

Xseries, IntelliStation, BladeCenter Development

APEC March 20, 2006

Bill Ott VP, xSeries, Intellistation, BladeCenter Development

© 2006 IBM Corporation

Agenda

- Who we are
- What we need
- Requirements
- Summary

Systems and Technology Group

Who We Are

- One of the Top:
 - Systems Vendors • \$22B Revenue in 2005
 - Fastest growing vendor in storage, UNIX servers and Intel-based servers
- Top blade-server vendor
- 21 development sites World Wide
- 10,000 development employees worldwide

What We Do

IBM eServer

> zSeries mainframe
 > iSeries midmarket
 > pSeries UNIX
 > xSeries Intel-based
 > BladeCenter
 > Systems Control Software

IBM TotalStorage

 > Tape
 > Disk
 > Storage software

System Technology Challenges

- More speed!
- Higher Density!
- More data capacity!
- More bandwidth!
- Lower Cost!
- Smaller!
- More portable!
- More Open!

LBM

Trends That Affect Power, Packaging & Cooling

	2000	2001	2002	2003	2004	2005	2006	<u> </u>
Technology Drivers Processors	2.2			3.6		★ Multicore 2 4.8		★ Multicore 8 5.9
Thermal Conductance (W/C Chip Voltage (VDC)						★ FB	D Memory	1
ΙΟ	PCI	PCI X		PCI	4x IB Cat Express	les/Switches	x IB & IB M b Enet	odules 40 Gb Enet
Media(HDD, CD, FDD)	36 GB			HDD	<u>300 GB</u>	3.5" SA	ΓΑ/	600 GB
Market Drivers					168 coi		244 cores* (dual core)	488 cores* (quad core)
Intel CPU / Rack (42U) (* blade servers)	20				(single	core)		
Technology Enables			Heat Pipes	450		600		750
$\begin{array}{c} \text{Cooling} \\ \text{Cooling Ability} \end{array} \left(\begin{array}{c} w \\ U \end{array} \right) \end{array}$		35(Vapor Char	aber	★ Chilled Air Ra		hilled Air / ater
Power	* 3.3V, 5V	,12V 🔺 5V	12V Hybrid	20				23
Power Density (W/in ³)	3	,	g	* 12V Dist	fibuted	g	* 12	V Distributed
Packaging Server	Rack / To Towe		Optimized	Server B	lade - Low F Server E	ower lade - High I	power Se	odular alar vstems

System Level Challenges:

- Server designs have reached several limits:
 - Power supply density: cooling a bottleneck, continued push higher
 - Thermal: ability to move enough air to cool at server, rack and building levels
 - Accoustics: increased airfow = more noise
- Ability to provide primary power, building and rack: over 30kW per rack
 - Higher power driving higher input currents
 - Running out of AC ampacity with primary connector, C13/C14 must use C19/C20 and further as input connectors
 - racks require more capacity than 60A 3-phase service
- Other technology drivers
 - Number of planar voltages is increasing.
 - To conserve planar area, VRMs & SIPs need to be more common / smaller
 - Lower load voltages, 1.8V, 1.5V, 1.2V, etc., coupled with high dynamic loads continues to drive "point-of-load" VRs.
 - Power Management
 - Growing need to monitor currents and power
 - Dynamic voltage adjustments © 2006 IBM Corporation

March 17, 2006

Power Challenges and Solutions:

What we need

- Higher Reliability MTBF
- Higher Power Density
- Higher Transient Response di/dt
- Higher Efficiency
- Lower Voltage Higher Current
- Voltage/Current Distribution
- Increased Number Of Voltage Domains
- Ability to Hot Swap
- Lower Cost
- Shorter Development Cycles
- Best Industry Quality
- Error and Status Reporting

How we get there

- More Integration
- Higher Switching Frequencies
- Lower Switching and Conduction Losses
- Topology Influences
 RES/ZVS/ZCS
- Better EMI Design
- Innovative Design
- Lower Output Impedance
- Thermal Management
- Component Improvements
 - Integrated
 - Battery Technology
 - > Power Semiconductors
 - Capacitors

Power Supply Roadmap

General

- > N+N bulk power required for redundancy
- > 12V distribution within the chassis drives VRM/VRD input, DASD, PCI, FANS
- High efficiency converter technologies
- Design for future power increases (mech. package, connectors)
- Focus on quality and reliability
- > Voltage and current monitoring circuitry

Low End

- > Density pressure will continue driving lower number of output voltages
- Facilitates denser power supply packaging trend
- Improved power supply efficiency
- Requires more use of VRDs and VRMs Common Building Blocks

Issues

- Power supply densities limited at system level by cooling
- Connector ratings / ac & dc power distribution (60A 3-phase) / Efficiencies
- > Need more robust communication link

Communication Link Challenges

I2C is outdated and being abused

- > Over 10 years old
- Developed in the age of single master and dumb devices
 - No Data Checking (CRC, ECC, etc.)
 - No Hot Plug Capability
 - o Limited throughput
 - o Limited Isolation
- > Today's technology are smart devices, bus masters
 - o Drives Multi-master, critical communications

Consequence

- Faulty Mastering
 - o Bus Hangs
 - Slow Response
- Limited Diagnosis Capability

Link Issues

10

Information content is in edges

- o di/dt approaching 1000A/uS 6000A/ns
- o Noise
- o Reflections
- Ground shifts
- Card layout limitations
 - o Bus runs next to signal wires
 - Distance between slaves
 - Bus length and loading
- Traffic bottlenecks. Major areas:
 - o Server Startup
 - o Error recovery

Requirements

- Differential front end
- Require minimum coding resources
- Check method (CRC, EEC, parity, etc)
- Effective bus mastering
- Interrupt driven
- Robust
- Cost effective
- Architecturally sound specification
- Simple validation and test

Summary

- Need more of everything except cost and size
- Need a new communications link for the intelligent PS's
- The Industry has made tremendous strides ----- But
- More is needed

Backup

A Proposal

Hardware

- Arbitration
 - Handled by hardware only
 - No handshake protocol used
- Merge I2C with SPI
 - Separate DATA IN and DATA OUT lines
 - Buffer CLOCK, DATA IN, DATA OUT
 - Supports longer nets, faster frequencies
 - Differential buffers can be used

Firmware

14

- Use standard I2C or PMBus protocol
- Requires data checking