Power Electronic Opportunites in Photovoltaic Solar Power

Richard M. Swanson SunPower Corporation APEC 2006 March 19 – 23, 2006

Outline

PV Market Dynamics

Growing fast

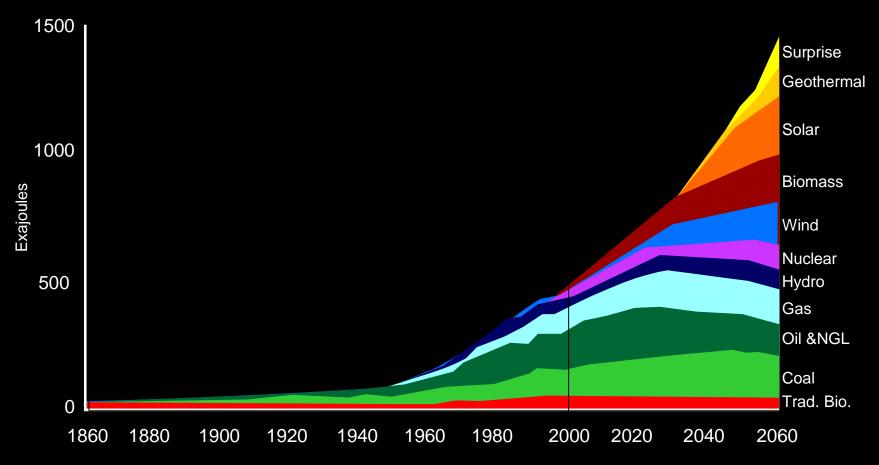
PV Economics


Costs are coming down

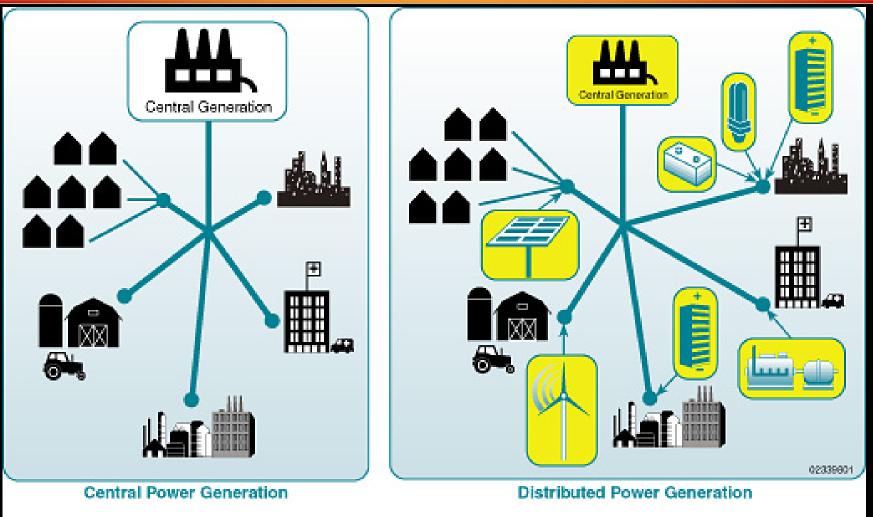
Power Electronic Goals and

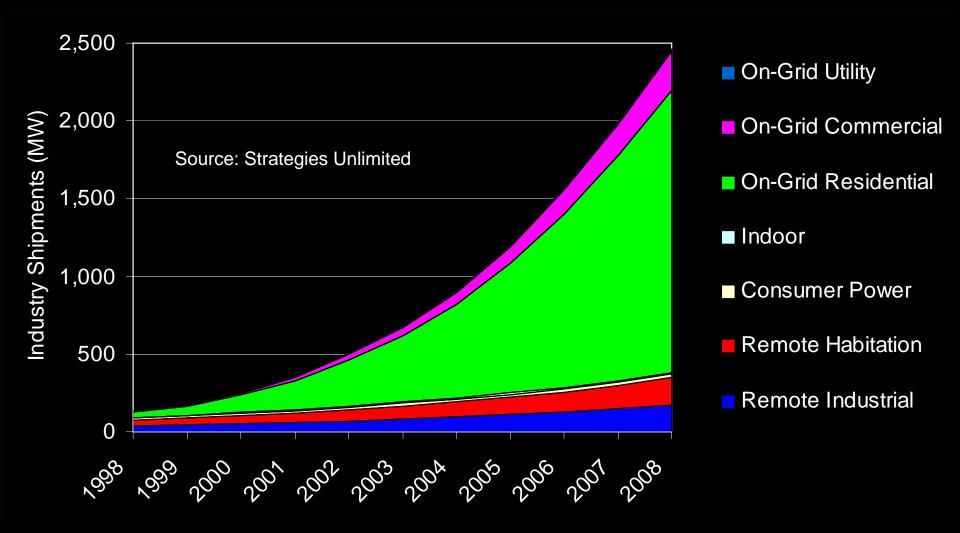
Requirements


Global PV Market Status


- 2004 market grew 47%
- Growth during 4 of 5 past years > 40%
- Japanese and German success spurring others
- 1 GW/yr production by individual companies by 2010

SUNPOWER Drivers of Solar Market Growth


- Global Power Needs Roughly Double by 2025 US DOE
- Energy Prices Oil \$50 \$110 per barrel Goldman Sachs
- Climate Change Need 30% Renewables by 2030 NREL
- Solar Price Parity
- 5 10 yrs for Major Markets SunPower

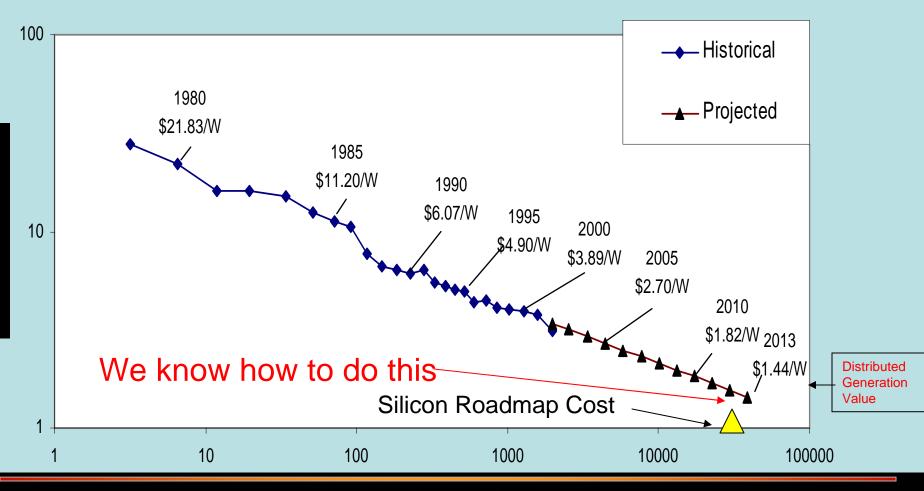


Source: Shell, The Evolution of the World's Energy Systems, 1995

Distributed Generation Strategies are Shaping the Future

Market Growth

SUNPOWER Santa Barbara, California – 12.6 kW


Walldürn, Germany – 8.0 kW

Osaka, Japan – 5 kW

In less than 10 Years,SUNPOWERmarket incentives will not be needed

- Single Phase applications (<10kW) :
 - o Non Isolated design Boost section and inverter
 o High Frequency galvanic isolation High frequency
 transformation
 o Low frequency isolation single stage inverter with high

efficiency transformer

- Main performance characteristics:
 - o Efficiency (>95%)
 - o High power density, low volume.
 - o High reliability
 - o High energy harvesting single and multiple PV arrays, MPPT algorithms.
 - o Competitive cost
 - o Grid connectivity (islanding, UL)

• Three Phase applications (> 50kW) :

- o Three phase, full bridge inverter.
- o Tri-level inverter (experimental)
- o Low or medium voltage transformer.
- Main performance characteristics:
 - o Efficiency (>97%)
 - o High power density , low volume.
 - o High reliability

o High energy harvesting – single and multiple PV arrays, MPPT algorithms.

- o Competitive cost
- o Grid connectivity.

SUNPOWERSolar America Initiative (SAI)

A New Presidential Initiative from the Bush Administration

http://www1.eere.energy.gov/solar/solar_america/index.html

Purpose: Achieve the following aggressive cost goals in 2015 (Accelerating what was expected in 2020 by 5 years)

Residential: 8 - 10 ¢/kWhrCommercial: 6 - 8 ¢/kWhrUtility: 5 - 7 ¢/kWhr

Note: Corresponds to a 2 to 3-fold system cost reduction in 10 years. Can't be done without significant inverter improvements.

- Approximately \$50 million per year new R&D funding
- 5-10 Technology Pathway Partnerships
 - Vertically integrated groups working to gain value at intersections of the value chain

Old DOE Roadmap

System Element Units 2005 2011 System Location Phoenix Inverter Price \$/Wac 0.90 0.69	2020
Inverter Price \$/Wac 0.90 0.69	
	0.30
Inverter size kW 4 4.74	5.92
DC-AC conversion efficiency % 90 96	97
Inverter life/replacement Years 5 10	20
invertermerrepiscement reals 5 10	40

SUNPOWER Technical Improvement Objectives

Technical Improvement Opportunities		Metrics					
TIER 1 TIO8	TIER 2 TIO8	Performance	Cost	08.M	Reliability		
	Module						
	Absorber						
Modules	Cells and Contacts						
	Interconnects						
	Packaging						
	Manufacturing						
inverters & BOS	Inverter						
	Inverter Software						
	Inverter Components/Design						
	Inverter Packaging/Manufacturing						
	Inverter Integration						
	Other BOS						
SE&I	Systems Engineering & Integration						
	Manufacturing/Assembly						
	Installation/Maintenance						
Deployment	Technology Acceptance						
RED ladiation blab impact apportunition. VELLOW ladiation moderate impact expectualities							

RED indicates high-impact opportunities. YELLOW indicates moderate-impact opportunities.

- Incorporate emerging new componentry, such as roomtemperature superconductors, silicon carbide switching devices, advanced magnetics, and longer-lived capacitors; advanced surge suppression; improved modeling and design optimization; and the development of fully integrated circuitry—new micro-chips to simplify designs, improve reliability, and reduce losses.
- Employ modeling, simulation, and prototype hardware development to completely redesign inverters for highvolume manufacturing with higher efficiencies and greater reliabilities. New algorithms for switching modulation, management of islanding, and interactions among parallel inverters for microgrid control will be developed and analyzed.