Revised Application Notes and Design Tips

	<u>Title (and topic, if necessary)</u>	Document#	<u>Pages</u>	<u>Date</u>
INT-936	The Do's and Don'ts of Using MOS-Gated Transistors	936	7	May-97
	(Comprised of: AN-936)			
	Be Mindful of the Reverse Blocking Characteristics of the Device			
	Be Careful When Handling and Testing Power HEXFETs			
	Beware of Unexpected Gate-to-Source Voltage Spikes			
	Beware of Drain or Collector Voltage Spikes Induced by Switching			
	Do Not Exceed the Peak Current Rating			
	Stay Within the Thermal Limits of the Device			
	Pay Attention to Circuit Layout			
	Be Careful When Using the Integral Body-Drain Diode			
	Be On Your Guard When Comparing Current Ratings			
INT-937	Gate Drive Characteristics and Requirements for HEXFET's	937	21	May-97
	(Comprised of: AN-937, AN-971 & DT94-5)			
	Gate Drive -vs- Base Drive			
	Enhancement -vs- Depletion			
	N -vs- P-Channel			
	Maximum Gate Voltage			
	Zener Diodes on Gate?			
	The Most Important Factor in Gate Drive: The Impedance of the Gate Drive Circuit			
	Switching 101 or Understanding the Waveforms			
	What Happens if Gate Drive Impedance is High? dv/dt Induced Turn-on			
	Can a TTL Gate Drive a Standard <i>HEXFET</i> ?			
	The Universal Buffer			
	Power Dissipation of the Gate Drive Circuit is Seldom a Problem			
	Can a C-MOS Gate Drive a Standard <i>HEXFET</i> ?			
	Driving <i>HEXFETs</i> From Linear Circuits			
	Drive Circuits not Referenced to Ground			
	Gate Drivers With Optocouplers			
	Gate Drive Supply Developed From the Drain of the Power Device			
	Gate Drivers with Pulse Transformers			
	Gate Drivers With Choppers			
	Drive Requirements of a Logic Level HEXFET			
	How Fast is a Logic Level <i>HEXFET</i> Driven by a Logic Circuit?			
	Simple and Inexpensive Isolated Gate Drive Supplies			
	A Well-Kent Secret: Photovoltaic Generators as Gate Drivers			
	Driving in the MHz? Use Resonant Gate Drivers			
INT-940	How P-channel HEXFETs Can Simplify Your Circuit	940	4	Jun-97
111 940	(Comprised of: AN-940)	740		Juli J7
	Why P_Channel?			
	Basic Characteristics			
	Grounded Loads			
	Utomided Loads			
	Common Source Teter Pole			
	Continion Source Totem Pole			
	How to Dadues the Noise Capacitizely Coupled Into the Sink			
	The True Mart Course Capacitively Coupled into the Sink			
	The Two Most Common Applications			

INT-941	Paralleling HEXFETs	941	6	Jun-97
	(Comprised of: AN-941)			
	General Guidelines			
	Steady State Sharing			
	Dynamic Sharing at Turn-On			
	Dynamic Sharing at Turn-Off			
	Related Topics			
INT-944	Use Gate Charge to Design the Gate Drive Circuit for Power FETs & IGBTs	944	4	Jun-97
	(Comprised of: AN-944)			
	Background			
	Test Method			
	How to Interpret the Gate Charge Curve			
	How to Estimate Switching Times			
	How to Compare Different Devices			
INT-948	Linear Power Amplifier Using Complimentary HEXFETs	948	7	Jun-97
	(Comprised of: AN-948)			
	A Description of the Circuit			
	Performance			
	Power Supply Requirements			
	Set-Up and Troubleshooting			
	Performance Summary			
	Related Topics			
INT-950	Transformer-Isolated Gate Driver Provides Very Large Duty Cycle Ratios	950	3	Jun-97
INT-955	Protecting IGBTs and MOSETs from ESD	955	4	Jun-97
INT-957	Measuring HEXFET Characteristics	957	10	Jun-97
	(Comprised of AN-957 & DT94-16)			
	Converting the Nomenclature from Bipolars to MOSFETs			
	P-Channel HEXFETs			
	Initial Settings			
	Breakdown			
	Drain Leakage			
	Gate Threshold			
	Gate Leakage			
	Transconductance			
	On-Resistance			
	Diode Drop			
	Characteristics in Synchronous Rectification			
	Transfer Characteristics			
	Measurements Without a Curve Tracer			
	Device Canacitance's			
	Switching Times			
	Gate Charge			
	Reverse Recovery			
	A Fixture to Sneed-Un testing Time			
	Related Torrige			
INT-966	HEXFET III: A New Generation of nower MOSFETs	966	16	Iun-07
	That he was a selection of power heads had	700	10	Jun-)/

	(Comprised of: AN-983)			
	How the IGBT Compliments the MOSFET			
	Silicon Structure and Equivalent Circuit			
	Conduction Characteristics and "Switchback"			
	Switching Characteristics			
	Latching			
	Safe Operating Area			
	Transonductance			
	How to Read the Data Sheet			
	Families of IGBTs			
INT-985	Six-Output 600V CICs Simplify 3-Phase Motor Drives	985	11	Jun-97
	(Comprised of: AN-985 & DT92-6)			
	What it Takes to Drive the Gates of an Inverter			
	Block diagram of the Three-Phase CICs			
	How the Input Logic Works			
	How the Protection Circuits Work			
	Current Sensing and its Limitations			
	Output Drivers			
	How to Select the Bootstrap Components			
	How to Calculate the Power Dissipation on the Chip			
	Layout Guidelines			
	A Simple Six-Step Three-Phase Inverter			
	How to Build a Variable Reluctance Drive			
	How to Isolate Logic From Power			

Application Notes and Design Tips

	Title (and topic, if necessary)	Document #	Pages	Date
HEXFET	Annlication Notes and Design Tips			
AN-939A	A Universal 100kHz Power Supply Using a Single <i>HEXFET</i>	939	12	Nov-95
AN-964B	High Voltage, High Frequency Switching Using a Cascade			
11. 2012	Connection of <i>HEXFET</i> and Bipolar Transistor	946	12	Aug-95
AN-947	Understanding <i>HEXFET</i> Switching Performance	947	14	Aug-95
AN-949	Current Ratings Safe Operating Area, and High Frequency			1108 /2
11, 212	Switching Performance of Power <i>HEXFETs</i>	949	13	Sep-94
AN-952A	A Multiple Output. Off-Line Switching Power Supply Using HEXFETs	952	7	Aug-95
AN-953	More Power from <i>HEXdips</i>	953	4	Aug-95
AN-956A	Using Surface Mounted Devices	956	8	Aug-94
AN-959	An Introduction to the <i>HEXSense</i> Current-Sensing Device	959	6	Aug-94
AN-960A	A 250 Watt Current-Controlled SMPs with Sync. Rectification	960	4	Aug-94
AN-961B	Using HEXsense Current-Sense <i>HEXFETs</i> in Current-Mode Control			
	Power Supplies	961	5	Aug-94
AN-962	A 70W Boost-Buck (CUK) Converter Using <i>HEXsense</i>			
	Current-Mode Control	962	3	Aug-94
AN-963	230 Watt Buck Regulator with <i>HEXsense</i> Rectifiers	963	3	Aug-94
AN-964D	Characteristics of <i>HEXFET</i> III Dice	964	11	Aug-94
AN-965A	A 500W 100 khz Resonant Converter Using HEXFETs	965	7	Aug-94
AN-967	Using HEXFETs in PWM Inverters for Motor Drives & UPS Systems	967	15	Aug-94
AN-969	Economic, High Performance, High Efficiency Electronic Ignition			
	with Avalanche Rated <i>HEXFETs</i> Post Regulators	969	4	Aug-94
AN-970	HEXFET Power MOSFETs in Low Dropout Linear Post-Regulators	970	4	Aug-94
AN-972B	Thermal and Mechanical Considerations for <i>FULLPAK</i> Apps.	972	6	Oct-95
	11			

For a List of IR Distributors and Sales Reps, Select Document # 001

AN-973	HEXFETs Improve Efficiency, Expand Life of Electronic Lighting			
	Ballasts	973	8	Aug-94
AN-976	Understanding and Using Power MOSFET Reliability Data	976	8	Sep-94
AN-980	IGBT vs. HEXFET Power MOSFETs for Variable Frequency			
	Motor Drives	980	7	Oct-96
AN-986	ESD Testing of MOS-Gated Power Transistors	986	8	Aug-94
AN-987	Utilizing Schottky Rectifier Die in Assembly	987	4	Aug-94
AN-994	Maximizing the Effectiveness of Your SMD Assemblies	994	4	Jul-97
AN-996	Guidelines for the Assembly of SMD-10 Devices	996	5	May-98
AN-997	Mounting Guidelines for the Super-247 Package	997	5	Apr-98
AN-999	I.R.'s Total Dose Radiation Hardness Assurance (RHA) Test Program	999	4	Aug-98
AN-1000	Mounting Guidelines for the Super-220 Package	1000	8	Apr-99
DT92-5	SPICE Models for MOS-Gated Power Devices	9205	4	Dec-94
DT93-4	Current Capability of TO-220 Package	9304	3	Aug-95
DT94-2	Choosing Between Multiple Discretes and High Current Modules	9402	6	Nov-95
DT94-7A	Low Gate Charge HEXFETS simplify Gate Drive and Lower Cost	9407	4	Aug-95
DT94-8	Reverse Battery Protection W/ HEXFETs Doubles Battery Life	9408	2	May-95
DT94-12	Optically Isolated Gate Drive Circuit (High Side)	9412	1	Nov-95
DT94-13	Push-Pull Drive Circuit	9413	1	Nov-95
DT95-2	New Fifth Generation Power Mosfets: A Replacement Guide	9502	4	May-95
DT97-1	Reducing Switching Losses In Portable DC/DC Converters	9701	2	Apr-97

IGBT Appl	ication Notes and Design Tips			
AN-984A	Protecting IGBTs Against Short Circuit	984	7	Dec-94
AN-994A	Maximizing the Effectiveness of Your SMD Assemblies	994	16	Jun-95
DT92-5	Spice Models for MOS-Gated Power Devices	9205	4	Dec-94
DT93-4	Current Capability of TO-220 Package	9304	3	Aug-95
DT93-6B	Miniaturization of the Power Electronics for Motor Drives	9306	7	Jun-95
DT94-2	Choosing Between Multiple Discretes and High Current Modules	9402	6	Nov-95
DT94-4	Trade-Off Considerations Between Efficiency and Short Circuit			
	Capability in IGBTs	9404	2	Dec-94
DT94-5A	Using MOS-Gated Power Transistors in AC Switch Applications	9405	2	Dec-94
DT94-9	Maximizing the Latch Immunity of the IR2151 & 52 in Ballast Apps.	9409	7	Nov-95
DT94-11	3-Phase Bridge Drive with Overcurrent Protection (IR2130)	9411	1	Nov-95
DT94-17	Thermal Resis. Characterization for New Surface Mount Devices	9417	2	Nov-95

Control IC	Application Notes and Design Tips			
AN-978A	HV Floating MOS-Gate Driver	978	12	Aug-94
AN-985A	The IR2130: A Six-Output, High Voltage MOS Gate Driver	985	8	Jun-96
DT92-2A	High Current Buffer for Control IC's	9202	4	May-95
DT92-3B	Using Control ICs to Generate Neg. Gate Bias for MOSFETs & IGBTs	9203	6	May-95
DT92-4A	Simple High Side Drive Provides Fast Sw. & Continuous On-Time	9204	3	May-95
DT93-6B	Miniaturization of the Power Electronics for Motor Drives	9306	8	May-95
DT94-1A	Keeping the Bootstrap Capacitor Charged in Buck Converters	9401	3	May-95
DT94-3A	Simple Electronic Ballast using IR2151/52/55 Control ICs	9403	3	May-95
DT94-10A	Choosing the Correct Dropping Resist. for IR2151/52/55 Control ICs	9410	4	May-95
DT94-15	Design Check List for IR21XX Control IC's	9415	2	May-95
DT95-3A	Ultra-Compact Fluorescent Ballast Using the IR51H Half-Bridge SIPs	9503	4	Aug-95
DT97-3	Managing Transients in CIC Driven Power Stages	9703	8	Aug-97
DT98-2	Bootstrap Componet Selection for CICs	9802	3	Feb-98
	1200v Control IC White Paper	800	13	Apr-97
	Compact Fluorescent Ballast Reference Design (IRPLCFL1)	850	7	Apr-97
	Linear Ballast, Universal Input, Warm Start Design (IRPLLNR1)	851	10	Apr-97
	Plug & Play Power and Drive Solution for AC Induction Motors	801	9	May-97

For a List of IR Distributors and Sales Reps, Select Document # 001

Revised 5/11/99 www.irf.com

Microelect	ronic Relay Application Notes and Design Tips			
AN-100	AC Load Switching with Chipswitch Microelectronic Relays	100	3	Jul-95
AN-101	Choosing an Input Resistor for a Microelectronic Relay	101	2	Jul-95
AN-102	Inductive Load Switching Characteristics of the Chipswitch	102	2	Jul-95
AN-103	Thermal Evaluation of Chipswitch Programmable Controllers	103	2	Jul-95
AN-104	The Photovoltaic Relay: A New Solid State Control Device	104	6	Jul-95
AN-106	The Switching life of BOSFET PhotoVoltaic Relays	106	1	Nov-95
AN-105	Advantages of Photovoltaic Relays in Multiplexers	105	4	Jul-95
AN-107	Short Circuit Withstand Capability of the Photovoltaic Relay	107	6	Jul-95
DT95-1	Replacing Mechanical Relays W/ PVT412L in FAX/Modem Designs	9501	2	Oct-95

Thyristor	Chyristor & Rectifier Application Notes and Design Tips						
AN-305	Calculation of Rectangular Waveform Current Rating of Thyristors	305	6	Oct-95			
AN-309	SCRs - Their Parameters, Specifications, Ratings, and Characteristics	309	4	Jul-95			
AN-312	Selection of SCRs for Single Phase DC Motor Drives	312	4	Nov-95			
AN-804	Determination of Available Fault Current for Semiconductor Fusing	804	10	Nov-95			
AN-951	Mounting Guidelines for the Super-220	951	10	Oct-98			
DT93-1	Testing High Power SCRs and Diodes	9301	2	Aug-95			
DT94-14	Isolated SCR Gate Drive Circuit	9414	1	Nov-95			
DT97-4	Inrush Current Control in Motor Drives	9704	2	Apr-99			
DT97-5	High Voltage Generators for De-Magnetizing Systems	9705	2	Apr-99			
DT97-6	Power Factor Correction: Discontinous Mode	9706	2	Apr-99			
DT97-7	Line Surges in Input Rectifiers	9707	2	Apr-99			
DT97-8	EMI Reduction Using QuietIR	9708	2	Apr-99			
DT97-9	QuietIR Series Used in High Frequency Welding Applications	9709	2	Apr-99			
DT97-10	On-Line UPS with PFC	9710	2	Apr-99			
DT97-11	QuietIR Series Used in DC Motor Chopper Applications	9711	2	Apr-99			
DT97-12	Soft Recovery Diodes Help in Designing More Reliable Alternators with Improved EMI	9712	2	Apr-99			

HEXFRED	Application Notes			
AN-989	The HEXFRED Ultrafast Diode in Power Switching Circuits	989	8	Sep-94
AN-993	Utilizing HEXFRED Ultra-Fast Recovery Diode Die in Assembly	993	4	Sep-94

Assembly A	pplication Notes			
AN-994	Maximizing the Effectiveness of Your SMD Assemblies	994	16	Jun-95

Technical Papers					
A More Realistic Characterization of Power MOSFET Output Capacitance Coss	750	3	Oct-98		
Warp Speed IGBTs - White Paper	852	4	Aug-97		
Plug & Play Power and Drive Solution for AC Induction Motors	801	7	May-97		
1200v Control IC White Paper	800	13	Apr-97		
Compact Fluorescent Ballast Reference Design (IRPLCFL1)	850	8	Apr-97		
Linear Ballast, Universal Input, Warm Start Design (IRPLLNR1)	851	10	Apr-97		
T-PAP-1: Accurate Junction Temperature Calculation Optimizes IGBT					
Selection for Maximum Performance and Reliability	751	15	Jun-96		
T-PAP-2: Gate Drive Considerations for IGBT Modules	752	10	Jun-96		
T-PAP-3: A Discussion on IGBT Short Circuit Behavior and Fault Protection					
Schemes	753	9	Jun-96		
T-PAP-4: IGBT Fault Limiting Circuit	754	7	Jun-96		
T-PAP-5: Snubber Considerations for IGBT Applications	755	9	Jun-96		
T-PAP-6: Switching Voltage Transient Protection Schemes for IGBT Modules	756	10	Jun-96		
For a List of IR Distributors and Sales Reps, Select Document # 001			Page 5		

Catalog of Available Documents

GBAN-PVI-1: The PVI - A Versatile New Circuit Element	758	5	Jun-96
GBAN-HEX-1: The HEX-Pak International Rectifier's High Power Hexfet			
Module	759	6	Jun-96