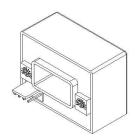


Current Transducer HAS 50 .. 600-S

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data


	Туре	Primary nominal current rms	Primary current, measuring range ¹⁾	RoHS since date code
		I _{PN} (A)	I _{PM} (A)	
	HAS 50-S	50	± 150	45217
	HAS 100-S	100	± 300	45325
	HAS 200-S	200	± 600	45166
	HAS 300-S	300	± 900	45326
	HAS 400-S	400	± 900	45333
	HAS 500-S	500	± 900	45201
	HAS 600-S	600	± 900	45260
V _c	Supply voltage (± 5 %	b) ¹⁾	± 15	V
I _c	Current consumption		± 15	mA
R _{IS}	Isolation resistance @	500 VDC	> 100	0 MΩ
$\mathbf{V}_{\mathrm{out}}$	Output voltage (Analo	g) @ ± I _{PN} , R _L =10	$k\Omega$, $\mathbf{T}_A = 25^{\circ}C \pm 4V$:	±40 mV
R _{OUT}	Output internal resista	nce appr	ox 100	Ω
R	Load resistance 2)		> 1	kΩ

Accuracy - Dynamic performance data

Х	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$ (exclu	< ± 1	%	
ε,	Linearity error ³⁾ (0 $\pm I_{PN}$)		< ± 1	% of I _{PN}
V _{OE}	Electrical offset voltage, $T_A = 25^{\circ}C$		< ± 20	mV
V _{OH}	Hysteresis offset voltage $\textcircled{0}$ I_{p} =0,			
	after an	excursion of 1 x I _{PN}	< ± 20	mV
TCV	Temperature coefficient of $V_{_{OE}}$	HAS 50-S	< ± 2	mV/K
		HAS 100 600-S	< ± 1	mV/K
TCV	, Temperature coefficient of V_{out} (%	6 of reading)	< ± 0.1	%/K
t	Response time to 90 % of I _{PN} step)	< 3	μs
di/dt	di/dt accurately followed		> 50	A/µs
BW	Frequency bandwidth (- 3 dB) ⁴⁾		DC 50	kHz
General data				

T	Ambient operating temperature		- 10 + 80	°C
T	Ambient storage temperature		- 25 + 80	°C
m	Mass	approx	60	g
	Standards ⁵⁾		EN 50178: 1997	

I_{PN} = 50 .. 600 A

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 3000 V
- Low power consumption
- Extended measuring range (3 x I_{PN})
- Insulated plastic case made of polycarbonate PBT recognized according to UL 94-V0.

Advantages

- Easy mounting
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies
 (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

Page 1/3

Current Transducer HAS 50 .. 600-S

Isolation characteristics			
$\hat{\mathbf{V}}_{d}$	Rms voltage for AC isolation test, 50 Hz, 1 min Impulse withstand voltage 1.2/50 µs	3.6 > 6.6 Min	kV kV
dCp dCl	Creepage distance Clearance distance	7.08 6.23	mm mm
СТІ	Comparative Tracking Index (group IIIa)	275	

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, \hat{V}_{w}	Rated isolation voltage	Nominal voltage
Single isolation	600 V	600 V
Reinforced isolation	300 V	300 V

Safety

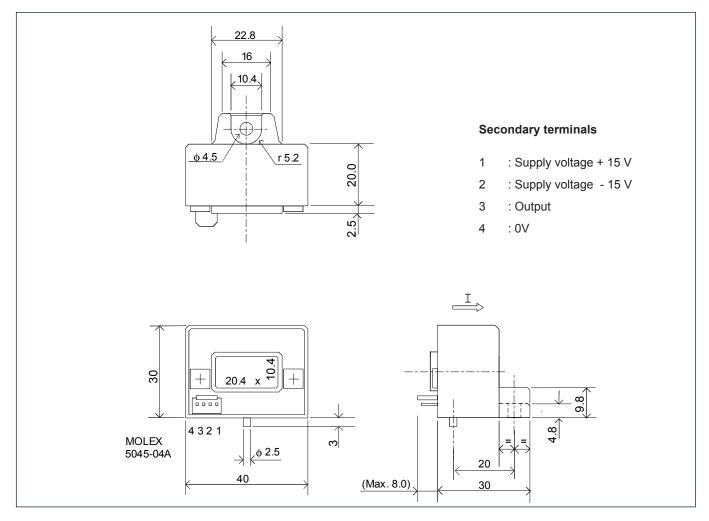
This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.


A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Page 2/3

Dimensions HAS 50 .. 600-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristic

 General tolerance ± 0.5 mm

Notes: 1) Operating at ± 12 V ≤ V_c < ± 15 V will reduce the measuring range

- ²⁾ If the customer uses 1 k Ω of the load resistor, the primary current has to be limited as the nominal. To measure the full defined measuring range, the load resistor should be at minimum 10 $\mbox{k}\Omega$
- ³⁾ Linearity data exclude the electrical offset
- ⁴⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency
- ⁵⁾ Please consult characterisation report for more technical details and application advice;
 - To IEC 61000-4-3 (2006), Output is above to 15% of Vsn between 200MHz and 700MHz.

Page 3/3