D. SOTO, T.C. GREEN, "A Comparison of High-Power Converter Topologies for the Implementation of FACTS Controllers", IEEE Transactions on Industrial Electronics, Vol. 49, No. 5, October 2002, pp. 1072-1080.
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [ART374]

Titre : D. SOTO, T.C. GREEN, A Comparison of High-Power Converter Topologies for the Implementation of FACTS Controllers, IEEE Transactions on Industrial Electronics, Vol. 49, No. 5, October 2002, pp. 1072-1080.

Cité dans :[REVUE392] IEEE Transactions on Industrial Electronics, Volume 49, Issue 5, October 2002.
Auteur : Diego Soto - Member IEEE
Auteur : Tim C. Green - Member, IEEE

Source : Industrial Electronics, IEEE Transactions on
Pages : 1072 - 1080
Volume : 49
Issue : 5
Date : October 2002
ISSN : 0278-0046
INSPEC Accession Number: 7413698
Stockage : Thierry LEQUEU.
Lien : private/Soto1.pdf - 9 pages, 274 Ko.

Vers : Bibliographie

Abstract :
This paper compares four converter topologies for
the implementation of flexible ac transmission system (FACTS)
controllers: three multilevel topologies (multipoint clamped
(MPC), chain, and nested cell) and the well-established multipulse
topology. In keeping with the need to implement very-high-power
inverters, switching frequency is restricted to line frequency. The
study addresses device count, dc filter ratings, restrictions on
voltage control, active power transfer through the dc link, and
balancing of dc-link voltages. Emphasis is placed on capacitor
sizing because of its impact on the cost and size of the FACTS
controller. A method for the dimensioning the dc capacitor filter is
presented. It is found that the chain converter is attractive for the
implementation of a static compensator or a static synchronous
series compensator. The MPC converter is attractive for the
implementation of a unified power flow controller or an interline
power flow controller, but a special arrangement is required to
overcome the limitations on voltage control.

Index_Terms : flexible ac transmission system (FACTS), high-power inverter, multilevel converter, multipulse converter, static compensator (STATCOM), unified power flow controller (UPFC).


Bibliographie

TOP

REFERENCES : 30
[1] N. G. Hingorani, “Flexible AC transmission,” IEEE Spectrum, vol. 3,
pp. 40–45, Apr. 1993.
[2] S. Mori, K. Matsuno, M. Takeda, M. Seto, T. Hasegawa, S. Ohnishi, S.
Murakami, and F. Ishiguro, “Development of a large static VAr generator
using self-commutated inverters for improving power system stability,”
IEEE Trans. Power Syst., vol. 8, pp. 371–377, Feb. 1993.
[3] C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L. Gyugyi, T. W. Cease,
and A. Edris, “Development of a  100 MVAR static condenser for
voltage control of transmission systems,” IEEE Trans. Power Delivery,
vol. 10, pp. 1486–1493, July 1995.
[4] C. Schauder, “The unified power flow controller—A concept becomes
reality,” in IEE Colloq: Flexible AC Transmission Systems—The FACTS,
Nov. 1998, pp. 7/1–7/6.
[5] L. Gyugyi, C. D. Schauder, and K. K. Sen, “Static synchronous series
compensator: A solid-state approach to the series compensation of trans-mission
lines,” IEEE Trans. Power Delivery, vol. 12, pp. 406–417, Jan.
1997.
[6] L. Gyugyi, K. K. Sen, and C. D. Schauder, “The interline power flow
controller concept: A new approach to power flow management in trans-mission
systems,” IEEE Trans. Power Delivery, vol. 14, pp. 1115–1123,
July 1999.
[7] B. W. Williams, Power Electronics. London, U.K.: Macmillan, 1987,
ch. 10.
[8] P. R. Palmer, H. S. Rajamani, and N. Dutton, “The use of capsule IGBT’s
in the series connection,” in IEE PEVD Conf., Sept. 2000, pp. 250–255.
[9] A. Nabae, I. Takahashi, and H. Akagi, “A new neutral-point-clamped
PWM inverter,” IEEE Trans. Ind. Applicat., vol. IA-17, pp. 518–523,
Sept./Oct. 1981.
[10] N. S. Choi, J. G. Cho, and G. H. Cho, “A general circuit topology of
multilevel inverter,” in Proc. IEEE PESC’91, 1991, pp. 96–103.
[11] M. Marchesoni and M. Mazzucchelli, “Multilevel converters for high
power AC drives: A review,” in Proc. IEEE ISIE’93, 1993, pp. 38–43.
[12] T. A. Meynard and H. Foch, “Multi-level conversion: High voltage chop-pers
and voltage-source inverters,” in Proc. IEEE PESC’92, 1992, pp.
397–403.
[13] P. W. Hammond, “A newapproach to enhance power quality for medium
voltage AC drives,” IEEE Trans. Ind. Applicat., vol. 33, pp. 202–208,
Jan./Feb. 1997.
[14] J.-S. Lai and F. Z. Peng, “Multilevel converters—A new breed of power
converters,” IEEE Trans. Ind. Applicat., vol. 32, pp. 509–517, May/June
1996.
[15] R. W. Menzies and Y. Zhuang, “Advanced static compensation using a
multilevel GTO thyristor inverter,” IEEE Trans. Power Delivery, vol. 10,
pp. 732–738, Apr. 1995.

[16] F. Z. Peng, J.-S. Lai, J. McKeever, and J. VanCoevering, “A multilevel
voltage-source inverter with separate DC sources for static VAr gener-ation,”
IEEE Trans. Ind. Applicat., vol. 32, pp. 1130–1138, Sept./Oct.
1996.
[17] J. D. Ainsworth, M. Davies, P. J. Fitz, K. E. Owen, and D. R. Trainer,
“Static VAr compensator (STATCOM) based on single-phase chain
circuit converters,” Proc. IEE—Generation, Transmission, Distribution,
vol. 145, no. 4, pp. 381–386, July 1998.
[18] C. Schauder and H. Mehta, “Vector analysis and control of advanced
static VAr compensators,” Proc. Inst. Elect. Eng., vol. 140, no. 4, pp.
299–306, July 1993.
[19] D. R. Trainer, S. B. Tennakoon, and R. E. Morrison, “Analysis of GTO-based
static VAr compensators,” Proc. IEE—Elect. Power Applicat., pt.
C, vol. 141, no. 6, pp. 293–302, Nov. 1994.
[20] F. Z. Peng, J. W. McKeerer, and D. J. Adams, “A power line conditioner
using cascade multilevel inverters for distribution systems,” IEEE Trans.
Ind. Applicat., vol. 34, pp. 1293–1298, Nov./Dec. 1998.
[21] L. H. Walker, “10-MW GTO converter for battery peaking service,”
IEEE Trans. Ind. Applicat., vol. 26, pp. 63–72, Jan./Feb. 1990.
[22] F. Z. Peng, J.-S. Lai, J. McKeever, and J. Van Coevering, “A multilevel
voltage-source converter system with balanced DC voltages,” in Proc.
IEEE PESC’95, 1995, pp. 1144–1150.
[23] Y. Chen and B. T. Ooi, “Multimodular multilevel rectifier/inverter link
with independent reactive power control,” IEEE Trans. Power Delivery,
vol. 13, pp. 902–908, July 1998.
[24] D. E. Soto-Sanchez and T. C. Green, “Voltage balance and control in a
multi-level unified power flow controller,” IEEE Trans. Power Delivery,
vol. 16, pp. 732–738, Oct. 2001.
[25] L. M. Tolbert, F. Z. Peng, and T. G. Habetler, “Multi-level PWMmethods
at low modulation indices,” IEEE Trans. Power Electron., vol. 15, pp.
719–725, July 2000.
[26] R. Rojas, T. Ohnishi, and T. Suzuki, “PWM control method for a four-level
inverter,” Proc. IEE—Elect. Power Applicat., vol. 142, no. 6, pp.
390–396, Nov. 1995.
[27] C. Newton and M. Sumner, “Novel technique for maintaining balanced
internal DC link voltages in diode clamped five-level inverters,” Proc.
IEE—Elect. Power Applicat., vol. 143, no. 3, pp. 341–349, May 1999.
[28] Y. Chen, B. Mwinyiwiwa, Z. Wolanski, and B. T. Ooi, “Unified
power flow controller (UPFC) based on chopper stabilised multilevel
converter,” in Proc. IEEE PESC’97, vol. 1, 1997, pp. 331–337.
[29] , “Regulating and equalising DCcapacitance voltages in multi-level
STATCOM,” IEEE Trans. Power Delivery, vol. 12, pp. 901–907, Apr.
1997.
[30] P. K. Steimer, H. E. Grüning, J. Werninger, and D. Schröder,
“State-of-art verification of the hard-driven GTO inverter development
for a 100-MVA inertie,” IEEE Trans. Power Electron., vol. 13, pp.
1182–1187, Nov. 1998.


Mise à jour le lundi 10 avril 2023 à 18 h 47 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2023 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.