Research Status of the National Key Laboratory of Power Electronics

Prof. Dr. Mark Dehong XU
College of Electrical Engineering
Zhejiang University
China
Email: xdh@cee.zju.edu.cn

Location of Zhejiang University

China

Zhejiang is Province name
 Located in Hangzhou city: beautiful city in China 200km from Shanghai

Zhejiang University

Found in 1897
Key national university, Ranks the 3rd in China The most comprehensive university in China

Animal Sciences
Biomedical Engineering and Instrument Science
Computer Science (Software Technology)
Civil Engineering and Architecture
Economics
Education
Electrical Engineering
Environmental and Resource Sciences
School of International Studies
Humanities
Information Science and Engineering
Law
Life Sciences
Mechanical and Energy Engineering
Materials Science and Chemical Engineering
Medicine
Management
Pharmaceutical Sciences
Science
Public Administration

Statistics of 2004
Undergraduates: 24983
Master students :11883
Doctor students:6050
Oversee student:1235
Research Funds 1.02 billion yuan
Papers Included in SCI (2004) 1917
Papers Included in El (2004) 1551
Granted Patents (2004) 330

The college of Electrical Engineering

Established in 1920

Brief information

- The first SCR media-frequency induction-heating power supply ($100 \mathrm{~kW} / 1 \mathrm{kHz}$) in 1971 in China,
- 1981 began recruit graduates for postgraduates
- 1988, 2002,National key discipline
- 1989 become National Key Laboratory of Power Electronics

Staff:

One member of China Academics of Engineering
Professors:8
Associate professors:4
Assistant professors:7

Students:

Master students: accept 50/year
Ph. D students: accept 25/year

Lab facilities

Software:

Saber, Ansoft(SIMPLORER, Maxwell, PExprt, RMxprt), Matlab, Mathcad, dspace

Instrument:

Network analyzer, device test equipments, power analyzer, logic analyzer ,EMC test equipments, so on

Package equipments:

QualMark FALT \&HASS System, SMT equipments

Research directions

$>$ Soft switching technology
> Inverter and UPS control
>Power Electronics for Power system
>Renewable power generation system
$>$ Inverters for induction heating and HV processing equip.
>Integrated power electronics
>Drive
>EMI/EMC

Boost power factor correction (PFC) converter

DPS application:Intel, Compaq Power rating:1kW

Current continuous mode (CCM) is prefered instead to DCM

```
-lower current stress, lower conducting loss
-small magnetic component size and its loss (LB+EMI)
.Higher reverse recovery loss
```


Diode reverse recovery resulting loss suppression

-Lossless snubber
-ZCS or ZVS quasi resonance (DCM)
-ZVT switching
-Active clamping

- SiC diode

Active clamping

Both the main switch and auxiliary switch are ZVS

Parasitic resonance in active clamping

M 1 in on-state, resonance between L 1 and D 2

D 2 voltage stress $=2 \mathrm{Vo}$

M 1 and M 3 gate signal are complimentary

Terminal voltage of D 2 in off-state is not clamped

Compound-Active-Clamping (CAC) Boost Converter

Conventional active-clamping boost converter
(M1, M3) in complimentary mode

Compound-Active-Clamping (CAC) boost converter

2 of the 3 devices in conducting (M1, M3 and D2)

- Key piont: $\mathrm{V}_{\mathrm{s} 1}+\mathrm{V}_{\mathrm{s} 3}+\mathrm{V}_{\mathrm{d} 2}=\mathrm{V}_{\mathrm{o}}+\mathrm{V}_{\mathrm{cc}}$
- Only 2 of 3 device are conducting
- Terminal voltage of the turn-off device is clamped and parasitic oscillation is eliminated
- Suppress reverse recovery process
- Both main and aux. switch are ZVS

Soft switching DC/DC converter and PFC converter

Compound-Active-Clamping (CAC) ZVS PFC

-Diode reverse recovery is relieved. No voltage ringing occurs on the diode.
-Both the main switch and the auxiliary switch are ZVS.
 .Higher efficiency is achieved for 1kW CAC PFC converter

The main switch and the auxiliary switch do not operate in complimentary mode. There are always two of the three devices (M1, M3 and D2) in conducting, which results in clamping the terminal voltage of the turn-off device.

Efficiency vs. input voltage Vin ($\mathrm{Po}=1000 \mathrm{~W}, \mathrm{Vo}=380 \mathrm{Vdc}$)

Minimum-Voltage Active-Clamping(MVAC) PFC Converter

-Diode reverse recovery relieved. -No voltage ringing on the diode. -Both the main switch and the auxiliary switch are ZVS. -Higher efficiency
-Voltage stress equal to hard-switching circuit

PWM control is the same as CAC ZVS PFC converter

Minimum Voltage Active Clamp

$$
\mathrm{V}_{\mathrm{s} 1}+\mathrm{V}_{\mathrm{s} 3}+\mathrm{V}_{\mathrm{d} 2}=\mathrm{V}_{\mathrm{o}}+\mathrm{V}_{\mathrm{Cc}}
$$

Input voltage Vin=90V~265Vac Output voltage Vo=380Vdc
Rated power $P o=1 \mathrm{~kW}$
Switching frequency $f s=100 \mathrm{kHz}$

- S1, S3:IRFP460×2(IR)
- D2 : MUR1560
- L:0.6mH (EE55)
- C2:1680pF/1000V
- $\quad C_{0}: 1320$ F F/450V
- L1: 12. H

Efficiency vs. input voltage Vin ($\mathrm{Po}=1000 \mathrm{~W}, \mathrm{Vo}=380 \mathrm{Vdc}$)

- Cc:4.7.7 $\mathrm{F} / 250 \mathrm{~V}$

$$
\mathrm{V}_{\mathrm{s} 1}+\mathrm{V}_{\mathrm{s} 3}+\mathrm{V}_{\mathrm{d} 2}=\mathrm{V}_{0}
$$

CAC 3-phase PFC converter

- Add one auxiliary branch
- ZVS for all the switches
- Improved SVM control
- Suppress diode reverse recovery
- Fixed frequency control for both the main switch and the auxiliary switch
- low voltage stress on the switches
- Higher efficiency
- Lower EMI

Vin: $3^{*} 380$ Vrms Vdc=620V Pout=4kW switching freq. 12.8 kHz

Sector	angle	Vector1	Zero vector	Vector2	Vector1
1	$-30^{\circ} \sim 0^{\circ}$	100	111	101	100
2	$0^{\circ}{ }^{\sim} 30^{\circ}$	100	111	110	100
3	$30^{\circ} \sim^{\circ} 60^{\circ}$	110	000	100	110
4	$60^{\circ} \sim 90^{\circ}$	110	000	010	110
5	$90^{\circ} \sim 120^{\circ}$	010	111	110	010
6	$120^{\circ} \sim 150^{\circ}$	010	111	011	010
7	$150^{\circ} \sim 180^{\circ}$	011	000	010	011
8	$180^{\circ} \sim 210^{\circ}$	011	000	001	011
9	$210^{\circ} \sim 240^{\circ}$	001	111	011	001
10	$240^{\circ} \sim 270^{\circ}$	001	111	101	001
11	$270^{\circ} \sim 300^{\circ}$	101	000	001	101
12	$300^{\circ} \sim 330^{\circ}$	101	000	100	101

Phase shift (PS) controlled bidirectional DC/DC converter

Power vs. phase-shift

PS control when $\mathrm{V}_{1} / 2=\mathrm{NV}_{2}$

PS control when $\mathrm{V}_{1} / 2<\mathrm{NV}_{2}$

PWM+phase shift (PPS) control

PPS control, duty ratio of M1 AND M3:
N : turn ratio of the transformer
 Duty ratio of M2 and M4: 1-D

.Current peak is reduced -switching loss and conduction loss reduced -Current stress of the switches are reduced -ZVS range is widen

PS control

PPS control

Three-level Power Factor Correction with Passive Lossless Snubber

$1^{5 \mathrm{~ms}} \mathrm{I}$ y OC X

SIVGLE

- SINGLE
-efficiency is increased
-Less over-voltage stress on main power switches.

Chargers

- Input voltage $220 \mathrm{Vac} \pm 15 \%$
-Output voltage 180V-275V, output current 15A -PFC operate frequency 33 KHz , DC/DC operate frequency 70 KHz
.One module output power 4kW, efficiency>90\%

-Three phase input voltage $380 \mathrm{Vac} \pm 20 \%$
-Output voltage 175V-330V, output current 25A .PF: 0.92, Efficiency: 90\%

Power supply

2-Phase 25Hz/3kVA ACSource (Parallel and Play and Plug in Available)

Integrated power electronics

.Planar transformer design

- Integrating passives design
-packaging
.Power management IC design

PFC controller

0.9V/50A VRM

Current sharing

DC/DC Module: 1/4 Brick, 480VA, 48/9V

30kW UPS with DSP control

DSP control
 -3in-3out without transformer
 -Front end PFC
 -Current sharing for multi-UPS

Current sharing control

Light load to heavy load

Heavy to light
V:100V/div, Current:11A/div, time:10mS/div

Novel PWM Method for Flying Capacitor Multilevel Inverters

-good performances under both high and low modulation index regions.
-balances the flying capacitor voltage in a carrier period.

THD vs. modulation index (below 150th harmonics)

Phase- and line- voltages

Current waveform

35kJ/7.5kW/200A HTS SMES

- Current unbalancing in a multi-modular current source converter with Carrier-swapping

- Lower AC side harmonics current

- The response of the converter is fast.

Withot SMES

With SMES

Power System Failure Current Limiter (10kV / 1000A)

Active Power Filter

-DSP control
-Accurate compensation method with digit control -Higher efficiency conversion Tech. - Inductorless bus bar

(a) Routine scheme

(b) Improved scheme

Dynamic response (32A/div, 10ms/div)

50 kVA active power quality conditioner

5 kW Fuel cell power generation system

-Frond end current ZCS DC/DC with RB-IGBT suited to FC
-Seamless transition by amplitude adjusting
-LCL filter fed inverter stability improvement by split capacitor mid-point current feedback

$I_{2}: 6.47 \%$ דitu

Inverter for inducting heating

$200 \mathrm{~kW} / 50 \mathrm{kHz}$ IGBT inverter for induction heating

Heating process line

High Voltage Ion Generator for plastic film Printing

Motor Drive

Drive equipment for spaceship

1kVA Matrix Converter

PM brushless DC motor for lockstitch sewing machine

20kVA PM Brushless Inverter

Remote fault diagnosis for power electronics equipment

- Compatibility design of remote fault diagnosis system for different power electronic equipments
- Remote real-time and synchronous data acquisition and transfers method
- On-line and off-line fault diagnosis for power electronic systems

Training Tool:
Digital Control Platform for Power Electronics

Future research focus

Fundamental oriented

- Power electronics Integration technology
- High frequency conversion
- Advanced control in power electronics
- Virtual testing for power electronics
- Thermal design
- EMI filter design

Application oriented
.Power Electronics for renewable and cleaning power generation
.EV and power electronics for transportation
.Power Electronics application in in environment protection and materials' treatment
.FACT devices
.High voltage, large power drives

Thanks!

