont téléchargeables sur le site IXXAT à l'adresse :

https://www.ixxat.com/support/file-and-documents-download/drivers

Lorsque la communication via le port USB sera effective, vous pouvez alors lancer le logiciel « DVTC ».

1.3 Lancement du logiciel « DVTC »

Le script de lancement de DVT se trouve dans le répertoire :

C:\BorgWarner\DVTC_2024.06a\customer\program\dvt.tcl

Il est vivement conseillé de créer un raccourci sur le bureau pour l'exécution du logiciel DVTC.

Le logiciel DVTC version 2024.06a dispose de plusieurs fenêtres d'informations.

Fig. 3. Les fenêtres du logiciel DVTC version 2024.06a.

1.4 Choix de la vitesse de transmission du bus CAN

La fenêtre « CAN » affiche les trames lorsque la vitesse de communication est correct (ici 250 kHz).

Pour faire apparaitre le trafic sur le bus CAN, il faut sélectionner les différentes vitesses de transmission, jusqu'à ce que le « Bus load » soit différent de 0%.

Il faut vérifier également dans le menu déroulant « CAN » ou « Message Display Filter » qu'il y ait bien des données sélectionnées à l'affichage.

Le menu déroulant « CAN » est également utilisé pour supprimer l'affichage des trames CAN par l'option « Show None ».

Ce menu est également utilisé pour faire apparaitre les boutons de sélections de la vitesse du bus CAN sur la fenêtre principale en cochant l'option « Show Can baud Buttons ».

Fig. 4. Le menu « CAN » du logiciel DVTC.

1.5 La fenêtre « Information »

Pour faire apparaitre la fenêtre « Information », il cocher l'option « Show » dans le menu « Info Window ».

		Information
K Y Show		Mode 1 fault (0x4F4, Internal) set at 14:00:55, 27/03/18. Data (0x00 0x00). CAMopen Error Code: 0x6100 Mode 1 fault (0x4F4), App mgr SS) set at 14:00:55, 27/03/18. hata (0x00 0x00 0x00). CAMopen Error Code: 0x6100 Mode 1 fault (0x504), Param fixed range) set at 14:00:55, 27/03/18. hata (0x00 0x00 0x00). CAMOpen Error Code: 0x630
Clear		Node 1 fault (0x5044, Param dyn range) set at 14:00:55, 27/01/18. Data (0x00 0x00 0x00). CANopen Error Code: 0x6300 Node 1 fault (0x4F41, Internal) set at 14:00:55, 27/03/18. Data (0x00 0x00 0x00). CANopen Error Code: 0x6100
Cricor	CAN	Node 1 fault (Dx4F5i, App mgr SS) set at 14:00:55, 27/03/18. hata (Dx00 Ox00 Ox00). CANopen Error Code: Ox6100 Node 1 fault (Dx52Ci, Encoder) set at 14:00:55, 27/03/18. Dat: (Dx00 Ox02 Ox00). CANopen Error Code: Ox1000

La fenêtre d'informations affiche les états du bus CAN, les messages d'erreurs du variateur GEN4, l'avancement des taches du logiciel DVTC...

1.6 La fenêtre de commande en ligne

La zone basse de la fenêtre du logiciel DVTC permet d'entrer des commandes en ligne. Plus d'informations sont disponibles dans la section 9.2 de l'annexe 3 et en tapant la commande « help ».

Type "help" for help DVT License expiry da dvt(22) % lg 1 ?	te: 20/03/2	2019	
Access Level: 0x00 0x00 dvt(23) % lg 1 4			
dvt(24) % lg 1 ? Access Level: 0x04 0x04			
dvt(25) %	ANbus Online	X Not Monitoring	

Fig. 7. La fenêtre de commande en ligne du logiciel DVTC.

Fig. 8. Choix de la vitesse du bus CAN et lancement du « Helper ».

Le bouton « Vehicle Interface » ou petite « ROUE » permet le lancement de la fenêtre du « Vehicle Interface » qui est une interface graphique de visualisation et d'enregistrement des variables du variateur.	Image: Contract of the second seco
Le bouton « H » permet le lancement de la fenêtre du « Helper » qui est une interface graphique de communication et de configuration du variateur.	Fig. 10. Bouton d'exécution du
	script « Helper ».
Les boutons « Node ID » et « Ping » permettent la connexion avec le variateur dans la fenêtre « Helper ».	Node ID 1 Ping Fig. 11. Boutons de connexion au variateur.
Le bouton « Node ID » permet également de sélectionner un fichier de configuration DCF et de le charger dans la fenêtre « Helper » en vue de son affichage en lecture et de sa modification. Les fichiers DCF peuvent donc être	Node ID edit dcf file 🗸 Ping
modifiés « hors ligne ».	Fig. 12. Selection et modification d'un fichier DCF.

2 Le script « Helper » – Prise en main du variateur BorgWarner GEN4

2.1 Présentation

Le script « Helper » est une interface graphique de communication et de configuration du variateur. Ce chapitre présente les principales commandes permettant la prise en main du variateur et l'ajustement des paramètres à une application spécifique.

2.2 Création du fichier EDS au lancement du « Helper »

Lors de la première exécution du « Helper » ou en présence d'un nouveau variateur, le script vérifie la présence du fichier EDS sur l'ordinateur.

Si ce n'est pas le cas, il propose d'en créer un nouveau : il faut <u>IMPERATIVEMENT</u> <u>répondre « OUI »</u> à la question « Do you want to create one ? » !

A la fin de la procédure (qui est très longue, mais qui n'est effectuée qu'une seule fois), un fichier EDS est créé dans le répertoire :

C:\BorgWarner\DVTC_2024.06a\config\EDS

Le nom du fichier suit le formalisme suivant :

Gen4_pc0x0705301b_rev0x0001001c.eds

- Gen4 » : type de produit ;
- «_pc » : numéro du produit « Product code : 0x0705301b » ;
- « _rev » : numéro de révision du logiciel « Rev. Number :0x0001001c.

Le fichier « .eds » est un fichier texte au format XML.

Il contient environ 23 000 lignes de texte, pour une taille de 566 ko environ.

Il représente la définition et les valeurs des 4200 objets CAN définis pour le paramétrage des variateurs SEVCON GEN4. La liste des objets est disponible dans le fichier :

C:\BorgWarner\DVTC_2024.06a\common\object_dictionary\ Master_Object_Dictionary_Database.xls

2.3 L'écran d'accueil du variateur GEN4

L'écran d'accueil du « Helper » est vierge d'informations lors de son ouverture.

IMPORTANT : bien vérifier que le numéro de nœud CAN est correct ! « Node ID »

En cliquant sur « Get Controller Information », on récupère les informations de configuration du variateur :

- Software Ver. : 0705.0012
- Hardware Ver. : 0x01070004
- Product Code : 0x0705301b
- Serial Number : 1012200139

Ceci permet de valider la communication entre le logiciel et le variateur GEN4.

Ces informations correspondent en partie à celles inscrites sur l'étiquette d'identification du produit (voir §8.1).

Fig. 13. Ecran d'accueil du variateur sous « DVT Helper ».

Fig. 14. Ecran d'accueil du variateur avec « DVTC Configuration Helper ».

C'est également à partir de cet écran que l'on bascule les modes de configuration :

- 1) En VERT : « Request Operational » pour reprendre un fonctionnement normal du variateur. Le contacteur de ligne (relai de puissance) doit se fermer ;
- 2) En ROUGE : « Request Preoperational » pour passer en mode de configuration du variateur : le relai de puissance est désactivé et le moteur ne peut pas fonctionner.

Remarques générales :

- IMPORTANT : il faut bien vérifier le numéro du nœud CAN si on dispose de plusieurs variateurs.
- Au démarrage lorsque le variateur est en mode « Préoperational », le voyant d'erreur « External LED » ne s'allume pas. Il faut passer en mode « Operational » pour que le voyant s'allume.
- Lors de la première réception d'un variateur SEVCON GEN4, il peut être prudent de sauvegarder la configuration initiale du variateur AVANT de la modifier. Pour cela, il faut consulter la section 2.5.10.5 pour sauvegarder le fichier DCF des paramètres du variateur.

2.4 L'onglet « Input/Output » – Définition des entrées/sorties

La plupart des réglages de cet onglet ne seront pris en compte que si le variateur est en mode « Preoperational » (bouton ROUGE : « Request Preoperational »).

Cet onglet permet de définir les fonctions disponibles sur les 13 entrées digitales, les 5 entrées analogiques et les 3 sorties digitales de puissance.

En version minimum, le variateur a besoin des fonctions suivantes :

<u> 3 entrées digitales :</u>

- 1) un interrupteur « Marche Avant » (« Forward Switch ») sur la broche N° 18 ;
- 2) un interrupteur « Marche Arrière » (« Reverse Switch ») sur la broche N° 30 ;
- 3) un capteur d'accélérateur « Foot Switch » (« FS1 ») sur la broche N° 19 ;

<u> 1 entrée analogique :</u>

1) un potentiomètre d'accélérateur « Throttle » sur la broche N°22, l'alimentation se faisant entre la broche « Pot 1 Power Supply » N°34 et la borne B- du variateur.

2 sorties digitales de puissance :

- 1) la bobine du relai de puissance entre « Cont1 » N°3 et « Cont1 Supply » N°4.
- 2) un voyant externe entre les broches « Cont3 » N°11 et « Cont3 Supply » N°12.

(TracAp	p/PumpApp/Batt/	App	
Press "Read Valu	ues" for detailed I/O info	rma	1
Lo	cal Motor Control		
Node Controls	Motor drive left inform	~	
Lo	cal Digital Inputs		
# of Inputs:	3	1	Nombre d'entrées
Digital In. 1:	Forward Switch	~	utilisées, ici 3
Digital In. 2:	Reverse Switch	~	1.30
Digital In. 3:	FS1 switch	~	n.19
Digital In. 4:	Not Mapped	~	n.31
Digital In. 5:	Not Mapped	~	1.20
Digital In. 6:	Driveability Select 1 sw	~	Ces 2 entrées ne sero
Digital In. 7:	Driveability Select 2 sw	~	pas utilisables !
Digital In. 8:	Not Mapped	\sim	n.21
Digital In. 9:	Not Mapped	v	
Digital In. 10:	Not Mapped	~	
Digital In. 11:	Not Mapped	~	
Digital In. 12:	Not Mapped	~	
Digital In. 13:	Not Mapped	\sim	
Lo	cal Analog Inputs		
# of Inputs:	1	•	
Analog In. 1:	Throttle Input Voltage	~	n.22
Analog In. 2:	Footbrake Pot Input Vo	~	n.23
Analog In. 3:	Not Mapped	~	n.34
Analog In. 4:	Not Mapped	~	n.35
Analog In. 5:	Not Mapped	~	n.33
Local	Contactor Output	s	
# of Outputs:	3	•	
Contactor 1:	Line contactor	~	n.03
Contactor 2:	Not Mapped	~	n.07
Contactor 3:	External LED	~	

Fig. 15. Onglet « Input/Output » de définition des entrées digitales et analogiques et des sorties de puissance.

Le bouton ROUGE « Write Values » permet d'envoyer les valeurs vers le variateur (écriture des données dans le variateur). Il faut attendre quelques secondes que tous les paramètres soient envoyés.	Write Values
Le bouton BLEU « Read Values » permet de lire les valeurs en provenance du variateur : cette action permet de vérifier que la programmation du variateur a bien été prise en compte.	Read Values

Le variateur peut utiliser plus d'entrées analogiques et numériques à condition de modifier le nombre d'entrées utilisées « **# of inputs** ». Dans le cas contraire les fonctions définies sur ces nouvelles entrées ne seront pas pris en compte.

Les sorties digitales de puissance qui sont utilisées pour alimenter les contacteurs de puissance, sont aux nombres de 3. En version minimum, seule la sortie « Contactor 1 » est utilisée pour le contacteur de ligne sur les broches « Cont1 » N°3 et « Cont1 Supply » N°4.

Il peut être intéressant d'avoir l'information de clignotement de la LED verte du variateur sur le tableau de bord du véhicule. Pour cela, la sortie 3 est configurée dans ce sens en paramétrant « External LED » dans le champ « Contactor 3 » (figure 16).

Les sorties pour le « Contactor 2 » ne sont pas utilisées, donc le champ « Contactor 2 » est paramétré en « Not Mapped » : cette sortie est réservée par exemple pour un électro-aimant de frein électrique « Electro Brake », pour un feu de STOP « Brake Lights » ou pour activer le refroidissement du moteur « Traction motor cooling ».

# of Outputs	3		
# of outputs.		•	
Contactor 1:	Line contactor	~	Pin.03
Contactor 2:	Not Mapped	\sim	Pin.07
Contactor 3:	External LED	~	Pin.11

Fig. 16. Onglet « Input/Output » de définition des sortie digitales de puissances.

2.5 L'onglet « Tree » – Paramétrage des fonctions

La plupart des réglages de cet onglet ne seront pris en compte que si le variateur est en mode « Preoperational » (bouton ROUGE : « Request Preoperational »).

Fig. 17. L'onglet « Tree » dans la fenêtre du « Helper ».

2.5.1 Le bouton « Search »

Le script « Helper » ne gère et n'affiche que les principales commandes « utiles » pour le réglage du variateur.

L'ensemble des registres est accessibles grâce au bouton « Search » dans l'onglet « Tree ».

Fig. 18. Exemple d'utilisation du bouton « Search ».

2.5.2 Paramétrage du contacteur de ligne

Quelle que soit la tension nominale des batteries, il est intéressant d'installer un contacteur de puissance avec une seule tension nominale de 24V. Le variateur SEVCON GEN4 s'occupe de réduire la tension d'alimentation à la tension nominale de la bobine du contacteur de ligne.

Cette possibilité est configurable dans le menu :

- l'onglet « Tree », menu « Tree » ;
- menu « Vehicle Master Applications » ;
- sous menu « Battery Application (Contactor) » ;
- ligne en rouge « Contactor Voltages ».

Il faut vérifier que la réduction de tension « Pull-In Voltage » est bien de 24V (tension nominale de la bobine du relais de puissance). Après la durée « Pull-in Time », ici 1 seconde, la tension aux bornes du relais est réduite à la valeur de 18V spécifiée dans « Hold-In Voltage ».

_ @				Configuration Helper	
+ Node ID dcf1 V Ping DCF edito	or []	Close dcf			
Main Tree Input / Output CAN / PDOs				Contactor Output	Configuration [0x2D00]
Tree Search All		Configures the p	ull-in and hold	in voltages for the contactor drive outputs. Use	d in conjunction with 2001h and 2002h
Motor Parameters Motor Thermistor Motor Encoder Torque Conditioner		Pull-In Voltage Pull-In Time Hold-In Voltage	24.0 1.0 18.0	V Seconds V	
Vehicle Master Applications Traction Application Pump Application Power Steer Application Battery Application (Protection) Battery Application (Contactor) Precharge Level Min Vcap for Contactor Close Max Vbat-Vcap for Contactor Close Contactor Vibrant					
Contactor Control Mode Contactor Control Mode Line Contactor Dropout Buzzer Servicing					

Fig. 19. Menu « Tree – Vehicle Master Applications – Battery Application (Contactor) – Contactor Voltages ».

Remarque : Le relais de puissance « Line Contactor » est utilisé pour isoler la section de puissance de l'onduleur triphasé du variateur de la tension de la batterie en cas de problème. Il est activé lorsque le variateur considère qu'il n'y a plus aucun problème pour que le moteur fonctionne.

Fig. 20. Paramétrage de la fonction « Line Contactor Dropout ».

Lorsque le paramètre « Line contactor drop out » est activé « Enabled », l'alimentation du relais peut être coupé en cas d'inactivité du variateur (et donc du moteur). Cela permet de réduire la consommation électrique sur les batteries et de réduire l'échauffement du relais de puissance.

La valeur indiquée dans « Line contactor drop out timer » correspond au temps d'inactivité à partir duquel le contacteur sera de nouveau ouvert.

2.5.3 Note sur la réduction de tension

La réduction de tension à +24V pour le relais de puissance est également intéressante pour l'utilisation de voyant de signalisation en +24V du genre XB4-BVB3.

La réduction de tension et la valeur « Hold-In Voltage » est identique pour les 3 sorties de puissance. Par contre, il est possible d'activer ou non ces options pour les différentes fonctions utilisables en sorties.

Fig. 21. Le voyant de signalisation 24V XB4-BVB3

Tree Search All		Voltage Cor	ntrol Enab
	if the appropriate bit is set, the contactor drive is cont	rolled at the pull-in volt	tage when a
Motor Parameters	Voltage Control Enable for Contactor Drives 1.8	Hex value: 0xFF	
Motor Inermistor	Line Contactor	On	~
Initial Conditioner	Pump Contactor	On	~
Vehicle Master Applications	Power Steer Contactor	On	~
Traction Application	Electromechanical Brake	On	_
Pump Application	External LD	00	
Power Steer Application	External ECO ON		
Battery Application (Protection)	Traction Motor Cooling Fin	On	<u> </u>
Batt Nominal Voltage	Buzier	On	_
Batt Overvolt Protection	Horn	On	~
Batt Undervolt Protection	Voltage Control Enable for Contactor Drives 916	Hex value: 0x7F	
Battery Protection Delay	Lights	On	~
BDI (Batt Discharge Indication)	Service	On	~
BDI map	Motor Isolation	On	$\overline{}$
Batt DC Current Limit	Precharge Output	On	~
Batt DC Current Limit Range	Belt Electromechanical Brake	On	
Battery Application (Contactor)	Bet ChangeOver Contactor	0.0	-
Precharge Level			-
Min Veap for Contactor Close	Electro-mechanical Park brake	Un	
rviax vbat-vcap for Contactor Close			
Contactor Voltages			
Contactor Reduce to Hold Level			

Fig. 22. Menu « Tree – Vehicle Master Applications – Battery Application (Contactor) – Contactor Control Mode ».

Le menu « Contactor Control Mode » est ici configuré pour activer la réduction de tensions sur toutes les fonctions de sorties du variateur SEVCON GEN4.

Fig. 23. Exemple de réduction de tension aux bornes du voyant. Cas d'une alimentation en 72V et d'un paramétrage en 24V.

ree Search All	 If the appropriate bit is set, the contactor drive drops to the hold-in level after it has been a		
Motor Parameters			
Motor Thermistor	Reduce to Hold Level Enable for Contactor Drives 1.8	Hex value: 0x01	
Motor Encoder	Line Contacor	On	
Torque Conditioner	Pump Contacor	Off	~
Vehicle Master Applications	Power Steer Contacor	Off	~
Traction Application	Electromechanical Brike	Off	~
Pump Application	External LED	Off	~
Power Steer Application Battery Application (Protection)	Traction Motor Cooling Fan	Off	
	Burrer	0#	
Batt Nominal Voltage		0//	
Batt Overvolt Protection	Hem	Uff	
Batt Undervolt Protection	Recuce to Hold Level Enable for Contactor Drives 9.16	Hex value: 0x00	
Battery Protection Delay	Lights	Off	~
BDI (Batt Discharge Indication)	Servce	Off	~
BDI map	Motor Isolation	Off	~
Batt DC Current Limit	Precharge Output	Off	~
Batt DC Current Limit Range	Belt Electromechanical Brike	Off	_
Battery Application (Contactor)	Relt Change Over Contacor	0#	
Precharge Level	Finder marker int Back below	0#	
Min Vcap for Contactor Close	Electro-mechanical Park brike	Un	
Max Vbal-Vcap for Contactor Close			
Contactor Voltages			
Contactor Control Mode			
Contactor Reduce to Hold Level			
Line Contactor Dropout			

Fig. 24. Menu « Tree – Vehicle Master Applications – Battery Application (Contactor) – Contactor Reduce to Hold Level ».

Le menu « Contactor Reduce to Hold Level » spécifie ici que seule la sortie « Line Contactor » passera en +18V après une seconde.

2.5.4 Paramétrage de la pédale d'accélérateur

IMPORTANT : ce réglage est souvent source de problème à la réception du variateur. La configuration est effectuée en « usine » sur un banc de test spécifique, avec un potentiomètre d'accélération et un câblage différent de celui installé sur le véhicule.

La première étape consiste à mesurer la plage de tension de votre accélérateur. Après avoir mis le variateur est en mode « Preoperational » (bouton ROUGE : « Request Preoperational ») afin que le moteur ne fonctionne pas, il est possible de « lire » la tension mesurée sur l'entrée analogique N°1 grâce au menu « Local IO Monitor » ou « Status / Raw Analog Inputs ».

Il faut ensuite déterminer la valeur minimale et maximale de la tension de l'accélérateur en actionnant la pédale d'accélérateur.

Fig. 25. Menu « Tree – Status – Raw Analog Inputs ».

<u>Remarque</u>: l'entrée analogique N°5 correspond au capteur de température du moteur PTC, ici un capteur KTY84 relié au –BAT. La tension de 2.699V correspond à une température ambiante de 19°C.

Le réglage de la plage utile de l'accélérateur est configurable dans l'onglet « Tree », menu « Configuration / Throttle ».

Fig. 26. Menu « Tree – Configuration – Throttle ».

Dans la fenêtre « Throttle parameters », il est alors possible de configurer :

- « Throttle Start Voltage 1 » : c'est la valeur minimale de tension qui sera prise en compte pour la consigne d'accélération. Il est recommandé de créer une bande morte de fonctionnement en ajoutant 0,1V-0,2V à la valeur mesurée.
- « Throttle Start Value 1 »: cette valeur vaut toujours 0 (0%). Si cette valeur vaut 1,
 la tension minimale « Throttle Start Voltage 1 » correspond à la valeur MAXIMALE
 de consigne. Dans ce cas, il faut mettre 0 dans « Throttle End Value 1 ».
- « Throttle End Voltage 1 » : c'est la valeur maximale de tension qui sera prise en compte pour la consigne d'accélération. Il est recommandé de créer une bande morte de fonctionnement en soustrayant 0,2V à la valeur mesurée pour cette tension maximale.
- « Throttle End Value 1 » : cette valeur vaut toujours 1 (100%). Si cette valeur vaut 0, la tension maximale « Throttle End Voltage 1 » correspond à la valeur MINIMALE de consigne. Dans ce cas, il faut mettre 1 dans « Throttle Start Value 1 ».

2.5.5 Paramétrage automatique de la pédale d'accélérateur

Dans le menu d'accueil, le bouton menu « Throttle / Footbrake » »Throttle setup » lance une procédure automatique de calibrage de l'accélérateur.

💣 Local IO Monitor	[]← Analog Ranges
🕶 Throttle / Footbrake	
Throttle setup	
Dual Throttle setup	
Footbrake setup	

Fig. 27. Menu « Throttle setup » sur la page « Configuration Helper ».

Il faut impérativement que l'accélérateur soit connecté à l'entrée analogique N°1, sur la broche N°22. Il faut suivre les indications du logiciel pour la mesure de tension lorsque l'accélérateur est appuyé à fond.

Fig. 28. Résultats de la procédure « Throttle setup ».

Les valeurs mesurées sont automatiques utilisées pour la mise a jours des valeurs du menu « Thottle Parameters ». Il convient malgré tout de vérifier ces valeurs.

2.5.6 Paramétrage du capteur de température du moteur

Ce réglage est important pour la protection thermique du moteur. Il est configurable dans le menu :

- l'onglet « Tree » ;
- menu « Motor Thermistor » ;
- ligne en rouge « Sensor Configuration ».

La figure 29 donne un exemple avec une sonde de température de type KTY84. Les valeurs par défauts des tensions hautes et basses sont fournies par SEVCON.

Fig. 29. Menu « Tree – Tree – Motor Thermistor – Sensor Configuration ».

Remarque :

L'entrée analogique N°5 correspond au capteur de température du moteur PTC, ici un capteur KTY84 relié au –BAT. La tension de 2.699V correspond à une température ambiante de 19°C. Pour cette température la résistance est donnée par le tableau suivant.

Température	KTY84/150	KTY84 typ.	KTY84/150
	Min.		Max.
0°C	464 Ω	498 Ω	532 Ω
20°C	544 Ω	581 Ω	618 Ω
100°C	950 Ω	1000 Ω	1050 Ω

Tab. 1. Valeur de la résistance du capteur de température KTY84.

La mesure de la tension de l'entrée analogique N°5 et de la température du moteur via la sonde PTC KYT84 en remplaçant la sonde de courant par une résistance variable permet de valider le bon fonctionnement de la mesure de température du moteur avec cette sonde KTY84 (voir tableau de mesure AN-EK016.xlsx).

Les tensions « High Temperature Voltage (PTC) » = 7.5 V et « Low Temperature Voltage (PTC) » = 6.0 V ne sont utilisées que pour un capteur de température autre que le KTY84.

- High Temperature Voltage (for external PTC only # KTY84 !). This is the voltage at the input when the temperature is 100 degrees C.
- Low Temperature Voltage (for external PTC only # KTY84 !). This is the voltage at the input when the temperature is 0 degrees C.

2.5.7 Paramétrage du capteur de température de type PT1000

En décembre 2015, les fabricants du capteur de température de type KTY83 et KTY84 ont annonces l'obsolescence de ces produits [11]. SEVCON propose une procédure pour utiliser par exemple un capteur de température du type PT1000.

Il est configurable dans le menu « Tree – Motor Thermistor – Sensor Configuration ».

Le type de capteur est configuré en « Thermistor type = User Defined » et les tensions hautes et basses sont mises à zéros.

Fig. 30. Menu « Tree – Motor Thermistor – Sensor Configuration » pour la PT1000.

Il faut alors entrer les valeurs de température en fonction de la résistance pour le capteur PT1000 dans le menu « User Definable Thermistor Map 0x461F ».

Fig. 31. Menu « User Definable Thermistor Map 0x461F » pour le capteur PT1000.

2.5.8 Limites de tensions de la batterie

Il y a 2 caractéristiques concernant les limites de tension de la batterie :

- 1. La courbe JAUNE « app_cutback » est paramétrée par « Battery Overvolt Protection » et « Battery Undervolt Protection ». Cette limite concerne la valeur de la tension lue entre la clé de contact broche N°1 « Keyswitch » et la borne B-.
- 2. La courbe BLEUE « motor_cutback » est paramétrée par « Voltage Cutback ». Cette limite concerne la tension présente entre les bornes B+ et B- du variateur GEN4.

Le fichier EXCEL « SEVCON-GEN4-Calculs-tensions.xlsx » fournit les valeurs correctes de réglage des 2 courbes pour les différents modèles de variateurs SEVCON GEN4.

Fig. 32. Bouton « Main – Battery / DC link Limits ».

2.5.8.1 Les limites de la batterie « app_cutback »

Le menu « Tree – Tree – Vehicle Master Applications – Battery Application (Protection) » est utilisé pour définir la tension nominale de la batterie et ses limites hautes et basses.

Les limites « start cutback » définissent un seuil où le couple du moteur sera réduit.

Au-delà des limites « Over voltage limit » et « Under voltage limit », le moteur sera arrêté.

Cette limite concerne la valeur de la tension lue entre la clé de contact broche N°1 « Keyswitch » et la borne B-. Cette tension peut être légèrement différente de la valeur instantanée de la tension entre les bornes B+ et B- du variateur GEN4.

Cette limite est importante dans le cas de l'utilisation du frein moteur électrique. En effet, le courant ré-injecté dans la batterie entraine l'augmentation de la tension de la batterie.

Communément, les valeurs des deux tables « app_cutback » et « motor_cutback » peuvent être superposées. Afin de protéger au mieux le variateur, les valeurs « motor_cutback » doivent être inférieur ou égale aux valeurs « app_cutback », la tension entre B+ et B- étant plus grande et plus rapide que celle entre la broche N°1 « Keyswitch » et la borne B-.

Vehicle Master Applications Traction Application	Nominal battery voltage [0x2C00] Nominal battery voltage used by Batt/pp (in 12.4 volts scaling)
Pump Application	Nominal battery voltage 72.0 V
Power Steer Application	Battery over voltage protection (0x2C01)
Battery Application (Protection)	Battery over voltage cutback used by BatApp (in 12.4 volts scaling)
Batt Nominal Voltage Batt Overvolt Protection	Over voltage start cutback 90.0 V Over voltage limit 96.0 V
Battery Protection Delay BDI (Batt Discharge Indication)	Battery under voltage protection [0x2C02] Battery under voltage cutback used by BittApp (in 12.4 volts scaling)
BDI map Batt DC Current Limit Batt DC Current Limit Range	Under voltage start cutback 66.0 V Under voltage limit 60.0 V

Fig. 33. Menu « Tree – Vehicle Master Applications – Battery Application (Protection) ».

2.5.8.2 Les tensions limites de l'application « motor_cutback »

Le menu « Voltage cutback » définit une fonction avec des seuils au-delà desquels le couple du moteur sera réduit, voir nul.

Cette limite concerne la tension présente entre les bornes B+ et B- du variateur GEN4. Cette tension peut être légèrement différente de la valeur instantanée de la tension entre la broche $N^{\circ}1 \ll Keyswitch \gg$ et la borne B-.

Cette limite est importante dans le cas de l'utilisation du frein moteur électrique. En effet, le courant ré-injecté dans la batterie entraine l'augmentation de la tension aux bornes des capacités de filtrage du variateur GEN4 (avant le fusible, le relais de puissance et les câbles de liaison vers la batterie).

Communément, les valeurs des deux tables « app_cutback » et « motor_cutback » peuvent être superposées. Afin de protéger au mieux le variateur, les valeurs « motor_cutback » doivent être inférieures ou égales aux valeurs « app_cutback », la tension entre B+ et B- étant plus grande et plus rapide que celle entre la broche N°1 « Keyswitch » et la borne B-.

Fig. 34. Menu « Main – Battery/DC link Limits – Voltage Cutback Map (Drive/Regen Trq) ».

2.5.8.3 Les tensions limites du variateur SEVCON GEN4

Les différentes limites sont à mettre en regards par rapport aux limites absolues du variateur. Depuis 2016, le logiciel du variateur prend en compte des tensions jusqu'à 120V pour les modèles 72V-80V.

ATTENTION : les modèles 36V-48V dispose de condensateurs avec une tension maximale de 63V !

Model	Size 2	Size 4	Size 6	Size 2	Size 4	Size 6	Size 2	Size 4	Size 6	Size 4	
Nominal Battery Voltage	24 VDC	24 - V[24 - 36 VDC		36 - 48 VDC			72 - 80 VDC			
Maximum Operating Voltage	34.8 VDC	52 V[2.2 DC	69:6 63V VDC			116 (120V) VDC (2016)			150 VDC	
Minimum Operating Voltage		12.7 VDC			19.3 VDC			39.1 VDC			
Peak Phase Current (2 min)	300 A	450 A	650 A	275 A	450 A	650 A	180 A	350 A	550 A	300 A	
Boost Phase Current (10 sec)	360 A	540 A	780 A	330 A	540 A	780 A	215 A	420 A	660 A	360 A	
Continuous Phase Current (60 min)	120 A	180 A	260 A	110 A	180 A	260 A	75 A	140 A	220 A	120 A	

Fig. 35. Les limites en tension des variateurs SEVCON GEN4.

2.5.9 Les différentes limitations du couple

Le bouton « Main – Torque Conditioner » permet d'accéder aux différents paramètres limitant le couple du moteur, comme les rampes, la limitation / régulation de vitesse, le courant et la tension de la batterie.

_ @		Configuration Helper
+ Node ID dcf2	Ping DCF editor	X Close dd
Main Tree Input / Output	CAN / PDOs	 Overview Speed Control / Limit DC current limt Vdc map
Get Controller Information	Get Controller Report	Maximum motor speed [0x6080]
Re-Program Firmware	Controller Settings	Maximum motor speed in RPM. It is unsigned and applies in both directions.
🙆 Get Fault Information	Find Range Errors	Maximum motor speed 0.0 RPM
Request Operational	Request Pre-Operational	
Motor Setup - P	MAC Geometric	
Change Motor Algorithm	Change Control Mode	4
K Motor Encoder	12T Motor Thermistor + 12T	Read Values
PMAC back-EMF limits		Motor overspeed protection [0x4624]
Power (Trq/Spd) Maps	PMAC Motor Parameters	Raises asevere "motor overspeed" fault if motor measured speed exceeds this value
Local Motor Limits	t Control Gains	Motor overspeed protection 5500.0 rpm
Torque Conditioner	Drive Pipeline	
Battery/ Delink Limits		

Fig. 36. Le menu « Main – Torque Conditioner ».

On retrouve ici l'onglet « Battery current limit » qui permet de contrôle finement la valeur du courant de la batterie en limitant le couple moteur si nécessaire.

Overview	Speed Control / Limit	DC current limit	Vdc map	
			Batte	ery current limit [0x4623]
Allows cor	nfiguration of battery (D	C link) current lim	iit	
	Maximum battery charg	e current -200.0		Α
Ma	aximum battery discharg	e current 375.0		А
	Cutba	ack range 75.0		A
Battery cu	rrent estimation correcti	on factor 1.0		
Bat	tery current cutback ram	p up rate 5.0		1/s
Battery	current cutback ramp o	lown rate 5.0		1/s
	Battery current limit inte	egral gain 6.0		
Minim	num battery charge curre	ent speed 0.0		rpm

Fig. 37. Le menu « Main – Torque Conditioner – DC current limit ».

Remarque : si la valeur de « Cutback range » vaut 0, la fonction de limitation du courant batterie est désactivée.

2.5.10 Caractéristique Couple-Vitesse du moteur

Dans l'onglet « Main » du script « Configuration Helper », le menu déroulant « Power (Trq/Spd) Maps » donne accès au réglage de la « Torque/Speed Map 1 0x4611 ». Ce menu permet de régler la courbe donnant l'évolution du couple maximal dans le moteur (en Nm) en fonction de sa vitesse de rotation (en tr/min).

Le « Peak Motor Torque » (environ 3 fois le couple nominal) et le « Max Stator Current » sont les valeurs indiquées dans le menu « Tree - Motor Parameters – Motor Parameters ».

La loi de commande indique également la valeur maximale du couple que l'on peut obtenir en fonction du courant statorique « Calculated Peak Torque » en Nm (ici 156 Nm).

La courbe en JAUNE peut être comparée à 2 courbes (en ROUGE) intéressantes :

- soit une limite de puissance calculée à partir d'un courant maximale autorisé sur la batterie : Pmax = Vbat x Ibat ;
- ➢ soit une limite de puissance donnée par « Power Limit ». A puissance constant, le couple est donnée par une fonction hyperbolique Γ_{max}(Nm) = $\frac{P_{max}(W)}{\Omega(rd/s)}$.

Fig. 38. Evolution du couple maximal en Nm en fonction de la vitesse en tr/min.

2.5.10.1 Paramétrage des limites du moteur : les « Profils »

3 (ou 4) profiles sont disponibles dans le variateur SEVCON GEN4 :

1) Le profil « Baseline Profile » : c'est le profil activé par défaut quand les autres profils ne sont pas utilisés. C'est le profil qui doit contenir les paramétrages les plus grands (supérieur aux 2 (3) autres profils).

- 2) Le profil « Driveability Select 1 Profile » est un profil qui peut être activé par une entrée logique (l'entrée digitale 6, broches N°9 par exemple). Ce profil doit contenir des valeurs de paramètres plus faibles que le « Baseline Profile ».
- 3) Le profil « Driveability Select 2 Profile » est un profil qui peut être activé par une entrée logique (l'entrée digitale 7, broches N°32 par exemple). Ce profil doit contenir des valeurs de paramètres plus faibles que le « Baseline Profile ».
- 4) Le logiciel de pilotage des moteurs synchrone PMAC « 0705.0014 » propose un profil « Driveability Select 3 Profile ». C'est un profil qui peut être activé par une entrée logique (l'entrée digitale 5, broches N°20 par exemple). Ce profil doit contenir des valeurs de paramètres plus faibles que le « Baseline Profile ».

Par défaut, si plusieurs profils sont activés simultanément, le variateur utilisera la valeur de paramètre la plus faible des différents profils.

Les réglages des paramètres dans les différents « Profile » peuvent se faire en mode « Operational » et sont pris en compte tout de suite après application des valeurs dans le variateur. Par le bouton « Write Values ».

Quand le variateur est en « Torque Mode » ([4] « Vehicle performance configuration », section 6-16, page 82), seules les valeurs « Speed limit ramp up rate when in torque mode » et « Speed limit ramp down rate when in torque mode » sont utilisées. Les autres valeurs de rampes en « %/s » ne sont pas utilisées.

Fig. 39. Le menu « Main – Drive Profiles ».

2.5.10.2 « Traction baseline profile »

Les limites maximales de couple et de vitesse, ainsi que les rampes d'accélération et de freinage sont configurables dans l'onglet « Main » et le bouton « Drive Profiles – Baseline Drive Profile ». Les valeurs sont également disponible dans l'onglet « Tree – Tree – Vehicle Master Applications – Traction Applications – Drive Profiles – Baseline Profile » ([4] section 6-24 pages 90).

ATTENTION : il ne faut pas dépasser la vitesse maximale du moteur !

Une limite absolue de la vitesse du moteur est spécifiée dans l'onglet « Tree – Torque Conditioner – OverSpeed Trip Level ».

viain Tree Input / Output	CAN / PDOs		Traction Appli	cation Drive Profiles	
Get Controller Information	Get Controller Report	Manning left local mot			
Re-Program Firmware	Controller Settings	mapping. iert iocar mot			
in Get Fault Information	Find Range Errors	Compar	e All Profiles	Pro	file Inggers
Request Operational	Request Pre-Operational	Baseline Drive Profile	Drive Select 1 Profile	Drive Select 2 Profile	Drive Select 3 Profile
Motor Setup - P	MAC Geometric		Copy Baseline to Profile 1	Copy Baseline to Profile	2 Copy Baseline to Profile 3
Change Motor Algorithm	Change Control Mode			Traction base	ine profile [0x2920]
Notor Encoder	A Motor Thermistor + 12T	Baseline profile. This is a	always applied.		
PMAC back-EME limits		1	orque applied during drive	50.0 9	i
FINAC DECK-EIVIT IIITIIS	(Torque applied	during a direction change	0.0 9	i
Power (Trq/Spd) Maps	PMAC Motor Parameters	Torque ap	plied when neutral braking	0.0 9	1
Cocal Motor Limits	t Control Gains	Torque	applied when footbraking	0.0 9	5
T Torque Conditioner	La Drive Pipeline	Maximum	Speed inforward direction	30000 rj	m
ET Battery / DClink Limits		Maximun	Speed in reverse direction	30000 n	m
bottery / beam entite			Ramp up rate during drive	200.0 9	a/s
Traction A	pplication	Ramp up rate durin	g direction change braking	200.0 9	i/s
Mapping: left local motor.		Ramp up	rate during neutral braking	200.0 9	d's
😤 Drive Profiles	G Steering	Ramp	up rate during footbraking	200.0 9	i/s
Input/0	Output	Ra	mp down rate during drive	200.0 9	/s
💣 Local IO Monitor	D+ Analog Ranges	Ramp down rate durin	g direction change braking	200.0 9	5/s
Ter Throttle / Footbrake		Ramp down	rate during neutral braking	200.0 9	/s
a mouse / Pootbrake		Ramp do	wn rate during footbraking	200.0 9	i/s
		Speed limit ramp up	rate when in torque mode	10000 r	om/s
		Speed limit ramp down	rate when in torque mode	10000 n	om/s

Fig. 40. Réglage des limites d'utilisation du moteur « Baseline Profile ».

2.5.10.3 « Driveability Select 1 Profile »

Le profil « Driveability Select 1 Profile » est un profil qui peut être activé par une entrée digitale (entré digital N°6, broches N°9 par exemple). Ce profil peut définir un mode « Normal » ou mode « Enfant » comparé à un mode « Sport » définit par les paramètres du « Baseline Profile ».

Les limites maximales de couple et de vitesse, ainsi que les rampes d'accélération et de freinage sont configurables dans l'onglet « Main » et le bouton « Drive Profiles –Drive Select 1 Profile ». Les valeurs sont également disponible dans l'onglet « Tree – Tree – Vehicle Master Applications – Traction Applications – Drive Profiles – Drive Profile 1 » ([4] section 6-24 pages 90).

💼 Get Fault Information	Find Range Errors	Paralias Drive Profile	Drive Salact 1 Brofile	Drive Cale	+ 2 Brofile	Drive Salact 2 Brafile
Request Operational	Request Pre-Operational	Daseline Drive Profile	Drive Select 1 Profile	Drive Selec	t 2 Prome	Drive Select 5 Pionie
Motor Setup - F	MAC Geometric		Copy Baseline to Profile 1	Copy Baselin	e to Profile 2	Copy Baseline to Profile 3
Change Motor Algorithm	Change Control Mode			Driveab	ility Select	1 Profile [0x2921]
🛝 Motor Encoder	😫 Motor Thermistor + 12T	Appliedwhen Driveabil	ity Select 1 switch is active. I	Units are same as	Baseline.	
PMAC back-EME limits		1	forque applied during drive	0.0	%	
		Torque applied	d during a direction change	0.0	%	
Power (Trq/Spd) Maps	PMAC Motor Parameters	Torque ap	plied when neutral braking	0.0	%	
- Local Motor Limits	t Control Gains	Torque	e applied when footbraking	0.0	%	
T Torque Conditioner	A Drive Pipeline	Maximum	Speed in forward direction	30)0.0	rpm	
E Patters / DClink Limits		Maximun	n Speed in reverse direction	30)0.0	rpm	
Battery / DClink Limits			Ramp up rate during drive	500	%/s	
Traction 4	oplication	Ramp up rate durin	g direction change braking	500	%/5	
Mapping: left local motor.		Ramp up	rate during neutral braking	500	%/s	
E Drive Profiles	Ge Steering	Ramp	up rate during footbraking	500	%/s	
Input/	Output	Ra	mp down rate during drive	500	%/s	
a Local IO Monitor	0 ← Analog Ranges	Ramp Jown rate durin	g direction change braking	500	%/s	
Ex Throttle / Eastbrake		Ramp down	rate during neutral braking	500	%/s	
E H motie / Pootblake		Ramp do	wn rate during footbraking	500	%/s	
		Speed limit ramp up	rate when in torque mode	10)0.0	rpm/	s
		Speed Imit ramp down	rate when in torque mode	10)0.0	rpm/	5

Fig. 41. Réglage des limites d'utilisation du moteur « Driveability Select 1 Profile ».

2.5.10.4 « Driveability Select 2 Profile »

Le profil « Driveability Select 2 Profile » est un profil qui peut être activé par une entrée digitale (entrée digitale N°7, broches N°32 par exemple). Ce profil est généralement utilisé pour définir un mode « Roue Libre » lorsque l'on appuie sur la pédale de frein mécanique. Avec des consignes de vitesse nulles, le variateur GEN4 cherchera à ralentir le moteur (frein électrique programmable) lorsque l'on cherche à arrêter le véhicule.

Les limites maximales de couple et de vitesse, ainsi que les rampes d'accélération et de freinage sont configurables dans l'onglet « Main » et le bouton « Drive Select 2 Profile ». Les valeurs sont également disponible dans l'onglet « Tree – Tree – Vehicle Master Applications – Traction Applications – Drive Profiles – Drive Profile 2 » ([4] section 6-24 pages 90).

Ka Get Fault Information	H: Find Kange Errors	Baseline Drive Profile	Drive Select 1 Profile	Drive Select 2 Pr	ofile	Drive Select 3 Profile
Request Operational	Request Pre-Operational		Comuliaseline to Brofile 1	Com Pareline to P	rofile 2	Comu Pasalina to Brofila 1
Motor Setup - P	MAC Geometric		Copy taseline to Profile 1	Coly baseline to P	rome 2	Copy baseline to Profile 3
Change Motor Algorithm	Change Control Mode			Driveability	Select	2 Profile [0x2922]
Notor Encoder	18 Motor Thermistor + I2T	Applied when Driveabili	ity Select 2 switch is active. I	Jnits are same as Base	line.	
PMAC back-EME limits		1	orque applied during drive	10.0	%	
		Torque applied	during a direction change	10.0	%	
Power (Trq/Spd) Maps	PMAC Motor Parameters	Torque ap	plied when neutral braking	10.0	%	
E Local Motor Limits	t Control Gains	Torque	applied when footbraking	10.0	%	
T Torque Conditioner	A Drive Pipeline	Maximum	Speed in forward direction	0.0	rpm	
ER Rotters / DClink Limite		Maximum	Speed in reverse direction	0.0	rpm	
Battery / Delink Limits			Ramp up rate during drive	50.0	%/s	
Traction A	pplication	Ramp up rate durin	g direction change braking	50.0	%/s	
Mapping: left local motor.		Ramp up	rate during neutral braking	50.0	%/s	
Trive Profiles	G Steering	Ramp	up rate during footbraking	50.0	%/s	
input/	Output	Ra	mp down rate during drive	50.0	%/s	
💣 Local IO Monitor	0 ← Analog Ranges	Ramp down rate durin	g direction change braking	50.0	%/s	
Elst Throttle / Footbrake		Ramp down	rate during neutral braking	50.0	%/s	
erter mirottie / Pootorake		Ramp do	wn rate during footbraking	50.0	%/s	
		Speed limit ramp up	rate when in torque mode	1000.0	rpm	's
		Speedlimit ramp down	rate when in torque mode	1000.0	rpm/	s

Fig. 42. Réglage des limites d'utilisation du moteur « Driveability Select 2 Profile ».

2.5.10.5 « Driveability Select 3 Profile »

Le profil « Driveability Select 3 Profile » est un profil qui peut être activé par une entrée digitale. Les limites maximales de couple et de vitesse, ainsi que les rampes d'accélération et de freinage sont configurables dans l'onglet « Main » et le bouton « Drive Select 3 Profile ». Les valeurs sont également disponible dans l'onglet « Tree – Tree – Vehicle Master Applications – Traction Applications – Drive Profiles – Drive Profile 3 ».

E3 Get Fault Information	😑 Find Kange trrors	Baselire Drive Profile	Drive Select 1 Profile	Drive Selec	t 2 Profile	Drive Select 3 Profile
Request Operational	Request Pre-Operational		Conv Baseline to Profile 1	Conv Baselin	e to Profile 2	Conv Receipe to Profile 3
Motor Setup - P	MAC Geometric		copy distance to Prome 1	cory our	e to Prome Ej	copy buschile to Promes
Change Motor Algorithm	Change Control Mode			Driveab	ility Select	3 Profile [0x2936]
Notor Encoder	1 Motor Thermistor + I2T	Applied when Driveabilit	y Select3 switch is active.			
PMAC back-EMF limits		Te	orque applied during drive	100.0	%	
h n	Duticity Days	Torque applied	during a direction change	5.0	%	
Power (Irg/Spd) Maps	PMAC Motor Parameters	Torque app	lied when neutral braking	5.0	%	
E Local Motor Limits	Control Gains	Torque	applied when footbraking	5.0	%	
Torque Conditioner	La Drive Pipeline	Maximum	Speed in forward direction	3000.0	rpm	
ET Battany / DClink Limite		Maximum	Speed in reverse direction	3000.0	rpm	
Dettery / Detinik Ennis		1	Ramp up rate during drive	50.0	%/s	
Traction #	Application	Ramp up rate during	direction change braking	50.0	%/s	
Mapping: left local motor.		Ramp up r	ate during neutral braking	50.0	%/s	
Drive Profiles	G Steering	Ramp u	up rate during footbraking	50.0	%/s	
input/	Output	Ran	np down rate during drive	50.0	%/s	
💣 Local IO Monitor	D+ Analog Ranges	Rampdown rate during	direction change braking	50.0	%/s	
Ele Throttle / Footbrake		Ramp down r	ate during neutral braking	50.0	%/s	
a a moure/rootbiate		Ramp dov	n rate during footbraking	50.0	%/s	
		Speed limit ramp up	rate when in torque mode	1000.0	rpm	s
		Speed imit ramp down	rate when in torque mode	1000.0	rpm	s

Fig. 43. Réglage des limites d'utilisation du moteur « Driveability Select 3 Profile ».

2.5.11 Paramétrage du refroidissement en fonction de la température.

Il est possible de piloter une pompe de refroidissement ou un ventilateur en fonction de la température du moteur ou du variateur en actionnant une sortie analogique.

Il n'y a pas de note d'application sur cette fonction et le dictionnaire d'objets « Master_Object_Dictionary_Database.xls » donne les informations suivantes :

Index	Sub- Index	Units	Name	Description
	1		External fan analogue output / contactor driver	Analogue output (contactor driver) used to drive fans. Set to zero to disable external fan control
5A01h	2	DegC	External fan turn on temperature	External fans are turned on when heat sink temperature is above this value
	3	DegC	External fan turn off temperature	External fans are turned off when heat sink temperature is below this value
	4	v	Fan voltage	Voltage required to drive external fans
	5		Fan Temperature Source	Fan Temperature Source. Set to 0 for controller heatsink temperature or 1 for motor thermistor temperature

Fig. 44. Description de l'objet 0x5A01 pour la configuration d'un ventilateur.

IMPORTANT : la sortie analogique utilisée pour le système de refroidissement doit être « Not Mapped ». Dans l'exemple suivant, la configuration matérielle est :

- « Contactor 1 = Line Contactor ». Le relais de puissance est branché entre les broches N°3 et N°4.
- 2) « Contactor 2 = Not Mapped ». Le relais qui pilote la pompe de refroidissement est branché entre les broches N°7 et N°8.
- 3) « Contactor 3 = External LED ». Le voyant vert de signalisation est branché entre les broches N°11 et N°12.

Loca	Contactor Out	puts		
# of Outputs:	3	-		
Contactor 1:	Line contactor	~	Pin.03	
Contactor 2:	Not Mapped	~	Pin.07	
Contactor 3:	External LED	~	Pin.11	
Read Values			Write Val	ues

Fig. 45. La sortie « Contactor 2 » est utilisée pour la pompe de refroidissement.

Le menu « Tree – Search = 0x5A01 » permet d'accéder aux informations de paramétrage de cette fonction. Il faut entrer le numéro de la sortie analogique utilisée, ici « 2 », indiquer la plage de déclenchement de la température et la tension qui sera appliquée au bobinage.

Remarque : cette tension de bobine est fixe et ne respecte pas la configuration « Reduce to Hold Level Enable ».

Enfin, il est possible de choisir la source de température entre la température du moteur ou la température du variateur.

_ @	Configuration Helper				
+ NodelD dcf2 · Ping DCF editor	X Close dcf			Gffline DCF	P Help
Main Tree Input / Output CAN / PDOs	Exte	ernal heat sink fans	[0x5A01]		æ
Tree Search All	Used to set up external fan output (Contactor driv	ver / analogue output sele	cted in sub 1 must not be r	napped to other out	put)
Search for object by name or hex index	External fan analogue output / contactor driver	2.0			
0x5A01	External fan turn on temperature	75.0	DegC		
	External fan turn off temperature	65.0	DegC		
0x5A01 1 {External fan analogue output / contactor driver}	Fan voltage	24.0	v		
0x5A01 2 {External fan turn on temperature}	Fan Temperature Source	Motor temperature ser 🗸			
0x5A01 3 {External fan turn off temperature} 0x5A01 4 {Fan voltage} 0x5A01 5 {Fan Temperature Source}					

Fig. 46. *Paramétrage de l'objet 0x5A01 pour la configuration d'un ventilateur.*

2.6 Gestion des fichiers de configuration DCF

Les différentes valeurs de configuration d'un variateur SEVCON GEN4 peuvent être stockées dans un fichier de configuration « Device Configuration File » avec l'extension « DCF ».

IMPORTANT : il est recommandé de créer un fichier DCF dès la réception du variateur avec la configuration initiale. Cette configuration ayant été testée sur banc d'essai, elle servira de référence et pourra être rechargée le cas échéant.

IMPORTANT : dès qu'une configuration semble « acceptable », il est recommandé de créer un fichier DCF avec un nom de fichier différent, correspondant aux différents réglages réalisés.

2.6.1 Le menu « Save DCF from unit »

La sauvegarde d'un fichier DCF est accessible à partir du menu :

- fenêtre du script « Configuration Helper » ;
- menu « Controller Settings » ;
- menu « Save DCF from unit ».

Il n'est pas nécessaire d'être en mode « PreOp » pour sauvegarder la configuration du variateur dans un fichier DCF. L'opération prend quelques minutes : il ne faut pas interrompre le processus avant la fin et il ne faut pas couper l'alimentation du variateur.

Fig. 47. Le menu « Main – Controller Setting – Save DCF from unit » d'ans la fenêtre du script « Configuration Helper ».

2.6.2 Le nommage des fichiers

La multiplication des configurations de variateurs susceptible de produire un fichier DCF impose d'être rigoureux dans le nommage des fichiers de configuration.

Les noms de fichiers servent également à les trier dans un même répertoire : il y a donc plusieurs possibilités de tri, par date ou par variateurs.

Le nom du fichier sera alors composé de :

- « 2024-08-02 » : la date en format inversée (ici le 2 août 2024) afin de faire un tri par année, puis par mois, puis par jour ;
- ME1302 » : le type du moteur ;

- « 0705-0014 »: la version du software utilisé (ici logiciel pour moteur synchrone version 0705.0014);
- «72V » : la tension d'alimentation du variateur (tension de la batterie) ;
- ➤ « GEN4-8035 » : le type de variateur : 24-48-80V, 275-350-450-550-650A ;
- « 37A » : une identification du client final (ici le numéro du kart) ;
- « 17h22 » : l'heure sauvegarde
- « config-a-vide » : un commentaire sur la fonction de la configuration.

2024-08-02-ME1302-0705-0014-GEN4-8035-Taeun-CHOE-Config-OK-14h33.dcf

Les fichiers seront stockés dans un répertoire différent du script « DVTC » afin de ne pas être effacés lors de la mise à jours du logiciel :

C:\BorgWarner\DCF\ ou C:\BorgWarner-DCF-DLD\DCF\ C:\BorgWarner-DCF-DLD\DCF × + \uparrow C □ > Ce PC > Acer (C:) > BorgWarner-DCF-DLD > DCF > X 0 6 @ @ (+) Nouveau ~ 🔟 🛝 Trier 🕤 🗮 Afficher 🕤 ... 🗸 🏪 Acer (C:) Nom > 📄 SWinREAgent D 2021-10-04-POLARIS-0711-0002-5EN4-4845-Original-config.dcf > 📩 AdwCleaner 2021-10-04-SOTIC-0703-0017-GEN4-4845-Dave-BISSEN-No-load-config-OK-20h07.dcf > 🚞 BorgWarner 2021-10-05-MOTOR-0703-0005-ŒN4-4845-Original-config.dcf ✓ BorgWarner-DCF-DLD 2021-10-05-SOTIC-0703-0017-GEN4-4845-Dave-BISSEN-No-load-config-OK-14h38.dcf 2021-10-06-MOTOR-SN0053-11-6EN4-SIZE-8-Original-config-1.dcf > 200703-0017-Generic-flux-vector-2016-12 2021-10-06-MOTOR-SN0053-11-GEN4-SIZE-8-Original-config-2.dcf > 📁 0705-0013-Generic-IMPM-2017-01 2021-10-07-ME1306-0705-0013-GEN4-4845-Bastien-POURSIN-Full-power-20h32.dcf > 🚞 Archives-SEVCON 2021-10-07-ME1306-0705-0013-GEN4-4845-Bastien-POURSIN-PUMP-OK-21h03.dcf > CSV-XLS 2021-10-07-MOTOR-0705-0012-ŒN4-4845-Original-config-002.dcf > ___ DCF 2021-10-08-ME1306-0705-0013-GEN4-4845-Bastien-POURSIN-Full-power-12h28.dcf > 📁 DLD 2021-10-08-ME1306-0705-0013-GEN4-4845-Bastien-POURSIN-PUMP-OK-09h17.dcf 2021-10-08-ME1306-0705-0013-GEN4-4845-Bastien-POURSIN-PUMP-OK-13h48.dcf EDS

Fig. 48. Le nommage des fichiers « DCF » dans le répertoire « C:\BorgWarner-DCF-DLD\DCF ».

2.6.3 Le menu « Send DCF to unit »

Ce menu permet de charger une configuration dans un variateur.

<u>ATTENTION</u>: il faut que le fichier DCF ait été généré avec un variateur ayant le même « hardware » (même numéro de « Part » voir §8) et le même « software » (voir §2.3).

Le chargement d'un fichier DCF dans un variateur est accessible à partir du menu :

- Fenêtre du script « Configuration Helper » ;
- menu « Controller Settings »;
- menu « Send DCF To Unit ».

IMPORTANT : il est nécessaire d'être est en mode « PreOp » (bouton ROUGE : « Request Preoperational ») (afin que le moteur ne fonctionne pas) pour pouvoir charger une nouvelle configuration dans le variateur. L'opération prend quelques minutes et est TRES CRITIQUE : il ne faut pas interrompre le processus avant la fin et il ne faut pas couper l'alimentation du variateur. En cas de soucis pendant le transfert, le variateur devra retourner en usine et risque d'être irrécupérable.

A la fin du transfert, une fenêtre apparait vous demandant de couper l'alimentation du variateur et de le remettre sous tension (« **Power Recycle** »). C'est seulement à la nouvelle mise sous tension que les paramètres du nouveau fichier DCF seront pris en compte par le variateur GEN4.

Fig. 49. Le menu « Send DCF To Unit » dans la fenêtre du « Configuration Helper ».

3 Le script « Helper » – Fonctions avancées

3.1 Changement du niveau d'accès

Dans la fenêtre du script « DVTC », dans la zone des commandes en ligne, il faut vérifier le niveau d'accès au variateur avec la commande « lg 1 ? ». Il est possible de changer ce niveau d'accès par la commande « lg 1 4 ». Exemple :

```
dvt(9) % lg 1 ?
Access Level: 0x00
0x00
dvt(10) % lg 1 4
OK
dvt(11) % lg 1 ?
Access Level: 0x04
0x04
```

3.2 Changement des valeurs nominales de tension et de courant

Il est possible d'adapter un fichier DCF à un variateur disposant de valeurs nominales de tension et de courant différentes avec la commande « configure_voltage_items nodeid voltage block_rating ». Il faut que le niveau d'accès soit de 4. Voici un exemple de passage en 72V 550A avec la commande :

dvt(12) % configure_voltage_items 1 72 550

set 0x2c00 0 to 0x0480	set 0x4612 7 to 0x0613
set 0x2c01 1 to 0x0566	set 0x4612 9 to 0x067a
set 0x2c01 2 to 0x061e	set 0x4612 11 to 0x067a
set 0x2c02 1 to 0x0326	set 0x4612 13 to 0x067a
set 0x2c02 2 to 0x02ec	set 0x4612 15 to 0x067a
set 0x2C30 6 to 0x24	set 0x4612 17 to 0x067a
set 0x4612 1 to 0x0000	set 0x6075 0 to 0x00086470
set 0x4612 3 to 0x02ec	set 0x4641 2 to 0x0226
set 0x4612 5 to 0x03d3	set 0x4641 12 to 0x0480

invalid bareword "Abort"

in expression "Abort 0x06020000 / pow(2,6)"; should be "\$Abort" or "{Abort}" or "Abort(...)" or ... dvt(13) % Cette macro commande modifie les paramètres liés à la tension continue de la batterie et au courant efficace dans les phases du moteur. Le fichier « SEVCON-GEN4-Calculs-tensions.xlsx » résumé les modifications apportées :

	HEX	DEC	x 0,0625	
set 0x2c00 0 to 0x0480	0480	1152	72,00	V
set 0x2c01 1 to 0x0566	0566	1382	86,38	V
set 0x2c01 2 to 0x061e	061e	1566	97,88	V
set 0x2c02 1 to 0x0326	0326	806	50,38	V
set 0x2c02 2 to 0x02ec	02ec	748	46,75	V
set 0x2C30 6 to 0x24	24	36	72	V
set 0x4612 1 to 0x0000	0000	0	0,00	V
set 0x4612 3 to 0x02ec	02ec	748	46,75	V
set 0x4612 5 to 0x03d3	03d3	979	61,19	V
set 0x4612 7 to 0x0613	0613	1555	97,19	V
set 0x4612 9 to 0x067a	067a	1658	103,63	V
set 0x4612 11 to 0x067a	067a	1658	103,63	V
set 0x4612 13 to 0x067a	067a	1658	103,63	V
set 0x4612 15 to 0x067a	067a	1658	103,63	V
set 0x4612 17 to 0x067a	067a	1658	103,63	V
set 0x6075 0 to 0x00086470	00086470	550 000	mA	
set 0x4641 2 to 0x0226	0226	550	А	
set 0x4641 12 to 0x0480	0480	1152	72,00	V

Fig. 50. Passage en 72V 550A avec la commande « configure_voltage_items 1 72 550 ».

Les paramètres aux adresses « 0x2c0_ » correspondent au menu « Battery Control », « Battery Nominal Voltage/Overvolt/Undervolt protection ».

Le paramètre à l'adresse « 0x2c30 » correspond au menu « Battery Control – BDI Parameters », nombre de cellules de la batterie au plomb « Cell count », a raison de 2.00V par cellule.

Les paramètres aux adresses « 0x4612 » correspondent a la limitation « Voltage Torque-Cutback Map » du menu « Battery Control – Voltage Cutback ».

Le paramètre à l'adresse « 0x6075 » correspond au courant maximal du variateur dans le menu « Main – Motor – Current Limit ». Ce courant correspond au courant nominal du variateur GEN4.

Le paramètre à l'adresse « 0x4641 sub 2 » correspond au courant maximal dans le stator du moteur « Main – Motor – Motor Data ».

Le paramètre à l'adresse « 0x4641 sub 2 » correspond à la tension nominale de la batterie définie dans « Main – Motor – Motor Data ». Cette valeur est identique à celle définie à l'adresse « 0x2c00 sub 0 ».

3.3 Chargement d'un fichier « software DLD » dans le variateur

Le fichier DLD correspond au logiciel « Software » du variateur et dépend du type de moteur utilisé : moteur synchrone ou moteur asynchrone (moteur à induction).

Les fichiers DLD sont fournis par la société BorgWarner et se trouvent dans le répertoire :

C:\BorgWarner-DCF-DLD\DLD

Il existe 2 types de software dans le répertoire :

- 1) Le software « 0703_0017.dld modified 09/11/2017 » du 9 novembre 2017 : c'est la dernière version du logiciel pour moteur asynchrone ;
- 2) Le software « 0705_0014.dld modified 19/05/2022 » du 19 mai 2012 : c'est la dernière version du logiciel pour moteur synchrone ;

3.3.1 Sauvegarde de la configuration du variateur

Avant de mettre à jour le « software » d'un variateur, il est impératif de sauvegarder sa configuration dans un fichier DCF (voir 2.6.1 Le menu « Save DCF from unit »). Ce fichier de configuration sera réutilisé après la mise à jour pour rendre le variateur opérationnel avec son moteur.

La dernière version du fichier « Master Database.edsdb » est dans le répertoire :

C:\BorgWarner\DVTC_2024.06a\common\object_dictionary\

Il est utilisé pour générer les fichiers EDS. Il peut être intéressant de supprimer tous les fichiers «*.eds » du répertoire «C:\BorgWarner\DVTC_2024.06a\config\EDS » afin de forcer le logiciel DVTC à créer un nouveau fichier «*.eds » en s'appuyant sur le nouveau fichier «*.eds ».

3.3.2 Le menu « Reprogram Unit Firmware »

Le chargement d'un fichier DLD dans un variateur (changement de software / firmware) est accessible à partir de la fenêtre du script « Configuration Helper » dans le menu « Main – Reprogram Unit Firmware ».

Main	Tree	Input / Output	CAN / PDOs
G	Get Con	troller Info	Get Controller Report
Repr	ogram	Unit Firmware	Controller Settings
Ge	t Fault	Information	Find Range Errors
	Set Op	perational	Set Pre-operational

Fig. 51. Le menu «Reprogram Unit Firmware » pour charger un fichier « DLD ».

IMPORTANT : il est nécessaire d'être est en mode « Preoperationnal » (bouton ROUGE : « Request Preoperational »), afin que le moteur ne fonctionne pas, pour pouvoir charger un nouveau « firmware » dans le variateur.

L'opération prend quelques minutes et est <u>TRES CRITIQUE</u> : il ne faut pas interrompre le processus avant la fin et il ne faut pas couper l'alimentation du variateur. En cas de soucis pendant le transfert, le variateur devra retourner en usine et risque d'être irrécupérable.

L'opération se déroule en 3 étapes.

3.3.3 Passage en mode « Bootloader »

La première étape consiste à passer en mode « Bootloader ».

La LED du variateur clignote rapidement puis s'éteint.

3.3.4 La programmation d'un nouveau « Software »

La deuxième étape consiste à sélectionner le bon fichier DLD et à programmer le variateur GEN4.

Pendant la mise à jour du software, le variateur passe en mode « boot loader » : la LED verte clignote rapidement.

IMPORTANT : Le transfert prend quelques minutes et est **TRES CRITIQUE** : il ne faut pas interrompre le processus avant la fin et il ne faut pas couper l'alimentation du variateur. En cas de soucis pendant le transfert, le variateur devra retourner en usine et risque d'être irrécupérable.

Fig. 52. Transfert du software en cours dans la fenêtre « DVT ».

Pendant le transfert du nouveau programme, une série de point s'affiche dans la fenêtre « Information » à la suite du texte « programming dsp-zeffer on node 1 ».

A la fin du transfert, le message « OK » apparait dans la fenêtre de commande. Il est important de sortir du mode « boot loader ».

3.3.5 Sortir du mode « Bootloader »

A la fin du transfert, lorsque le message « OK » apparait dans la fenêtre de commande, il faut sortir mode « boot loader ».

A ce stade, la LED verte du variateur GEN4 se remet à clignoter. ATTENTION : le variateur est en mode « Preoperationnal ».

Il faut couper l'alimentation du variateur, attendre quelques secondes et remettre le variateur sous tension « Power Recycle ». Il faut également fermer le logiciel DVTC et le relancer.

En cliquant sur le bouton « H », le script « Configuration Helper » vérifiera la cohérence du fichier EDS disponible sur le disque dur de l'ordinateur avec le nouveau software et demandera la création d'un nouveau fichier en cas de besoin.

3.3.6 En cas de problème

En cas de problème pendant le transfert, il ne faut pas sortir du mode « boot loader ». Il faut couper l'alimentation du variateur, le remettre sous tension « Power Recycle » et recommencer le chargement du fichier DLD avec la commande « Program Unit ».

3.3.7 Après la mise à jour d'un nouveau « Firmtware »

Une fois que le nouveau « software » est installé, il faut initialiser correctement les nouvelles variables qui sont déclarées. Pour cela, il suffit de charger le fichier DCF « générique » correspondant à ce « Firmware » :

0705_0014_Template_Gen4.48V.275A.S2.dcf

Ensuite, il faut recharger le fichier de configuration initiale qui a été sauvegardé AVANT la mise à jour du « Software ».

<u>Remarque</u>: après chaque étape de mise à jours des logiciels (DLD, DCF) et lorsque que l'opération s'est bien déroulée, il faut penser à couper l'alimentation du variateur et le redémarrer (« Power Recycle ») et fermer et relancer le logiciel DVTC.

3.4 L'onglet « TPDO/RPDO »

La référence [4] section 6-4 pages 70 donne quelques explications concernant les objets communicant via le bus CAN, comme le « SDO : Service Data Object » et le « PDO : Process Data Object ».

Les PDO sont utilisés par des nœuds connectés (par exemple dans une configuration à deux variateurs) pour échanger des données en temps réel en cours de fonctionnement. Les PDO permettent de transmettre jusqu'à 8 octets de données dans un message CAN.

Ils utilisent le modèle de communication producteur-consommateur, où le nœud producteur crée et transmet le PDO pour tous les nœuds consommateurs connectés et configurés pour recevoir les données. Les PDO transmis sont désignés comme des TPDO et des PDO reçus, appelés RPDO.

3.4.1 Bibliographie sur le sujet

Les documents suivant n'ont pas été complètement exploités :

- Adding PDOs.pdf
- PDOs training.pdf
- > App Note Controlling AC via CAN.pdf
- App Note Multi Node Setup.pdf
- App Note PDO Fundamentals.pdf
- > App Note Vehicle CAN wiring recommendations.pdf
- NT20100501-01 SEVCON Comment lire les objets CANopen avec un protocole CAN quelconque.pdf
- http://www.canopensolutions.com/english/about_canopen/device_configuration_cano pen.shtml
- http://www.canopensolutions.com/english/about_canopen/pdo.shtml

3.4.2 Configuration des « RPDO »

Pour l'utilisation d'un seul variateur, les registres « RPDO » ne sont pas utilisés et doivent être vide. Si ce n'est pas le cas, le variateur générera un message d'erreur correspondant à l'attente d'une donnée sur le bus CAN et le variateur sera en défaut.

3.4.3 Configuration des « TPDO »

5 modules « TPDO » sont disponibles sur le variateur GEN4. Ils permettent l'émission de données en temps réel sur le bus CAN.

Main	Tree Input / Outp	ut CAN / PDOs
	CANop	en TPDO / RPDO
	Sync Per	riod & TPDO rates
	Setup TPD0 1	Setup RPDO 1
	Setup TPD0 2	Setup RPDO 2
	Setup TPD0 3	Setup RPDO 3
	Setup TPD0 4	Setup RPDO 4
	Setup TPD0 5	Setup RPDO 5
	Clear all TPD	Os Clear all RPDOs

Fig. 53. L'onglet « TPDO/RPDO » du script « Helper ».

La configuration par défaut permet d'envoyer en continu des données sur le bus CAN.

Fig. 54. Exemple de données transmissent par les « TPDO ».

TPD	01
Cob-ID for this PDO:	0x00000351
Syncs Per Transmit:	1
Bits: 16 Adr: 0x4600,6 Target Iq (Ia Bits: 16 Adr: 0x4600,7 Id (If) Bits: 16 Adr: 0x4600,8 Iq (Ia)))
Bits Used: Bits Left:	64
Remove Item	Add Item
Move Item Up	Move Item Down

Fig. 55. Les données transmissent par le « TPDO1 ».

	TPDO 2
Cob-ID for this PDO:	0x00000427
Syncs Per Transmit:	1
Bits: 16 Adr: 0x4600,9 Ud (U Bits: 16 Adr: 0x4600,10 Uq (Bits: 16 Adr: 0x4600,11 Volt Bits: 16 Adr: 0x4602,29 Mea	lf) Ua) age modulation Isured inductance
Bits Used:	64
Bits Left:	0

Fig. 56. Les données transmissent par le « TPDO2 ».

TPDO	3
Cob-ID for this PDO:	0x00000457
Syncs Per Transmit:	1
Bits: 16 Adr: 0x4602,31 Voltage lim Bits: 16 Adr: 0x4602,32 Maximum f Bits: 16 Adr: 0x4602,33 Maximum i Bits: 16 Adr: 0x4600,3 Motor Temp	it circle magnitude Iuxing current q allowed erature 1 (Measured - T1)
Bits Used:	64
Bits Left:	0

Fig. 57. Les données transmissent par le « TPDO3 ».

TPDO	4
Cob-ID for this PDO:	0x00000233
Syncs Per Transmit:	1
Bits: 16 Adr: 0x5100,3 Capacitor Vo Bits: 8 Adr: 0x5100,4 Heatsink Tem Bits: 16 Adr: 0x5100,2 Battery Curre Bits: 16 Adr: 0x5100,1 Battery Volta Bits: 8 Adr: 0x2790,1 BDI remaining	oltage perature ent ge g charge
Bits Used:	64
Bits Left:	0

Fig. 58. Les données transmissent par le « TPDO4 ».

TPD	0 5
Cob-ID for this PDO:	0x00000458
Syncs Per Transmit:	1
Bits: 32 Adr: 0x2020,3 Target velo Bits: 32 Adr: 0x606c,0 Velocity	city - left motor
Bits Used:	64
Bits Left:	0

Fig. 59. Les données transmissent par le « TPDO5 ».

3.5 Le menu « Change Baud Rate »

Pour changer la vitesse de communication du bus CAN :

- 1- Lancer DVTC
- 2- Ouvrir le « Configuration Helper » grâce au menu « H »
- 3- Sélectionner le menu « Tree Tree CAN Setup »
- 4- Ensuite choisir « Physical layer setting », première ligne en rouge.

_ @ C	onfiguration He	lper	
+ Node ID dcf1 V Ping DCF editor	× Close do	f Offline DCF	Help
Main Tree Input / Output CAN / PDOs Tree Search All	_	Physical layer settings [0x5900]	œ
 Motor Parameters Motor Thermistor Motor Encoder Torque Conditioner Vehicle Master Applications CAN Setup 	A Node ID Bit rate	1.0 250kb/s ~	
Physical layer settings CANopen			
Master / Slave			

Fig. 60. Le menu « CAN Setup – Physical layer setting ».

Il suffit ensuite de sélectionner la nouvelle vitesse de communication du bus CAN.

<u>ATTENTION 1</u>: il est impératif d'éteindre le variateur et de le réalimenter « Power Recycle » afin que la nouvelle configuration soit prise en compte. De même pour le script « DVT », il faut fermer le logiciel, puis le ré-ouvrir et rechercher la nouvelle vitesse de communication.

<u>ATTENTION 2</u>: le variateur est passé en mode « Pre Operational ». Il faudra sélectionner « Request Operational » en vert pour pouvoir utiliser de nouveau le variateur.

Fig. 61. Changement de la vitesse du bus CAN, menu « CAN ».

3.6 La définition des caractéristiques du moteur

Dans l'onglet « Tree – Tree » du script « Configuration Helper », le premier menu « Motor Parameters » donne accès aux différents paramètres du moteur dans le sous-menu « Motor Parameters ».

Fig. 62. Les paramètres du moteur « AC Motor Data (manufacturer specific) ».

On y retrouve des paramètres propres au moteur comme :

- le courant statorique maximal « Maximum Stator Current Is_max » (souvent égal au courant maximal du variateur GEN4);
- le courant magnétisant minimal « Minimum Magnetizing Current Im_min » ;
- le nombre de pair de pôles « Number of Pole pairs » ;
- le courant statorique nominal « Rated Stator Current » ;
- l'inductance statorique « Stator Inductance Ls » ;
- > la constante de tension « Voltage Constant Ke » en V/rad/s. Cette constante est le rapport entre la tension efficace entre phases « line to line rms » et la pulsation électrique « elec_frq » (*stator rd/s*) = $2\pi \cdot f(stator Hz)$, soit :

$$Ke = \frac{U(entre \ phase \ eff)}{\omega(stator \ rd/s)}$$

Mais il y a également des paramètres propres au variateur comme la valeur maximal de l'index de modulation « Max drive mod index » et les gains proportionnels et intégraux des différentes boucles de régulation.

4 Le script « Vehicle Interface »

4.1 Présentation

Les nombreuses variables du variateur peuvent être enregistrées en fonction du temps grâce à ce script [5]. Le script « Vehicle Interface » intercepte les données envoyées par la variateur grâce aux « TPDO » et les interprètes via le dictionnaire des objets « EDS ». Le bouton « Vehicle Interface » permet le lancement de la fenêtre du script « Vehicle Interface » à partir de la fenêtre « Configuration Helper ».

Fig. 63. Bouton d'exécution du script « Vehicle Interface ».

Vehicle Interface × K Not logging 0:06 Trace items - Display -Boutons de contrôle Watch: 18 PDOs 1, Target Id 0.0 A 1, Target Iq 0.0 A 1, ld -0.4375 A 1, lq 0.125 A 1, Ud 0.0 ٧ 1, Uq 0.0 ٧ % 1, Voltage modulation 0.0 1, Measured inductance 70.9891315 uH 1, Voltage limit circle magnitude 32212 A 1, Maximum fluxing current 140 A 1, Maximum ig allowed 944 A 1, Motor Temperature 1 (Measured - TH1) 199 DegC 1, Capacitor Voltage 10.0625 V 1, Heatsink Temperature 24 DegC 1, Battery Current 0.0 A 1, Max torque - left motor 0.0 1, Target velocity - left motor 0 RPM 1, Velocity 0 RPM Node Status Node 1 | Sync 20ms 🕒 HBeat oo Op No faults set Fichier de sortie Logging Options Log Directory: Log Viewer: Filename ME1302-004 ..\..\common\veh_if_log Open sheet Increment file name (date/time) Save main settings in trace

4.2 Affichage des données

Remarque : le courant Iq « 1. Iq (Ia) » est image du couple du moteur.

4.2.1 Le fichier de sortie

Le script « Vehicule interface » enregistre les données dans un fichier texte au format CSV « Comma Separate Value » : les valeurs sont séparées par des virgules et le fichier est « lisible » avec un tableur.

Le répertoire par défaut des fichiers de sortie est :

C:\BorgWarner\DVTC_2024.06a\common\veh_if_log\

Avant de lancer un enregistrement, il est important de définir la racine du nom des fichiers de sortie dans la zone « Filename : », comme par exemple « PMS100 ». Le script « Vehicule interface » ajoute la date et l'heure de création du fichier. Le fichier final aura comme nom final complet :

PMS100_280418_192846.csv

Pour un champ « « Filename = PMS100 », en date du 28 avril 2018, à 19h28min46s.

4.2.2 Les boutons de contrôle

Le bouton de gauche e permet la remise à zéro du temps absolue qui sera utilisé dans le fichier de sortie. Le bouton central rond rouge e démarre l'enregistrement des données.

Fig. 65. Les boutons de contrôle du script « Vehicle Interface » 1/2.

Le bouton « Pause » III arrête l'enregistrement, génère et enregistre le fichier de sortie.

Fig. 66. Les boutons de contrôle du script « Vehicle Interface » 2/2.

4.3 Exploitation des données dans EXCEL

X.	🖬 "7 - C" - 🛄 =											Vehicle Inte	rface Lo	g View	er.xlsm - Micros	oft Excel	
Fic	thier Accueil Insertion Mi	lise en pag	je For	rmules	Don	nées	Révision	Affich	age A	crobat							
1	Nouper	Arial		- 10	· A	Ň	= =	æ	Renv	oyer à la ligne automatiqu	ement	Standard	•				Normal
Co	ller	G I	<u>s</u> - [- 1	3 - A	· -		律律	Fusio	onner et centrer +		9 - % 000	00 +00 00 +00	Mis	e en forme Met	tre sous forme	Satisfa
	Presse-papiers 12		Polic	ce		16			Alignem	ent	6	Nombre	G	COIN		e tablead	
	J6 👻 🤄	fx															
4	A B C		D		E	1	F	G	н	1		J		К	L	M	
2 3 4		GO	J							5th April 2021 Wildcard filters for	*Fil	te ^r to plot on aph secondary	-		Suggested	Suggested	filters
5										data to plot on grap	an av	ie	_		niters	(tor node	i oniy)
6													-		"velocity"	1. veloc	city*
7															*id*	*1.*id	
8		Optio	ins												"iq"	*1.*iq	r"
9	Default csv log file location (blank = same folder as log view)	ion													*ud*	*1. ud	j*
10	Automatically save after imp	port									-				"uq"	*1. u	1 *
11		_			_	_					+				*capacitor*	*1. capa	citor*
12	PMAC	Ls ca	alcula	tion						1	+				*index*	*1.*ind	ex*
13	Pole-pairs (blank = don't calcula	ate)									+				"torque"	*1. torg	ue*
14	Max Expected Ls (u	uH)		6	500										"throttle"	*1. thro	ttle*
15	Filter for speed data nar	ame		*1. V	elocity'						-						
10	Filter for Ud data nar	ame	_	*1	Ud*					1	-						-
17	Filter for lg data nar	ame	_	*1	. lg*						-						_
18	Minimum Iq for Ls calculation (A	4)		3	10					1	-						
	Min w elec for Ls calculation (rad	ds		2	250						1						

Fig. 67. La macro Excel « Vehicle Interface Log Viewer.xlsm ».

Grace à une macro sous Excel du nom « Vehicle Interface Log Viewer.xlsm », les données enregistrées au format CSV vont être mis dans un tableur et un graphique sera généré.

Il faut autoriser l'exécution des macros sur ce fichier EXCEL.

Il peut être intéressant de renseigner la case « Default Log File Location: » avec le répertoire d'enregistrement des fichiers CSV.

Après avoir cliqué sur le bouton « GO » et sélectionné le fichier CSV que l'on veut exploiter, la macro s'exécute et une erreur apparait : il faut alors cliquer sur « Fin ».

Microsoft Visual Basic		
Erreur d'exécution '13':		
Incompatibilité de type		
Continuer Fin	Débogage	Aide

Le graphe proposé contient 2 courbes en erreurs, « Time (s) » et ici « BDI remaining charge % (1) », qui ne sont pas affichées en fonction du temps en secondes, mais en fonction de leurs nombres de points. Il faut simplement sélectionner une par une les 2 premières courbes de la liste et les supprimer.

Fig. 69. Résultat de la macro Excel « Vehicle Interface Log Viewer.xlsm » avec 2 courbes en erreur.

Il est possible de corriger cette erreur, qui apparait avec les versions françaises d'EXCEL.

Il faut remplacer la variable "Application.Version" par sa valeur avec la fonction "val(Application.Version)" dans la ligne de code :

« If (Application.Version >= 12) Then » non-correct

If (val(Application.Version) >= 12) Then

Fig. 70. La macro Excel « Vehicle Interface Log Viewer.xlsm » corrigée !

Fig. 71. Résultat de la macro Excel « Vehicle Interface Log Viewer.xlsm » avec les 2 courbes en erreur qui ont été supprimées.

Il ne reste plus qu'à « trier » les courbes car toutes les variables sont représentées avec la même échelle. Il y a par exemple la donnée qui évolue en +32212 et 0, la vitesse qui évolue entre +5000 tr/min et -1500 tr/min...

En étant sur l'onglet de la courbe, la sauvegarde du fichier EXCEL proposera une modification de l'extension du fichier en format « .xlsx » :

PMS100_280418_193823.xlsx

5 Le script « DCF Editor »

5.1 Présentation

Le bouton « Node ID » permet également de sélectionner un fichier de configuration DCF et de le charger dans la fenêtre « Helper » en vue de son affichage en lecture et de sa modification. Les fichiers DCF peuvent donc être modifiés « hors ligne » dans la fenêtre du « Configuration Helper ».

Fig. 72. Bouton d'exécution du script « Editor ».

L'ensemble des registres est accessibles grâce au bouton « Search » dans l'onglet « Tree ».

. @	Configuration Helper			
+ Node ID dcf1 V Ping DCF editor	X Close dcf		Offline DCF	P Help
Main Tree Input / Output CAN / PDOs	AC Motor d	lata [0x4641]		Ð
Tree Search All	Mctor data. This is specific to the motor type.			
Search for object by name or hex index	Maximum Stator Current (Is max)	350.0	A(RMS)	
0x4641	Minimum Magnetizing Current (Im min)	-100.0	A(RMS)	
	Number of Pole Pairs (npp)	4.0		
0x4641 0 (AC Motor data)	Rated Stator Current	220.0	A(RMS)	
0x4641 2 {Maximum Stator Current (Is max)}	Stator Inductance PMAC (Ls)	65.9823417663574	uH	
0x4641 3 (Minimum Magnetizing Current (Im min))	Nominal battery voltage	48.0	v	
0x4641 5 {Number of Pole Pairs (npp)} 0x4641 7 {Rated Stator Current}	Current control proportional gain (Kp)	2.0	_	
0x4641 10{Stator Inductance PMAC (Ls)}	la max beadroom (PMAC geometric)	09 0000224275		
0x4641 12{Nominal battery voltage}	iq max needroom (Privac geometric)	50.5390254373		
0x4641 13{Current control proportional gain (Kp)}	Current control integral gain (Ki)	0.0024/1923828125	_	
0x4641 14{Iq max neadroom (PMAC geometric)}	Voltage Constant (Ke)	0.019287109375	V/rads	
0x4641 18{Voltage Constant (Ke)}	Openloop start FW%	0.0	%	
0x4641 22{Openloop start FW%}	Frequency / Mod index control Kp	0.001556396484375		
0x4641 25{Frequency / Mod index control Kp}	Frequency / Mod index control Ki	0.000640869140625		
0x4641 20 {Prequency / Mod Index Control Ki}	Max drive mod index	99.9755859375	%	
0x4641 31{Max brake mod index}	May brake mod inter	90.000334375		
0x4641 33{D-axis current controller proportional gain}	Max brake mod index	89.990254575		
0x4641 34{D-axis current controller integral gain}	D-axis current controller proportional gain	0.0		
0x4641 43 {Percentage minimum allowed saturation of Ls}	D-axis current controller integral gain	0.0		
	Percentage minimum allowed saturation of Ls	50.0	%	

Fig. 73. La fenêtre « Search » du script « DCF Editor / Configuration Helper ».

Il est alors possible de modifier les valeurs et de les enregistrer dans le fichier DCF avec le bouton « Write Values » en rouge et/ou de relire les valeurs du fichier DCF avec le bouton « Read Values » en bleu.

Les variables peuvent être recherchées par leur adresse en hexadécimal au format :

0x4641

6 Bibliographie

- [1] Thierry LEQUEU, « AN-EK015-FR Installation du logiciel DVT pour les variateurs SEVCON GEN4 », 12 pages, janvier 2013, consulté le 11 août 2024 sur : <u>https://www.e-kart.fr/information/tutoriaux/678-an-ek015-fr-installation-du-logicieldvt-pour-les-variateurs-sevcon-gen4</u>
- [2] P. SHIPLEY, « Application Note DVT Installation (draft) », December 2nd, 2009, 6 pages.
- [3] Site web de la société SEVCON, <u>http://www.sevcon.com/</u> devient le site web de la société BorgWarner <u>https://www.borgwarner.com/</u>, consulté le 11 août 2024.
- [4] SEVCON, « Gen4 Product Manual », version 3.4, de décembre 2015, 115 pages, 3256 Ko, consulté le 11 août 2024 sur : https://www.e-kart.fr/1279-sevcon-gen4-product-manual-v3-4 devient BorgWarner « GEN4 Product Manual » version 4.2, de février 2022, consulté le 11 août 2024 sur : https://www.e-kart.fr/1700-borgwarner-gen4-product-manual-v4-2
- [5] Arnaud SIVERT, «AN-EK005-FR Didacticiel pour variateur GEN4 SEVCON (moteur AC) V2 », 32 pages, avril 2010, consulté le 11 août 2024 sur : <u>https://www.e-kart.fr/187-an-ek005-fr-didacticiel-pour-variateur-gen4-sevcon-moteurac-v2/</u>
- [6] Site web de la société IXXAT, <u>https://www.hms-networks.com/ixxat</u>, consulté le 11 août 2024.
- [7] Société SEVCON, « SEVCON DVT Tutorial Using DVT with Gen4 Systems », 11 pages, consulté le 11 août 2024 sur : https://www.e-kart.fr/698-sevcon-dvt-tutorial-using-dvt-with-gen4-systems/
- [8] Site web de la société ActiveState, <u>https://www.activestate.com/products/tcl/</u>, consulté le 11 août 2024.
- [9] H. SLATER, P. SHIPLEY, « SEVCON Setting up PMAC software », révision 14, du 18 mai 2018, 28 pages, 652 Ko, consulté le 11 août 2024 sur : https://www.e-kart.fr/images/stories/technique/SEVCON/sevcon-app-note-pmac.pdf
- [10] Thierry LEQUEU, « Exemple de câblage du circuit électrique d'un véhicule », consulté le 11 août 2024 sur : <u>https://www.e-kart.fr/279-exemple-de-cablage-du-circuit-electrique-d-un-kart/</u>
- [11] Dave CONBOY, « App Note KTY83-84 Obsolescence », May 22, 2015, 4 pages

7 Annexe 1 – Vérifications avant le lancement de DVTC

7.1 Le câblage du variateur – Section puissance

Le variateur doit être alimenté sous sa tension nominale et la source d'alimentation doit pouvoir fournir le courant nécessaire au fonctionnement du moteur.

Les bornes de puissances du moteur doivent être reliées aux variateurs en respectant l'ordre indiqué dans le rapport de paramétrage et/ou sur le schéma de câblage.

Les protections doivent être installées et notamment le relai de puissance SD300 qui est piloté par le variateur. Ce relai permet d'isoler la section de puissance en cas de défaut sur le variateur. Il n'y à pas besoin de diode de roue libre aux bornes de la bobine du relai car celleci est intégrée dans le variateur.

Fig. 74. Exemple de câblage de la section de puissance d'un variateur SEVCON GEN4 [10].

7.2 Le câblage du variateur – Section commande

- L'alimentation du variateur via les 2 broches 1 et 6 doit permettre l'alimentation du variateur avec un courant de démarrage important (quelques A). L'erreur « I/O init » intervient lorsque le câblage de l'alimentation du variateur limite la montée en tension lors de la mise sous tension (section de fils trop faible, trop de longueur de fils, source pas assez puissante...).
- Le codeur de position du moteur doit être relié au variateur en respectant bien l'isolation de la masse du codeur « 0V encoder » qui est différent de la masse de la batterie de puissance « B- » [4].
- Un connecteur DB9 broches femelle permettra une connexion plus aisée de l'interface de configuration via le bus CAN.

- Le voyant vert extérieur reproduit les clignotements du voyant qui est sur le variateur SEVCON en cas d'erreur : il est pratique sur le tableau de bord du véhicule !
- Les fonctions Avant/Stop/Arrière, l'accélérateur PB6 et son contact FS1 sont les entrées minimales utilisées avec la configuration par défaut du variateur.

Fig. 75. Exemple de câblage de la section de commande d'un variateur SEVCON GEN4 [10].

7.3 Vérification de l'interface « USB-to-CAN »

L'interface USB-to-CAN de IXXAT comporte deux voyants, un pour le bus USB et l'autre pour le bus CAN. Ces voyants renseignent sur l'état de la communication.

Fig. 76. L'interface USB-to-CAN compact IXXAT [6].

- © Si le voyant USB est vert, la communication avec l'interface USB-to-CAN compact via le port USB est possible.
- Par contre si le voyant USB est rouge, la communication n'est pas possible. Dans ce cas il faudra vérifier si vous avez bien installé VCI V3. En cas de soucis, les dernières versions des drivers de l'interface USB-to-CAN sont téléchargeables sur le site IXXAT à l'adresse :

https://www.ixxat.com/support/file-and-documents-download/drivers

Lorsque la communication via le port USB sera effective, vous pouvez alors lancer le logiciel « DVTC ».

<u>ATTENTION</u>: l'interface risque d'être installée pour un prise particulière de l'ordinateur et nécessitera peut être une nouvelle installation si l'interface USB-to-CAN est branchée sur une autre prise USB.

Fig. 77. L'interface USB-to-CAN V2 IXXAT [6].

8 Annexe 2 – Numérotation des variateurs SEVCON GEN4

8.1 Etiquette d'identification du produit

L'étiquette d'identification des variateurs SEVCON GEN4 se trouve sur le coté du variateur (voir la figure 79). Elle contient les informations suivantes :

- 1) Type : c'est un résumé des principales caractéristiques du variateur, ici de la famille GEN4, le niveau de tension (ici 36 V/48 V) et le courant moteur (ici 275 A) ;
- 2) Part : c'est le codage complet des caractéristiques du variateur qui est explicité au paragraphe §8.2 ;
- 3) Serial : c'est le numéro de série unique du variateur. Les 2 premiers chiffres correspondent à l'année de fabrication.

Fig. 78. Product Identification Label for SEVCON GEN4 Controllers.

 Size 2 models
 Size 4 models
 Size 6 models

 Fig. 79. Les 3 différentes tailles de variateur SEVCON GEN4.

8.2 Numérotation des variateurs SEVCON GEN4

- 634A : variateur GEN4 ?
- 42 : ??? size 2 4875
- 44 : ??? : size 4 4845
- 101 : codeurs A/B et U/V/W pour moteur asynchrone MAS
- 201 : codeurs A/B et U/V/W/ pour moteur synchrone MS
- 203 : codeur sin/cos pour moteur synchrone PERM : ATTENTION se variateur a une fabrication spécial qui modifie le rôle des entrées/sorties

8.3 Glossaire

EDS : Electronics Data Sheet : dictionnaire d'objects CAN (sans les valeurs numériques) Nom du fichier : product code+ revision number :

GEN4_pc0X0705503_rev0x0010010.eds

Describe in the DSP306 eds specification

EDS : fichier des paramètres de configuration

DCF : Device Configuation File : idem EDS avec les valeurs

SDO : Service Data Object

PDO : Process Data Object

CLI : ???

9 Annexe 3 – Les commandes en ligne

9.1 Le principe des commandes Tcl/Tk

Les commande Tcl/Tk peuvent être entrées directement dans la fenêtre d'invite de commande, ou être rédigée dans un fichier texte avec l'extension « *.tcl » [2][8].

9.1.1 Affichage d'un texte

puts "Hello World"

9.1.2 Commentaires

La ligne de texte après le symbole « # » est ignorée

9.1.3 Les variables

set x "Green" puts "My favourite colour is \$x"

```
set p "10"
puts "The value of p is $p"
```

9.1.4 Les calculs

expr (8 + 12) expr (5 / 2) expr (5.0 / 2.0) expr (0x08 + 0x04) expr (0x18 | 0x34)

Il faut utiliser les caractères « [et] » pour insérer des commandes qui seront évaluées avant d'être affectées à la variable.

set x [expr (4 + 5)] puts "The value of x is \$x" puts "Four squared is [expr (4 * 4)]"

9.1.5 Les boucles de calcul

```
foreach n { 1 5 10 20 50 100 } {
puts "$n squared is [ expr ( $n * $n ) ]"
}
```

```
for { set p 1 } { $p <= 10 } { incr p } {
puts "$p cubed is [ expr ( $p * $p * $p ) ]"
}
```

9.1.6 Déclaration des procédures

```
proc add_four { num } {
set r [ expr ( $num + 4 ) ]
return $r
}
add_four 9
```

9.2 Commandes CANopen des variateurs SEVCON GEN4

9.2.1 Chargement manuel d'un fichier de configuration DCF

- 1- Lancer le script « DVT Customer ».
- 2- Choisir la bonne vitesse de communication jusqu'à ce que la LED verte de l'interface IXXAT clignote des deux côtés.
- 3- Dans la fenêtre de commande de « DVTC », tapez les lignes suivantes et validez chacune en tapant sur la touche « ENTER » :

lg 1 # Se connecter sur le nœud CAN N° 1 (« log on node 1 »)

fpo 1 PRE # Mettre le variateur du nœud 1 en mode « PRE » (opérationnel). dl_dcf [tk_getOpenFile] 1 # Chargement du fichier « DCF » dans le variateur # du nœud 1 après avoir sélectionner un fichier.

- 4- Sélectionner via l'interface Windows le fichier « DCF » à charger
- 5- Patientez quelques instants le temps que le fichier soit chargé dans le variateur.
- 6- Coupez l'alimentation du variateur et remettez-la en place (« recycle »).

9.2.2 Liste des « Active Faults »

La commande « flts » :

dvt(101) % flts + « ENTER »

fera apparaitre la liste des défauts sur le variateur du nœud CAN 1, par exemple :

- 0:0x5101 Line Contactor o/c
- 1: 0x4981 Throttle Fault
- 2: 0x45c1 BDI Warning
- 3: 0x45c2 BDI Cutout

9.2.3 Chargement manuel d'un fichier « Software » DLD

Dans la zone des commandes en ligne de la fenêtre du logiciel « DVTC », il faut tout d'abord mettre le variateur GEN4 en mode « Preoperationnal » avec la commande « fpo pre ».

La commande en ligne pour passer en mode « boot loader » est « bts 1 ».

Pendant la mise à jour du software, le variateur passe en mode « boot loader » : la LED verte clignote rapidement puis RESTE ETEINTE.

Fig. 80. La commande « enter boot loader mode » dans la fenêtre « DVT ».

Pour charger le fichier, il faut utiliser la commande « load_dld 1 » : une fenêtre de sélection de fichier s'ouvre afin de choisir le fichier DLD à utiliser.

Fig. 81. La commande « load_dld 1 » dans la fenêtre « DVT ».

IMPORTANT : Le transfert prend quelques minutes et est TRES CRITIQUE : il ne faut pas interrompre le processus avant la fin et il ne faut pas couper l'alimentation du variateur. En cas de soucis pendant le transfert, le variateur devra retourner en usine et risque d'être irrécupérable !

	Information
found 1 memory ranges in C:/Users/Sevcon/Desktop/Damascu dsp-zeffer programming dsp-zeffer on mode 1 block checksum 0x011e9189	s Software Settings Adv Motor 634A46313/0706_gen4_openloop_slip.dld (modified 01/27) 0K
Traction State: OFF Already longed in at a higher level	As the software is down loading, you will see a series of dots being created. Once
dvt(104) % load_dld 1 OK dvt(105) %	the software is done downloading (at the end of the dots) it will say OK.
COM1 open X DAQ Offline CANbus Online X Not Monitoring	an 2012 10

Fig. 82. Transfert du software en cours dans la fenêtre « DVT ».

Pendant le transfert du nouveau programme, une série de point s'affiche dans la fenêtre « Information » à la suite du texte « programming dsp-zeffer on node 1 ».

A la fin du transfert, le message « OK » apparait dans la fenêtre de commande.

Il est important de sortir du mode « boot loader » avec la commande « bte 1 ».

A ce stade, la LED verte du variateur GEN4 se remet à clignoter. ATTENTION : le variateur est en mode « Preoperationnal ».

Il faut couper l'alimentation du variateur, attendre quelques secondes et remettre le variateur sous tension « Power Recycle ». Il faut également fermer le logiciel DVTC et le relancer.

En cliquant sur le bouton « H », le script « Helper » vérifiera la cohérence du fichier EDS disponible sur le disque dur de l'ordinateur avec le nouveau software et demandera la création d'un nouveau fichier en cas de besoin.

En cas de problème pendant le transfert, il ne faut pas sortir du mode « boot loader ». Il faut couper l'alimentation du variateur, le remettre sous tension (« **Power recycle** ») et recommencer le chargement avec la commande « load_dld 1 ».

10 Annexe 4 – Les variables du moteur

10.1 La commande « Save Partial DCF » dans « DVTC Helper »

La sauvegarde d'un fichier DCF partiel est accessible à partir du menu :

- fenêtre su script « Helper » ;
- menu « Settings »;
- menu « Save Partial DCF ».

Il n'est pas nécessaire d'être en mode « PreOp » pour sauvegarder la configuration du variateur dans un fichier DCF. L'opération prend quelques minutes : il ne faut pas interrompre le processus avant la fin et il ne faut pas couper l'alimentation du variateur.

Fig. 83. Le menu « Save Partial DCF » dans la fenêtre du script « Helper ».

Une nouvelle fenêtre s'ouvre et permet de sélectionner les différentes variables à extraire.

Le bouton « Add PMAC Motor Items » permet de sélectionner directement les variables caractéristiques correspondantes aux paramètres du moteur.

<u>Remarques</u>: tous les « sub index » des variables sélectionnées seront entièrement sauvegardés.

Le bouton « Save Selected Items » permet de générer un fichier DCF partiel contenant les variables qui ont été sélectionnées.

Add from :earch list Add PMAC Motor Items Add by Hex Address Add PDOs
Charallist

Fig. 84. La fenêtre « Object Search » du menu « Save Partial DCF ».

10.2 Liste des variables fournies par « Add PMAC Motor Items »

Le bouton « Add PMAC Motor Items » permet de sélectionner directement les variables caractéristiques correspondantes aux paramètres du moteur, à savoir :

- 0x4611 Motor power limit map
- 0x4615 Motor power limit map 2
- 0x4617 Programmable User Data
- 0x4620 Motor Temperature 1 (Measured T1)
- 0x4621 Motor Temperature Setup
- 0x4630 Encoder Configuration
- 0x4640 Motor Nameplate Data
- 0x4641 AC Motor data (manufacturer specific)
- 0x4650 Miscellaneous DSP configuration (Gen4)
- 0x6072 Maximum torque
- 0x6075 Current limit
- 0x6076 Peak torque
- 0x6090 Encoder resolution

🔞 dvt_partial_dcf_search	🚯 dvt_partial_dcf_search
Object Search	Object Search
Add from search list Add PMAC Motor Items Add by Hex Address	Add from search list Add PMAC Motor Items Add by Hex Address
Add PDOs 0x4611 0x4615 0x4617 0x4620 0x4621 0x4630 0x4640 0x4641 0x4650 0x6072	Add PDOs 0x4620 ^ 0x4621 ^ 0x4630 ^ 0x4640 ^ 0x4650 _ 0x6072 ^ 0x6075 ^ 0x6090 ▼
Clear List Save Selected Items Save All Other Items	Clear List Save Selected Items Save All Other Items

Fig. 85. Résultat du bouton « Add PMAC Motor Items ».

10.2.1 Variable 0x4611 – Motor power limit map

0x4611	Motor power limit map
0x4611 sub 0	Number of entries = $0x12 = 18$
0x4611 sub 1	Pt 1 Max Torque
0x4611 sub 2	Pt 1 Speed

0x4615	Motor power limit map 2
0x4615 sub 0	Number of entries $= 0x12 = 18$
0x4615 sub 1	Secondary Pt 1 Max Torque
0x4615 sub 2	Secondary Pt 1 Speed

10.2.2 Variable 0x4615 – Motor power limit map 2

10.2.3 Variable 0x4617 – Programmable User Data

0x4617	Programmable User Data
0x4617 sub 0	Number of entries $= 4$
0x4617 sub 1	Data = 0xffffffffffff
0x4617 sub 2	Description of data
0x4617 sub 3	Version of Data
0x4617 sub 4	Checksum of Data

10.2.4 Variable 0x4620 – Motor Temperature 1 (Measured - T1)

0x4620	Motor Temperature 1 (Measured - T1)
0x4620 sub 0	Number of entries $= 7$
0x4620 sub 1	Mode = 1
0x4620 sub 2	High Temperature Voltage (PTC)
0x4620 sub 3	Low Temperature Voltage (PTC)
0x4620 sub 4	Switch source
0x4620 sub 5	PTC type
0x4620 sub 6	Failure torque cutback rate
0x4620 sub 7	Failure torque recovery rate

10.2.5 Variable 0x4621 – Motor Temperature Setup

0x4621	Motor Temperature Setup
0x4621 sub 0	Number of entries $= 7$
0x4621 sub 1	Motor temperature estimate current constant
0x4621 sub 2	Motor temperature estimate discretization
0x4621 sub 3	Maximum allowable motor temperature
0x4621 sub 4	Resistance variation hot temperature
0x4621 sub 5	Resistance variation cold temperature
0x4621 sub 6	Resistance variation hot factor
0x4621 sub 7	Resistance variation cold factor

10.2.6 Variable 0x4620 – Encoder Configuration

0x4630	Encoder Configuration
0x4630 sub 0	Number of entries = $0x15 = 21$
0x4630 sub 1	Encoder Pull Up
0x4630 sub 2	Encoder Supply
0x4630 sub 3	Encoder Type
0x4630 sub 4	Encoder Offset
0x4630 sub 5	Sin input minimum (trough) voltage
0x4630 sub 6	Sin input maximum (peak) voltage

0x4630 sub 7	Cos input minimum (trough) voltage
0x4630 sub 8	Cos input maximum (peak) voltage
0x4630 sub 9	Actual sin minimum (trough) voltage
0x4630 sub A	Actual sin maximum (peak) voltage
0x4630 sub B	Actual cos minimum (trough) voltage
0x4630 sub C	Actual cos maximum (peak) voltage
0x4630 sub E	Multipole Sin-cos / Resolver waves per mechanical rotation
0x4630 sub 10	Encoder offset
0x4630 sub 12	Sin-cos/UVW latency select
0x4630 sub 13	Sin-cos/UVW latency fine adjust
0x4630 sub 14	Sin-cos min warning voltage
0x4630 sub 15	Sin-cos max warning voltage

10.2.7 Variable 0x4640 – Motor Nameplate Data

Ces données ne sont pas présentes dans le DCF moteur du PMS100...

0x4640	Motor Nameplate Data
0x4640 sub 0	Number of entries
0x4640 sub 1	Rated line voltage
0x4640 sub 2	Rated phase current
0x4640 sub 3	Rated mechanical speed
0x4640 sub 4	Rated frequency
0x4640 sub 5	Rated power
0x4640 sub 6	Power factor

10.2.8 Variable 0x4041 – AC Motor data (manufacturer specific)

0x4641	AC Motor data (manufacturer specific)
0x4641 sub 0	Number of entries = $0x2b = 43$
0x4641 sub 1	Commit
0x4641 sub 2	Maximum Stator Current (Is_max)
0x4641 sub 3	Minimum Magnetizing Current (Im_min)
0x4641 sub 4	
0x4641 sub 5	Number of Pole Pairs (np)
0x4641 sub 6	
0x4641 sub 7	Rated Stator Current
0x4641 sub 8	
0x4641 sub 9	
0x4641 sub A	Stator Inductance (Ls)
0x4641 sub B	
0x4641 sub C	Nominal battery voltage
0x4641 sub D	Current control proportional gain (Kp)
0x4641 sub E	Iq max headroom (G-Mode IQM)
0x4641 sub F	Current control integral gain (Ki)
0x4641 sub 10	
0x4641 sub 11	
0x4641 sub 12	Voltage Constant (Ke) V/rads (line, rms, elec_frq)
0x4641 sub 13	
0x4641 sub 14	
0x4641 sub 15	

0x4641 sub 16	Openloop start FW%
0x4641 sub 17	
0x4641 sub 18	
0x4641 sub 19	Frequency/Mod index control Kp
0x4641 sub 1A	Frequency/Mod index control Ki
0x4641 sub 1B	
0x4641 sub 1C	
0x4641 sub 1D	
0x4641 sub 1E	Max drive mod index
0x4641 sub 1F	Max brake mod index
0x4641 sub 20	
0x4641 sub 21	D-axis current controller proportional gain
0x4641 sub 22	D-axis current controller integral gain
0x4641 sub 23	
0x4641 sub 24	
0x4641 sub 25	
0x4641 sub 26	
0x4641 sub 27	
0x4641 sub 28	
0x4641 sub 2A	
0x4641 sub 2B	Percentage minimum allowed saturation of Ls

10.2.9 Variable 0x4650 – Miscellaneous DSP configuration (Gen4)

On retrouve ici 2 groupes de 16 bits d'informations « Tout ou Rien » codées sur chaque bit par « 0 » ou « 1 ».

0x4650	Miscellaneous DSP configuration (Gen4)
0x4650 sub 0	Number of entries $= 2$
0x4650 sub 1	Miscellaneous DSP configuration 1 (Gen4) (16 bits)
0x4650 sub 2	Miscellaneous DSP configuration 2 (Gen4) (16 bits)

10.2.10 Variable 0x6072, 0x6075 et 0x6076

0x6072	Maximum torque
0x6075	Current limit
0x6076	Peak torque

10.2.11 Variable 0x6090 – Encoder resolution

C'est la définition de la résolution de l'encodeur.

0x6090	Encoder resolution
0x6090 sub 0	Number of entries $= 2$
0x6090 sub 1	Pulses per revolution
0x6090 sub 2	Motor revolutions per second

11 Annexe 5 – Des pistes pour le réglage des correcteurs

11.1 Boucle de vitesse

11.2 Boucle de courant

Liste des figures :

Fig. 1. Interface USB-to-CAN compact [6].	5
Fig. 2. Raccourci pour l'exécution du logiciel DVTC en 2024	5
Fig. 3. Les fenêtres du logiciel DVTC version 2024.06a	6
Fig. 4. Le menu « CAN » du logiciel DVTC.	6
Fig. 5. Le menu « Info Window »	7
Fig. 6. La fenêtre « Information » du logiciel DVTC	7
Fig. 7. La fenêtre de commande en ligne du logiciel DVTC.	7
Fig. 8. Choix de la vitesse du bus CAN et lancement du « Helper »	8
Fig. 9. Bouton d'exécution du script « Vehicle Interface ».	8
Fig. 10. Bouton d'exécution du script « Helper ».	8
Fig. 11. Boutons de connexion au variateur.	8
Fig. 12. Selection et modification d'un fichier DCF	8
Fig. 13. Ecran d'accueil du variateur sous « DVT Helper ».	9
Fig. 14. Ecran d'accueil du variateur avec « DVTC Configuration Helper »	10
Fig. 15. Onglet « Input/Output » de définition des entrées digitales et analogiques et des	
sorties de puissance.	11
Fig. 16. Onglet « Input/Output » de définition des sortie digitales de puissances	12
Fig. 17. L'onglet « Tree » dans la fenêtre du « Helper ».	13
Fig. 18. Exemple d'utilisation du bouton « Search »	13
Fig. 19. Menu « Tree – Vehicle Master Applications – Battery Application (Contactor) –	
Contactor Voltages »	14
Fig. 20. Paramétrage de la fonction « Line Contactor Dropout »	14
Fig. 21. Le voyant de signalisation 24V XB4-BVB3	15
Fig. 22. Menu « Tree – Vehicle Master Applications – Battery Application (Contactor) –	
Contactor Control Mode »	15
Fig. 23. Exemple de réduction de tension aux bornes du voyant. Cas d'une alimentation en	
72V et d'un paramétrage en 24V.	15
Fig. 24. Menu « Tree – Vehicle Master Applications – Battery Application (Contactor) –	
Contactor Reduce to Hold Level »	16
Fig. 25. Menu « Tree – Status – Raw Analog Inputs ».	16
Fig. 26. Menu « Tree – Configuration – Throttle »	17
Fig. 27. Menu « Throttle setup » sur la page « Configuration Helper »	17
Fig. 28. Résultats de la procédure « Throttle setup »	18
Fig. 29. Menu « Tree – Tree – Motor Thermistor – Sensor Configuration ».	18
Fig. 30. Menu « Tree – Motor Thermistor – Sensor Configuration » pour la PT1000	19
Fig. 31. Menu « User Definable Thermistor Map 0x461F » pour le capteur PT1000	19
Fig. 32. Bouton « Main – Battery / DC link Limits ».	20
Fig. 33. Menu « Tree – Vehicle Master Applications – Battery Application (Protection) »	21
Fig. 34. Menu « Main – Battery/DC link Limits – Voltage Cutback Map (Drive/Regen Trq)	».
	22
Fig. 35. Les limites en tension des variateurs SEVCON GEN4.	22
Fig. 36. Le menu « Main – 1 orque Conditioner »	23
Fig. 3/. Le menu « Main – 1 orque Conditioner – DC current limit »	23
Fig. 38. Evolution du couple maximal en Nm en fonction de la vitesse en tr/min	24
F19. 39. Le menu « Main – Drive Profiles ».	2.
	25
Fig. 40. Réglage des limites d'utilisation du moteur « Baseline Profile »	25 26

Fig. 42. Réglage des limites d'utilisation du moteur « Driveability Select 2 Profile »	27
Fig. 43. Réglage des limites d'utilisation du moteur « Driveability Select 3 Profile »	27
Fig. 44. Description de l'objet 0x5A01 pour la configuration d'un ventilateur	28
Fig. 45. La sortie « Contactor 2 » est utilisée pour la pompe de refroidissement	28
Fig. 46. Paramétrage de l'objet 0x5A01 pour la configuration d'un ventilateur.	28
Fig. 47. Le menu « Main – Controller Setting – Save DCF from unit » dans la fenêtre du	
script « Configuration Helper »	29
Fig. 48. Le nommage des fichiers « DCF » dans le répertoire « C:\BorgWarner-DCF-	
DLD\DCF »	30
Fig. 49. Le menu « Send DCF To Unit » dans la fenêtre du « Configuration Helper »	31
Fig. 50. Passage en 72V 550A avec la commande « configure voltage items 1 72 550 »	33
Fig. 51. Le menu «Reprogram Unit Firmware » pour charger un fichier « DLD »	34
Fig. 52. Transfert du software en cours dans la fenêtre « DVT »	35
Fig. 53. L'onglet « TPDO/RPDO » du script « Helper »	38
Fig. 54. Exemple de données transmissent par les « TPDO »	38
Fig. 55. Les données transmissent par le « TPDO1 »	39
Fig. 56. Les données transmissent par le « TPDO2 ».	39
Fig. 57. Les données transmissent par le « TPDO3 ».	39
Fig. 58. Les données transmissent par le « TPDO4 ».	40
Fig. 59. Les données transmissent par le « TPDO5 ».	40
Fig. 60. Le menu « CAN Setup – Physical layer setting »	40
Fig. 61. Changement de la vitesse du bus CAN, menu « CAN »	41
Fig. 62. Les paramètres du moteur « AC Motor Data (manufacturer specific) »	42
Fig. 63. Bouton d'exécution du script « Vehicle Interface ».	43
Fig. 64. La fenêtre du script « Vehicle Interface »	43
Fig. 65. Les boutons de contrôle du script « Vehicle Interface » 1/2	44
Fig. 66. Les boutons de contrôle du script « Vehicle Interface » 2/2	44
Fig. 67. La macro Excel « Vehicle Interface Log Viewer.xlsm »	44
Fig. 68. La macro Excel « Vehicle Interface Log Viewer.xlsm » génère une erreur	45
Fig. 69. Résultat de la macro Excel « Vehicle Interface Log Viewer.xlsm » avec 2 courbes	s en
erreur.	45
Fig. 70. La macro Excel « Vehicle Interface Log Viewer.xlsm » corrigée !	46
Fig. 71. Résultat de la macro Excel « Vehicle Interface Log Viewer.xlsm » avec les 2 cou	rbes
en erreur qui ont été supprimées.	46
Fig. 72. Bouton d'exécution du script « Editor ».	47
Fig. 73. La fenêtre « Search » du script « DCF Editor / Configuration Helper »	47
Fig. 74. Exemple de câblage de la section de puissance d'un variateur SEVCON GEN4 [1	0].
	49
Fig. 75. Exemple de câblage de la section de commande d'un variateur SEVCON GEN4 [10].
	50
Fig. 76. L'interface USB-to-CAN compact IXXAT [6].	50
Fig. 77. L'interface USB-to-CAN V2 IXXAT [6].	51
Fig. 78. Product Identification Label for SEVCON GEN4 Controllers	52
Fig. 79. Les 3 différentes tailles de variateur SEVCON GEN4	52
Fig. 80. La commande « enter boot loader mode » dans la fenêtre « DVT »	55
Fig. 81. La commande « load dld 1 » dans la fenêtre « DVT »	56
Fig. 82. Transfert du software en cours dans la fenêtre « DVT ».	56
Fig. 83. Le menu « Save Partial DCF » dans la fenêtre du script « Helper ».	57
Fig. 84. La fenêtre « Object Search » du menu « Save Partial DCF »	57
Fig. 85. Résultat du bouton « Add PMAC Motor Items ».	58
-	

Liste des tableaux :

 Tab. 1. Valeur de la résistance du capteur de température KTY84......18