POWER MOS 7® MOSFET

Power MOS 7® is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETs. Both conduction and switching losses are addressed with Power MOS 7® by significantly lowering $R_{DS(on)}$ and Q_g. Power MOS 7® combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT’s patented metal gate structure.

- Lower Input Capacitance
- Lower Miller Capacitance
- Lower Gate Charge, Q_g
- Increased Power Dissipation
- Easier To Drive
- Popular SOT-227 Package

MAXIMUM RATINGS

All Ratings: $T_C = 25°C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>APT20M20JLL</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DSS}</td>
<td>Drain-Source Voltage</td>
<td>200</td>
<td>Volts</td>
</tr>
<tr>
<td>I_D</td>
<td>Continuous Drain Current @ $T_C = 25°C$</td>
<td>104</td>
<td>Amps</td>
</tr>
<tr>
<td>I_{DM}</td>
<td>Pulsed Drain Current</td>
<td>416</td>
<td></td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate-Source Voltage Continuous</td>
<td>±30</td>
<td>Volts</td>
</tr>
<tr>
<td>V_{GSM}</td>
<td>Gate-Source Voltage Transient</td>
<td>±40</td>
<td></td>
</tr>
<tr>
<td>P_D</td>
<td>Total Power Dissipation @ $T_C = 25°C$</td>
<td>463</td>
<td>Watts</td>
</tr>
<tr>
<td></td>
<td>Linear Derating Factor</td>
<td>3.70</td>
<td>W/°C</td>
</tr>
<tr>
<td>T_J,T_{STG}</td>
<td>Operating and Storage Junction Temperature Range</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>Lead Temperature: 0.063” from Case for 10 Sec.</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>I_{AR}</td>
<td>Avalanche Current (Repetitive and Non-Repetitive)</td>
<td>100</td>
<td>Amps</td>
</tr>
<tr>
<td>E_{AR}</td>
<td>Repetitive Avalanche Energy</td>
<td>50</td>
<td>mJ</td>
</tr>
<tr>
<td>E_{AS}</td>
<td>Single Pulse Avalanche Energy</td>
<td>2500</td>
<td></td>
</tr>
</tbody>
</table>

STATIC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic / Test Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BVDSS$</td>
<td>Drain-Source Breakdown Voltage ($V_{GS} = 0V$, $I_D = 250µA$)</td>
<td>200</td>
<td></td>
<td></td>
<td>Volts</td>
</tr>
<tr>
<td>$R_{DS(on)}$</td>
<td>Drain-Source On-State Resistance ($V_{GS} = 10V$, $I_D = 52A$)</td>
<td>0.020</td>
<td>Ohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DS}</td>
<td>Zero Gate Voltage Drain Current ($V_{DS} = 200V$, $V_{GS} = 0V$)</td>
<td>100</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zero Gate Voltage Drain Current ($V_{DS} = 160V$, $V_{GS} = 0V$, $T_C = 125°C$)</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{GSS}</td>
<td>Gate-Source Leakage Current ($V_{GS} = ±30V$, $V_{DS} = 0V$)</td>
<td>±100</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{GS(th)}$</td>
<td>Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 2.5mA$)</td>
<td>3</td>
<td>5</td>
<td>Volts</td>
<td></td>
</tr>
</tbody>
</table>

⚠️ CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
DYNAMIC CHARACTERISTICS

### Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C_{gs} | Input Capacitance | V_{GS} = 0V, V_{DS} = 25V | 6850 | | | pF
C_{oss} | Output Capacitance | | 2180 | | | pF
C_{rss} | Reverse Transfer Capacitance | f = 1 MHz | 95 | | | nF
Q_{g} | Total Gate Charge □ | V_{GS} = 10V, V_{DD} = 100V | 110 | | | nC
Q_{gs} | Gate-Source Charge | I_{b} = 104A @ 25°C | 43 | | | µC
Q_{gd} | Gate-Drain ("Miller") Charge | | 47 | | | µC
\(t_{d(on)} \) | Turn-on Delay Time | RESISTIVE SWITCHING | 13 | | | ns
\(t_{r} \) | Rise Time | | 40 | | | ns
\(t_{d(off)} \) | Turn-off Delay Time | INDUCTIVE SWITCHING @ 25°C | 26 | | | ns
\(t_{f} \) | Fall Time | INDUCTIVE SWITCHING @ 125°C | 2 | | | ns
E_{on} | Turn-on Switching Energy □ | V_{DD} = 130V, V_{GS} = 15V | 465 | | | µJ
E_{off} | Turn-off Switching Energy | | 455 | | | µJ
E_{on} | Turn-on Switching Energy □ | V_{DD} = 130V, V_{GS} = 15V | 920 | | | µJ
E_{off} | Turn-off Switching Energy | | 915 | | | µJ

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
I_{S} | Continuous Source Current (Body Diode) | 104 | | | Amps
I_{SM} | Pulsed Source Current □ (Body Diode) | 416 | | | Amps
V_{SD} | Diode Forward Voltage □ (V_{GS} = 0V, I_{S} = -I_{D104A}) | 1.3 | | | Volts
t_{rr} | Reverse Recovery Time (I_{S} = -I_{D104A}, dI_{S}/dt = 100A/µs) | 284 | | | ns
Q_{rr} | Reverse Recovery Charge (I_{S} = -I_{D104A}, dI_{S}/dt = 100A/µs) | 3.06 | | | µC
dv/dt | Peak Diode Recovery \(dv/dt \) □ | 5 | | | V/ns

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
R_{JUC} | Junction to Case | 0.27 | | | °C/W
R_{JUA} | Junction to Ambient | 40 | | | °C/W

1 Repetitive Rating: Pulse width limited by maximum junction temperature
2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%
3 See MIL-STD-750 Method 3471
4 Starting \(T_{J} = +25°C, L = 0.46mH, R_{G} = 25Ω, \) Peak \(I_{C} = 104A \)
5 \(dv/dt \) numbers reflect the limitations of the test circuit rather than the device itself. \(I_{S} \leq -I_{D75A} \), \(dv/dt \leq 700A/µs \), \(V_{R} \leq V_{DSS} \), \(T_{J} \leq 150°C \)
6 Eon includes diode reverse recovery. See figures 18, 20.

APT Reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves

FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL

FIGURE 3, LOW VOLTAGE OUTPUT CHARACTERISTICS

FIGURE 4, TRANSFER CHARACTERISTICS

FIGURE 5, R_DS(ON) vs DRAIN CURRENT

FIGURE 6, MAXIMUM DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 7, BREAKDOWN VOLTAGE vs TEMPERATURE

FIGURE 8, R_DS(ON) vs TEMPERATURE

FIGURE 9, THRESHOLD VOLTAGE vs TEMPERATURE
FIGURE 10, MAXIMUM SAFE OPERATING AREA

- V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
- Q_g, TOTAL GATE CHARGE (nC)

FIGURE 11, CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE

- C_{iss}, SOURCE-DRAIN DIODE FORWARD VOLTAGE

FIGURE 12, GATE CHARGE vs GATE-TO-SOURCE VOLTAGE

- V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

FIGURE 13, SOURCE-DRAIN DIODE FORWARD VOLTAGE

- I_D, DRAIN CURRENT (AMPERES)

FIGURE 14, DELAY TIMES vs CURRENT

- $I_D (A)$

FIGURE 15, RISE AND FALL TIMES vs CURRENT

- $I_D (A)$

FIGURE 16, SWITCHING ENERGY vs CURRENT

- $I_D (A)$

FIGURE 17, SWITCHING ENERGY VS. GATE RESISTANCE
Figure 18, Turn-on Switching Waveforms and Definitions

Figure 19, Turn-off Switching Waveforms and Definitions

Figure 20, Inductive Switching Test Circuit

SOT-227 (ISOTOP®) Package Outline

* Source terminals are shorted internally. Current handling capability is equal for either Source terminal.